1
|
Li S, Yin X, Ren W, Zheng J, Li S, Zhi K, Gao L. Protein O-GlcNAcylation reprograms macrophage-mediated bone remodeling in medication-related osteonecrosis of the jaw. Int J Biol Macromol 2025; 313:144342. [PMID: 40393602 DOI: 10.1016/j.ijbiomac.2025.144342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/18/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
O-Linked N-acetylglucosamine (O-GlcNAcylation) is an essential nutrient-sensitive post-translational modification (PTM) that has emerged as a critical regulator bridging immunometabolic reprogramming and skeletal homeostasis. Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication of anti-resorptive therapy, with limited effective treatments available. Despite four decades of research since its discovery, the therapeutic potential of targeting O-GlcNAcylation in MRONJ remains underexplored. Macrophages orchestrate a pro-inflammatory/anti-inflammatory milieu by polarization and paracrine signaling to promote bone resorption/formation. However, during MRONJ progression, metabolic alterations reshape macrophage function, leading to immune dysregulation and impaired bone remodeling. O-GlcNAcylation serves as a metabolic sensor of nutritional status and cellular stress, influences macrophage phenotype and function, making it a potential target for therapeutic intervention. Currently, extensive research on biomaterials for bone regeneration primarily focuses on enhancing osteogenesis or inhibiting osteoclast activity, often overlooking the impact of PTMs on bone remodeling. In this review, we highlight the emerging role of O-GlcNAcylation in macrophage regulation, discuss its implications in MRONJ pathogenesis, and explore its potential applications in macrophage-targeted biomaterials and nanotherapeutics.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Xiaopeng Yin
- Department of Oral and Maxillofacial Surgery, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Jinan 250001, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology of Qingdao University, Qingdao 266003, China; Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
2
|
Cui Y, Yang Z, Yu G, Hu J, Li D, Fu X, Yang W, Yang F. Naringin promotes osteoblast differentiation and ameliorates osteoporosis in ovariectomized mice. Sci Rep 2025; 15:12651. [PMID: 40221578 PMCID: PMC11993710 DOI: 10.1038/s41598-025-97217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
This study aimed to investigate the anti-osteoporotic mechanisms of naringin in osteoblasts and mice. In vitro, MC3T3-E1 cells were treated with naringin to detect cell proliferation, alkaline phosphatase (ALP) activity, and calcified nodule formation. Western blot was used to analyze the expression of osteogenic markers (OPN, COL1A1, RUNX2) and Wnt/β-catenin pathway proteins (Wnt3a, β-catenin). In vivo, ovariectomized (OVX) mice were treated with naringin for 3 months to observe bone microstructure, femoral histomorphology, and marker expression. Results showed that 0.1, 0.5, and 1 µmol/L naringin significantly promoted cell proliferation, enhanced ALP activity, and increased calcified nodule formation. Naringin also improved bone mineral density (BMD) and trabecular bone number in OVX mice. It elevated serum levels of bone formation markers (P1NP, OCN) while reducing the bone resorption marker CTX-1. Both in vitro and in vivo, naringin upregulated OPN, COL1A1, RUNX2, Wnt3a, and β-catenin expression, and induced β-catenin nuclear translocation. Notably, naringin antagonized the inhibitory effects of XAV939 (a Wnt/β-catenin pathway inhibitor) on OPN, COL1A1, and RUNX2 protein expression. These findings demonstrate that naringin enhances bone density in OVX mice and promotes osteogenic differentiation of MC3T3-E1 cells via activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yubo Cui
- Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Zhijun Yang
- Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Guisong Yu
- Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Jihui Hu
- Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Dian Li
- Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Xing Fu
- Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Wenlong Yang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Fengyun Yang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China.
- , No. 425, Baizhadao, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
3
|
Purushothaman E, Shanmugavadivu A, Balagangadharan K, Lekhavadhani S, Saranya I, Babu S, Selvamurugan N. Osteogenic potential of esculetin-loaded chitosan nanoparticles in microporous alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Int J Biol Macromol 2025; 286:138518. [PMID: 39647745 DOI: 10.1016/j.ijbiomac.2024.138518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Bone tissue engineering (BTE) is an emerging strategy for the treatment of critical bone defects using biomaterials and cells. Esculetin (ES), a coumarin phytocompound, has demonstrated therapeutic potential, although its osteogenic effects remain insufficiently explored. Owing to its hydrophobic nature, which limits its bioavailability, this study developed a drug delivery system using chitosan nanoparticles (nCS) to achieve sustained release of ES. These ES-loaded nCS nanoparticles were incorporated into biocomposite scaffolds composed of alginate (Alg) and polyvinyl alcohol (PVA) using freeze-drying. The synthesized nCS-ES nanoparticles exhibited spherical morphology with a uniform size distribution, ranging from 105 to 117 nm, and demonstrated excellent entrapment efficiencies (94.07 to 97.61 %). The nanoparticles displayed high zeta potential values (+27.8 to +33.2 mV), ensuring stable dispersion. The biocomposite scaffolds exhibited a uniform distribution of pores, with pore diameters ranging from 106 ± 14 μm to 112 ± 14 μm. The biocomposite scaffolds exhibited excellent swelling, protein adsorption, biodegradation, and biomineralization properties. The ES-loaded scaffolds showed sustained ES release, promoting osteogenesis in vitro, with the activation of the Wnt/β-catenin signaling pathway. In vivo studies using a rat tibial bone defect model further confirmed that these scaffolds stimulated new bone formation, highlighting the ES's potential for BTE applications.
Collapse
Affiliation(s)
- Elumalai Purushothaman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sushma Babu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Hernández-García F, Fernández-Iglesias Á, Rodríguez Suárez J, Gil Peña H, López JM, Pérez RF. The Crosstalk Between Cartilage and Bone in Skeletal Growth. Biomedicines 2024; 12:2662. [PMID: 39767569 PMCID: PMC11727353 DOI: 10.3390/biomedicines12122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells. A deeper understanding of these signaling pathways is crucial not only for normal skeletal growth and maturation but also for their potential relevance to pathophysiological processes in bones and joints. Due to limited information on the communication between chondrocytes and other cell types in developing bones, this review examines the current knowledge of how interactions between chondrocytes and bone-forming cells modulate bone growth.
Collapse
Affiliation(s)
- Frank Hernández-García
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Ángela Fernández-Iglesias
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Julián Rodríguez Suárez
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS-SAMID (RD21/0012), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Helena Gil Peña
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS2040 (RD21/0005/0011), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M. López
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- Departamento de Morfología y Biología Celular, Oviedo University, 33003 Oviedo, Spain
| | - Rocío Fuente Pérez
- Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain
| |
Collapse
|
5
|
Wang X, Qu Z, Zhao S, Luo L, Yan L. Wnt/β-catenin signaling pathway: proteins' roles in osteoporosis and cancer diseases and the regulatory effects of natural compounds on osteoporosis. Mol Med 2024; 30:193. [PMID: 39468464 PMCID: PMC11520425 DOI: 10.1186/s10020-024-00957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Osteoblasts are mainly derived from mesenchymal stem cells in the bone marrow. These stem cells can differentiate into osteoblasts, which have the functions of secreting bone matrix, promoting bone formation, and participating in bone remodeling. The abnormality of osteoblasts can cause a variety of bone-related diseases, including osteoporosis, delayed fracture healing, and skeletal deformities. In recent years, with the side effects caused by the application of PTH drugs, biphosphonate drugs, and calmodulin drugs, people have carried out more in-depth research on the mechanism of osteoblast differentiation, and are actively looking for natural compounds for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway is considered to be one of the important pathways of osteoblast differentiation, and has become an important target for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway, whether its activation is enhanced or its expression is weakened, will cause a variety of diseases including tumors. This review will summarize the effect of Wnt/β-catenin signaling pathway on osteoblast differentiation and the correlation between the related proteins in the pathway and human diseases. At the same time, the latest research progress of natural compounds targeting Wnt/β-catenin signaling pathway against osteoporosis is summarized.
Collapse
Affiliation(s)
- Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Luo
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Amedei A, Parolini C. Editorial: Epigenetics of inflammatory reactions and pharmacological modulation. Front Pharmacol 2024; 15:1505196. [PMID: 39529877 PMCID: PMC11551011 DOI: 10.3389/fphar.2024.1505196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
7
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
8
|
Li S, Ren W, Zheng J, Li S, Zhi K, Gao L. Role of O-linked N-acetylglucosamine protein modification in oxidative stress-induced autophagy: a novel target for bone remodeling. Cell Commun Signal 2024; 22:358. [PMID: 38987770 PMCID: PMC11238385 DOI: 10.1186/s12964-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic post-translational modification (PTM) involving the covalent binding of serine and/or threonine residues, which regulates bone cell homeostasis. Reactive oxygen species (ROS) are increased due to oxidative stress in various pathological contexts related to bone remodeling, such as osteoporosis, arthritis, and bone fracture. Autophagy serves as a scavenger for ROS within bone marrow-derived mesenchymal stem cells, osteoclasts, and osteoblasts. However, oxidative stress-induced autophagy is affected by the metabolic status, leading to unfavorable clinical outcomes. O-GlcNAcylation can regulate the autophagy process both directly and indirectly through oxidative stress-related signaling pathways, ultimately improving bone remodeling. The present interventions for the bone remodeling process often focus on promoting osteogenesis or inhibiting osteoclast absorption, ignoring the effect of PTM on the overall process of bone remodeling. This review explores how O-GlcNAcylation synergizes with autophagy to exert multiple regulatory effects on bone remodeling under oxidative stress stimulation, indicating the application of O-GlcNAcylation as a new molecular target in the field of bone remodeling.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
9
|
Akter R, Son JS, Ahn JC, Morshed MN, Lee GJ, Kim MJ, An JT, Kong BM, Song JH, Yang DC, Awais M, Yang DU. Korean Black Goat Extract Exerts Estrogen-like Osteoprotective Effects by Stimulating Osteoblast Differentiation in MC3T3-E1 Cells and Suppressing Osteoclastogenesis in RAW 264.7 Cells. Int J Mol Sci 2024; 25:7247. [PMID: 39000355 PMCID: PMC11241464 DOI: 10.3390/ijms25137247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Postmenopausal osteoporosis, characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-driven bone formation, presents substantial health implications. In this study, we investigated the role of black goat extract (BGE), derived from a domesticated native Korean goat, estrogen-like activity, and osteoprotective effects in vitro. BGE's mineral and fatty acid compositions were analyzed via the ICP-AES method and gas chromatography-mass spectrometry, respectively. In vitro experiments were conducted using MCF-7 breast cancer cells, MC3T3-E1 osteoblasts, and RAW264.7 osteoclasts. BGE exhibits a favorable amount of mineral and fatty acid content. It displayed antimenopausal activity by stimulating MCF-7 cell proliferation and augmenting estrogen-related gene expression (ERα, ERβ, and pS2). Moreover, BGE positively impacted osteogenesis and mineralization in MC3T3-E1 cells through Wnt/β-catenin pathway modulation, leading to heightened expression of Runt-related transcription factor 2, osteoprotegerin, and collagen type 1. Significantly, BGE effectively suppressed osteoclastogenesis by curtailing osteoclast formation and activity in RAW264.7 cells, concurrently downregulating pivotal signaling molecules, including receptor activator of nuclear factor κ B and tumor necrosis factor receptor-associated factor 6. This study offers a shred of preliminary evidence for the prospective use of BGE as an effective postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Jin Sung Son
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
- Hanbangbio Inc., Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Md Niaj Morshed
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Gyong Jai Lee
- SD Leo R&D Center, 9-16, Yeonmujang 5-gil, Seongdong-gu, Seoul 04782, Republic of Korea
| | - Min Jun Kim
- SaeromHanbang R&D Center, 76, Cheonseok-gil, Geumcheon-myeon, Naju-si 58216, Jeollanam-do, Republic of Korea
| | - Jeong Taek An
- Happiness Sales Co., Ltd., 403, Water Valley, 8, Dongtanjungsimsangga 1-gil, Hwaseong-si 18455, Gyeonggi-do, Republic of Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Joong-Hyun Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
- Hanbangbio Inc., Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Muhammad Awais
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Dong Uk Yang
- Hanbangbio Inc., Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Shen G, Zhang W, Tu Q, Wang J. Bergamottin (Ber) ameliorates the progression of osteoarthritis via the Sirt1/NF-κB pathway. Front Pharmacol 2024; 15:1389786. [PMID: 38741587 PMCID: PMC11089381 DOI: 10.3389/fphar.2024.1389786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease characterized by progressive cartilage degeneration and secondary synovial inflammation. Bergamottin (Ber) is an important natural derivative of the furanocoumarin compound, extracted from natural foods, such as the pulp of grapefruits and pomelos. Ber exhibits several characteristicsthat are beneficial to human health, such as anti-inflammation, antioxidant, and anti-cancer effects. However, the role of Ber in the treatment of OA has not been elucidated to date. Therefore, in the present study, in vitro experiments were conducted, which demonstrated that Ber reduces the secretion of inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase-2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and prostaglandin E2 (PGE2) under the stimulation of interleukin-1β (IL-1β). Ber also reversed the IL-1 β-mediated aggrecan and type II collagen degradation within the extracellular matrix (ECM). In addition, in vivo experiments were conducted, in which Ber ameliorated the progression of OA in mice. It was revealed that Ber exerted its cellular effect by activating the Sirt1/NF-kB pathways. In conclusion, the present study demonstrated the therapeutic potential of Ber in the context of OA.
Collapse
Affiliation(s)
| | | | | | - Juncheng Wang
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui’an, China
| |
Collapse
|
11
|
Morishita K, Yamamoto M, Takashima S, Ando M, Kawai S, Otake K, Shoji Y, Hinoi E, Kitao T, Shirahase H. Synthesis and Evaluation of a Novel Series of Diphenylamine and Diphenylether Derivatives with Osteoblastogenic and Osteogenic Effects via CDK8 Inhibition. Chem Pharm Bull (Tokyo) 2024; 72:862-883. [PMID: 39370261 DOI: 10.1248/cpb.c24-00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Osteoporosis is induced by an imbalance between osteogenesis and bone resorption, and is treated with osteogenic drugs and/or resorption inhibitors. Resorption inhibitors, such as bisphosphonates, are orally used; however, orally active small molecules with osteogenic activity are not clinically available. We synthesized various types of small molecules and identified a series of diphenylamine and diphenylether derivatives that promoted osteoblast differentiation. Among them, diphenylether derivatives 13a, 13g, and 13h potently promoted osteoblast differentiation (EC200 for increasing alkaline phosphatase activity = 11.3, 31.1, and 12.3 nM, respectively) and inhibited cyclin-dependent kinase 8 (CDK8) activity (IC50 = 2.5, 7.8, and 3.9 nM, respectively), suggesting that their osteoblastgenic effects are mediated by the inhibition of CDK8. The ratio of the maximal plasma concentration after oral administration at 10 mg/kg in female rats and EC200 for osteoblastogenesis was 148.1 for compound 13a, 53.4 for 13g, and 101.8 for 13h, indicating possible in vivo osteoblastogenic and osteogenic effects. In ovariectomized female rats, 13g and 13h at 10 mg/kg/d for 8 weeks increased plasma bone-type alkaline phosphatase activity, indicating enhanced in vivo osteoblastogenesis. Furthermore, micro-computed tomography (micro-CT) showed that both compounds increased femoral cortical bone volume and mineral contents, which were unaffected by ovariectomy, while having negligible effects on trabecular bone volume and mineral contents, which were markedly reduced by ovariectomy. In conclusion, diphenylamine and diphenylether structures are novel scaffolds for osteoblastogenesis enhancers via the inhibition of CDK8. Among them, 13g and 13h are candidates for anti-osteoporotic drugs with cortical bone-selective osteogenic effects.
Collapse
Affiliation(s)
- Ko Morishita
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Megumi Yamamoto
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shunsuke Takashima
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Masafumi Ando
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shota Kawai
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Kazuya Otake
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yoshimichi Shoji
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| |
Collapse
|
12
|
Cai Y, Sun H, Song X, Zhao J, Xu D, Liu M. The Wnt/β-catenin signaling pathway inhibits osteoporosis by regulating the expression of TERT: an in vivo and in vitro study. Aging (Albany NY) 2023; 15:11471-11488. [PMID: 37862118 PMCID: PMC10637795 DOI: 10.18632/aging.205136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Our study was performed to investigate whether the Wingless and int-1 (Wnt) signaling pathway promotes osteogenic differentiation and inhibits apoptosis in bone marrow mesenchymal stem cells (BMSCs) by regulating telomerase reverse transcriptase (TERT) expression. An in vivo model of osteoporosis (OP) in C57BL/6J mice by bilateral ovariectomy (OVX) and an in vitro model of H2O2-induced BMSCs were established separately. Western blotting was used to detect the expression of the pathway-related proteins TERT, β-catenin, and phosphorylated-glycogen synthase kinase-3beta (p-GSK3β)/GSK3β, the osteogenic-related markers osteopontin (OPN), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (Runx2), and the apoptosis-related indicators B-cell lymphoma-2 (Bcl-2) and BAX. Osteoblastic phenotypes were also evaluated by alkaline phosphatase (ALP) staining and serum ALP activity assays. Osteogenic differentiation phenotypes in mice were verified by H&E staining, micro-CT, and parameter analysis of the femur. Western blotting results showed that the expression of the pathway-related proteins TERT, β-catenin, p-GSK3β/GSK3β was reduced in OVX mice and H2O2-induced BMSCs, accompanied by downregulated protein expression of osteogenic-related markers and antiapoptotic indicators and upregulated protein expression of apoptotic proteins compared to those in the control group. Mechanistic studies showed that the activation of Wnt signaling pathway in BMSCs promoted β-catenin translocation to the nucleus, as verified by immunofluorescence and facilitated colocalization between β-catenin and TERT, as verified by double-labeling immunofluorescence, thereby promoting osteogenic differentiation and reducing apoptosis. In summary, our experiments confirmed that the GSK3β/β-catenin/TERT pathway could regulate the osteogenic differentiation and apoptosis of BMSCs and that TERT might be a promising target for the future treatment of osteoporosis.
Collapse
Affiliation(s)
- Yuanqing Cai
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Lvshunkou, Dalian 116044, China
| | - Xingyu Song
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Dong Xu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| |
Collapse
|
13
|
Meng F, Yu Y, Tian Y, Deng M, Zheng K, Guo X, Zeng B, Li J, Qian A, Yin C. A potential therapeutic drug for osteoporosis: prospect for osteogenic LncRNAs. Front Endocrinol (Lausanne) 2023; 14:1219433. [PMID: 37600711 PMCID: PMC10435887 DOI: 10.3389/fendo.2023.1219433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) play essential roles in multiple physiological processes including bone formation. Investigators have revealed that LncRNAs regulated bone formation through various signaling pathways and micro RNAs (miRNAs). However, several problems exist in current research studies on osteogenic LncRNAs, including sophisticated techniques, high cost for in vivo experiment, as well as low homology of LncRNAs between animal model and human, which hindered translational medicine research. Moreover, compared with gene editing, LncRNAs would only lead to inhibition of target genes rather than completely knocking them out. As the studies on osteogenic LncRNA gradually proceed, some of these problems have turned osteogenic LncRNA research studies into slump. This review described some new techniques and innovative ideas to address these problems. Although investigations on osteogenic LncRNAs still have obtacles to overcome, LncRNA will work as a promising therapeutic drug for osteoporosis in the near future.
Collapse
Affiliation(s)
- Fanjin Meng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Yang Yu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Meng Deng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Kaiyuan Zheng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Beilei Zeng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingjia Li
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chong Yin
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
14
|
Huang X, Su X, Ma Q, Xie Y, Guo Q, Liao L, Zou J. FoxO1 Agonists Promote Bone Regeneration in Periodontitis by Protecting the Osteogenesis of Periodontal Ligament Stem Cells. Stem Cells Dev 2023; 32:491-503. [PMID: 37097209 DOI: 10.1089/scd.2023.0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Protecting the function of periodontal ligament stem cells (PDLSCs) is crucial for bone regeneration in periodontitis. Forkhead box protein O1 (FoxO1) has been previously reported as a crucial mediator in bone homeostasis, providing a favorable environment for osteoblast proliferation and differentiation. In this study, we investigated the effect and mechanism of FoxO1 agonists on the osteogenesis of PDLSCs under inflammatory conditions. In this study, we screened FoxO1 agonists by detecting their effects on the osteogenic differentiation of PDLSCs. Then, the function of these agonists in bone regeneration was analyzed in the periodontitis model. We found that hyperoside or 2-furoyl-LIGRLO-amide trifluoroacetate salt (2-Fly) promoted osteogenic differentiation under inflammation by simultaneously inhibiting nuclear factor κB (NF-κB) activation, β-catenin expression, and reactive oxygen species (ROS) production. Moreover, local injection of hyperoside or 2-Fly rescued the expression of FoxO1 and runt-related transcription factor 2 (Runx2) in vivo, alleviating alveolar bone loss and periodontal ligament damage. These findings suggested that FoxO1 agonists exerted a protective effect on osteogenesis in PDLSCs, as a result, facilitating bone formation under inflammatory conditions. Taken together, FoxO1 might serve as a therapeutic target for bone regeneration in periodontitis by mediating multiple signaling pathways.
Collapse
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongting Xie
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Liu HF, Pan XW, Li HQ, Zhang XN, Zhao XH. Amino Acid Composition of a Chum Salmon ( Oncorhynchus keta) Skin Gelatin Hydrolysate and Its Antiapoptotic Effects on Etoposide-Induced Osteoblasts. Foods 2023; 12:2419. [PMID: 37372630 DOI: 10.3390/foods12122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
A gelatin hydrolysate with a hydrolysis degree of 13.7% was generated using the skin gelatin of chum salmon (Oncorhynchus keta) and papain-catalyzed enzymatic hydrolysis. The results of analysis demonstrated that four amino acids, namely Ala, Gly, Pro, and 4-Hyp, were the most abundant in the obtained gelatin hydrolysate with measured molar percentages ranging from 7.2% to 35.4%; more importantly, the four amino acids accounted for 2/3 of the total measured amino acids. However, two amino acids, Cys and Tyr, were not detected in the generated gelatin hydrolysate. The experimental results indicated that the gelatin hydrolysate at a dose of 50 µg/mL could combat etoposide-induced apoptosis in human fetal osteoblasts (hFOB 1.19 cells), causing a decrease in the total apoptotic cells from 31.6% to 13.6% (via apoptotic prevention) or 13.3% to 11.8% (via apoptotic reversal). Meanwhile, the osteoblasts exposed to the gelatin hydrolysate showed expression changes for 157 genes (expression folds > 1.5-fold), among which JNKK, JNK1, and JNK3 were from the JNK family with a 1.5-2.7-fold downregulated expression. Furthermore, the protein expressions of JNKK, JNK1, JNK3, and Bax in the treated osteoblasts showed a 1.25-1.41 fold down-regulation, whereas JNK2 expression was not detected in the osteoblasts. It is thus suggested that gelatin hydrolysate is rich in the four amino acids and has an in vitro antiapoptotic effect on etoposide-stimulated osteoblasts via mitochondrial-mediated JNKK/JNK(1,3)/Bax downregulation.
Collapse
Affiliation(s)
- Hong-Fang Liu
- Harbin Comprehensive Inspection and Detection Centre for Product Quality, Harbin 150036, China
| | - Xiao-Wen Pan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hua-Qiang Li
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiao-Nan Zhang
- School of Life Science, Jiaying University, Meizhou 514015, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Zhu Z, Xu Y, Chen L, Zhang M, Li X. Bergamottin Inhibits PRRSV Replication by Blocking Viral Non-Structural Proteins Expression and Viral RNA Synthesis. Viruses 2023; 15:1367. [PMID: 37376666 DOI: 10.3390/v15061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes economic losses in the swine industry worldwide. However, current vaccines cannot provide effective protection against PRRSV, and PRRSV-specific treatments for infected herds are still unavailable. In this study, we found that bergamottin showed strong inhibitory effects against PRRSV replication. Bergamottin inhibited PRRSV at the stage of the replication cycle. Mechanically, bergamottin promoted the activation of IRF3 and NF-κB signaling, leading to the increased expression of proinflammatory cytokines and interferon, which inhibited viral replication to some extent. In addition, bergamottion could reduce the expression of the non-structural proteins (Nsps), leading to the interruption of replication and transcription complex (RTC) formation and viral dsRNA synthesis, ultimately restraining PRRSV replication. Our study identified that bergamottin possesses potential value as an antiviral agent against PRRSV in vitro.
Collapse
Affiliation(s)
- Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuqian Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Lulu Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Meng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Wu Z, Hu L, Ru K, Zhang W, Xu X, Liu S, Liu H, Jia Y, Liang S, Chen Z, Qian A. Ellagic acid inhibits CDK12 to increase osteoblast differentiation and alleviate osteoporosis in hindlimb-unloaded and ovariectomized mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154745. [PMID: 36931096 DOI: 10.1016/j.phymed.2023.154745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/13/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Osteoporosis is a highly prevalent bone disease occurred commonly in astronauts and postmenopausal women due to mechanical unloading and estrogen deficiency, respectively. At present, there are some traditional Chinese medicine compounds for preventing and treating osteoporosis induced by simulated microgravity, but the detailed components of the traditional Chinese medicines still need to be confirmed and osteoporosis is still untreatable due to a lack of effective small-molecule natural medicine. PURPOSE To explore the role of cyclin-dependent kinase 12 (CDK12) in osteoporosis induced by simulated microgravity and the therapeutic effect of CDK12-targeted Ellagic Acid (EA) on osteoporosis. METHODS Our previous study has suggested that CDK12 as a potential target for treating and preventing osteoporosis. In this study, the role of CDK12 in osteoblasts and mice bone tissues was further studied under simulated microgravity. And by targeting CDK12, natural small-molecule product EA was screened out based on a large scale through the weighted set similarity (WES) method and the therapeutic effects of EA on osteoporosis was investigated in hindlimb-unloaded (HU) mouse model and ovariectomized (OVX) model. RESULTS The results demonstrated that simulated microgravity inhibited bone formation and up-regulated the expression of CDK12. Furthermore, CDK12-siRNA or THZ531 (an inhibitor of CDK 12) promoted osteoblast differentiation, while the overexpression of CDK12 inhibited osteoblasts differentiation. And we further proved that CDK12-targeted EA showed a rescue effect on osteoblast differentiation inhibition caused by simulated microgravity. EA (50 mg·kg-1·day-1) daily intragastric administration alleviated the symptoms of osteoporosis and accompanied with the improvement of trabecular bone and cortical bone parameters with significantly overexpression of CDK12. CONCLUSION EA efficiently improves osteoporosis by targeting CDK12, which is a suppresser of osteoblast differentiation and a novel therapeutic target for treating osteoporosis.
Collapse
Affiliation(s)
- Zixiang Wu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lifang Hu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xia Xu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuyu Liu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Liu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunxia Jia
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shujing Liang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
18
|
Wang J, Chen T, Li X, Zhang Y, Fu S, Huo R, Duan Y. A study on the anti-osteoporosis mechanism of isopsoralen based on network pharmacology and molecular experiments. J Orthop Surg Res 2023; 18:304. [PMID: 37069639 PMCID: PMC10108469 DOI: 10.1186/s13018-023-03689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 03/07/2023] [Indexed: 04/19/2023] Open
Abstract
OBJECTIVE Osteoporosis (OP) is a disease caused by multiple factors. Studies have pointed out that isopsoralen (IPRN) is one of the most effective drugs for the treatment of OP. Based on network pharmacological and molecular experimental analysis, the molecular mechanism of IPRN in osteoporosis is clarified. METHODS IPRN target genes and OP-related genes were predicted from the databases. Intersections were obtained and visualized. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on target genes, which was confirmed by experiments internal and external experiments. Molecular docking was used to verify the binding between IPRN and target proteins. Molecular dynamics (MD) simulates the binding affinity of protein targets and active compounds. RESULTS 87 IPRN target genes and 242 disease-related targets were predicted. The protein-protein interaction (PPI) network identified 18 IPRN target proteins for the treatment of OP. GO analysis indicated that target genes were involved in biological processes. KEGG analysis showed that pathways such as PI3K/AKT/mTOR were associated with OP. Cell experiments (qPCR and WB) found that the expressions of PI3K, AKT, and mTOR in MC3T3-E1 cells at 10 μM, 20 μM, and 50 μM IPRN concentrations, especially at 20 μM IPRN treatment, were higher than those in the control group at 48 h. Animal experiments also showed that compared with the control group, 40 mg/kg/time IPRN could promote the expression of the PI3K gene in chondrocytes of SD rats. CONCLUSIONS This study predicted the target genes of IPRN in the treatment of OP and preliminarily verified that IPRN plays an anti-OP role through the PI3K/AKT/mTOR pathway, which provides a new drug for the treatment of OP.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Xiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, Inner Mongolia Autonomous Region, 010110, China
| | - Yu Zhang
- Department of Surgery, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Shuang Fu
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Ruikun Huo
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Yan Duan
- Department of Surgery, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China.
| |
Collapse
|
19
|
Biswas L, Niveria K, Verma AK. Paradoxical role of reactive oxygen species in bone remodelling: implications in osteoporosis and possible nanotherapeutic interventions. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis is a metabolic bone disorder that affects both sexes and is the most common cause of fractures. Osteoporosis therapies primarily inhibit osteoclast activity, and are seldom designed to trigger new bone growth thereby frequently causing severe systemic adverse effects. Physiologically, the intracellular redox state depends on the ratio of pro-oxidants, oxidizing agents (reactive oxygen species, ROS) and antioxidants. ROS is the key contributor to oxidative stress in osteoporosis as changes in redox state are responsible for dynamic bone remodeling and bone regeneration. Imbalances in ROS generation vs. antioxidant systems play a pivotal role in pathogenesis of osteoporosis, stimulating osteoblasts and osteocytes towards osteoclastogenesis. ROS prevents mineralization and osteogenesis, causing increased turnover of bone loss. Alternatively, antioxidants either directly or indirectly, contribute to activation of osteoblasts leading to differentiation and mineralization, thereby reducing osteoclastogenesis. Owing to the unpredictability of immune responsiveness and reported adverse effects, despite promising outcomes from drugs against oxidative stress, treatment in clinics targeting osteoclast has been limited. Nanotechnology-mediated interventions have gained remarkable superiority over other treatment modalities in regenerative medicine. Nanotherapeutic approaches exploit the antioxidant properties of nanoparticles for targeted drug delivery to trigger bone repair, by enhancing their osteogenic and anti-osteoclastogenic potentials to influence the biocompatibility, mechanical properties and osteoinductivity. Therefore, exploiting nanotherapeutics for maintaining the differentiation and proliferation of osteoblasts and osteoclasts is quintessential.
Collapse
Affiliation(s)
- Largee Biswas
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Anita Kamra Verma
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India 2Fellow, Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi 110007, India
| |
Collapse
|