1
|
Sweet MG, Iglesias-Carres L, Ellsworth PN, Carter JD, Nielsen DM, Aylor DL, Tessem JS, Neilson AP. Phenotype variability in diet-induced obesity and response to (-)-epigallocatechin gallate supplementation in a Diversity Outbred mouse cohort: A model for exploring gene x diet interactions for dietary bioactives. Nutr Res 2025; 133:78-93. [PMID: 39705912 DOI: 10.1016/j.nutres.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
The flavan-3-ol (-)-epigallocatechin gallate (EGCG) blunts obesity in inbred mice, but human clinical trials have yielded mixed results. Genetic homogeneity in preclinical models may explain translational disconnect between rodents and humans. The Diversity Outbred (DO) mouse model provides genotype and phenotype variability for characterization of gene x environment (i.e., diet) interactions. We conducted a longitudinal phenotyping study in DO mice. Mice (n = 50) were fed a high-fat diet for 8 weeks and then a high-fat diet + 0.3% EGCG for 8 weeks. We hypothesized that obesity and any protective effects of EGCG would exhibit extreme variability in these genetically heterogeneous mice. As anticipated, DO mice exhibited extreme variation in body composition at baseline (4%-13.9% fat), after 8 weeks of high-fat diet (6.5%-38.1% fat), and after 8 weeks of high-fat diet + EGCG (7.6%-42.6% fat), greater than what is observed in inbred mice. All 50 mice gained body fat on the high-fat diet (changes from baseline of +5% ± 640%). Intriguingly, adiposity variability increased when EGCG was added to the diet (changes from the high-fat diet alone of -52% ± 390%), with 11/50 mice losing body fat. We postulate that the explanation for this variability is genetic heterogeneity. Our data confirm the promise for EGCG to manage obesity but suggest that genetic factors may exert significant control over the efficacy of EGCG. Larger studies in DO mice are needed for quantitative trait loci mapping to identify genetic loci governing EGCG x obesity interactions and translate these findings to precision nutrition in humans.
Collapse
Affiliation(s)
- Michael G Sweet
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | | | - Peter N Ellsworth
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Jared D Carter
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Dahlia M Nielsen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - David L Aylor
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jeffery S Tessem
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Hong S, Nguyen BN, Min H, Youn HY, Choi S, Hitayezu E, Cha KH, Park YT, Lee CG, Yoo G, Kim M. Host-specific effects of Eubacterium species on Rg3-mediated modulation of osteosarcopenia in a genetically diverse mouse population. MICROBIOME 2024; 12:251. [PMID: 39623488 PMCID: PMC11613481 DOI: 10.1186/s40168-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Osteosarcopenia, characterized by the simultaneous loss of bone and muscle mass, is a serious health problem in the aging population. This study investigated the interplay between host genetics, gut microbiota, and musculoskeletal health in a mouse model of osteosarcopenia, exploring the therapeutic potential of gut microbiota modulation. METHODS We examined the effects of Rg3, a phytochemical, on osteosarcopenia and its interactions with host genetics and gut microbiota in six founder strains of the Collaborative Cross (CC) population. Subsequently, we evaluated the therapeutic potential of Eubacterium nodatum (EN) and Eubacterium ventriosum (EV), two gut microbes identified as significant correlates of Rg3-mediated osteosarcopenia improvement, in selected C57BL/6 J (B6) and 129S1/SvImJ (129S1) mouse strains. RESULTS Rg3 treatment altered gut microbiota composition aligned with osteosarcopenia phenotypes, which response varied depending on host genetics. This finding enabled the identification of two microbes in the Eubacterium genus, potential mediator of Rg3 effect on osteosarcopenia. Oral administration of EN and EV differentially impacted bone density, muscle mass, exercise performance, and related gene expression in a mouse strain-specific manner. In 129S1 mice, EN and EV significantly improved these parameters, effectively reversing osteosarcopenic phenotypes. Mechanistic investigations revealed that these effects were mediated through the modulation of osteoblast differentiation and protein degradation pathways. In contrast, EN and EV did not significantly improve osteosarcopenic phenotypes in B6 mice, although they did modulate mitochondrial biogenesis and microbial diversity. CONCLUSIONS Our findings underscore the complex interplay between host genetics and the gut microbiota in osteosarcopenia and emphasize the need for personalized treatment strategies. EN and EV exhibit strain-specific therapeutic effects, suggesting that tailoring microbial interventions to individual genetic backgrounds may be crucial for optimizing treatment outcomes. Video Abstract.
Collapse
Affiliation(s)
- Soyeon Hong
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-Do, 25451, Republic of Korea
| | - Bao Ngoc Nguyen
- College of Dentistry, Gangneung Wonju National University, Gangneung, Gangwon-Do, Republic of Korea
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
| | - Huitae Min
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
| | - Hye-Young Youn
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
| | - Sowoon Choi
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
| | - Emmanuel Hitayezu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
| | - Kwang-Hyun Cha
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-Do, Republic of Korea
| | - Young Tae Park
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Choong-Gu Lee
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-Do, Republic of Korea
| | - GyHye Yoo
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-Do, 25451, Republic of Korea.
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Myungsuk Kim
- Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, 679 Saimdang-Ro, Gangneung, Gangwon-Do, 210-340, Republic of Korea.
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-Do, Republic of Korea.
| |
Collapse
|
3
|
Park SH. Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation. Antioxidants (Basel) 2024; 13:1099. [PMID: 39334758 PMCID: PMC11428386 DOI: 10.3390/antiox13091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
There have been many studies reporting that the regular consumption of fruits and vegetables is associated with reduced risks of cancer and age-related chronic diseases. Recent studies have demonstrated that reducing reactive oxygen species and inflammation by phytochemicals derived from natural sources can extend lifespans in a range of model organisms. Phytochemicals derived from fruits and vegetables have been known to display both preventative and suppressive activities against various types of cancer via in vitro and in vivo research by interfering with cellular processes critical for tumor development. The current challenge lies in creating tailored supplements containing specific phytochemicals for individual needs. Achieving this goal requires a deeper understanding of the molecular mechanisms through which phytochemicals affect human health. In this review, we examine recently (from 2010 to 2024) reported plant extracts and phytochemicals with established anti-aging and anti-cancer effects via the activation of FOXO3 transcriptional factor. Additionally, we provide an overview of the cellular and molecular mechanisms by which these molecules exert their anti-aging and anti-cancer effects in specific model systems. Lastly, we discuss the limitations of the current research approach and outline for potential future directions in this field.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
4
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
5
|
Racine KC, Iglesias-Carres L, Herring JA, Ferruzzi MG, Kay CD, Tessem JS, Neilson AP. Cocoa extract exerts sex-specific anti-diabetic effects in an aggressive type-2 diabetes model: A pilot study. Biochem Biophys Res Commun 2022; 626:205-210. [PMID: 35994831 DOI: 10.1016/j.bbrc.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Type 2 diabetes (T2D) is characterized by hyperglycemia and insulin resistance. Cocoa may slow T2D development and progression. This study employed male and female BTBR.Cg-Lepob/ob/WiscJ (ob/ob) and wild type (WT) controls to assess the potential for cocoa to ameliorate progressive T2D and compare responses between sexes. Mice received diet without (WT, ob/ob) or with cocoa extract (ob/ob + c) for 10 weeks. Acute cocoa reduced fasting hyperglycemia in females, but not males, after 2 weeks. Chronic cocoa supplementation (6-10 weeks) ameliorated hyperinsulinemia in males and worsened hyperlipidemia and hyperinsulinemia in females, yet also preserved and enhanced beta cell survival in females. The underlying mechanisms of these differences warrant further study. If sex differences are apparent in subsequent preclinical studies, clinical studies will be warranted to establish whether these differences are relevant in humans. Sex differences may need to be considered when designing human dietary interventions for T2D.
Collapse
Affiliation(s)
- Kathryn C Racine
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
| | - Lisard Iglesias-Carres
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
| | - Jacob A Herring
- Department of Nutrition, Dietetics, & Food Science, Brigham Young University, S-243 ESC, Provo, UT, 84042, USA.
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics, & Food Science, Brigham Young University, S-243 ESC, Provo, UT, 84042, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.
| |
Collapse
|