1
|
Tran TV, Dang HH, Nguyen H, Nguyen NTT, Nguyen DH, Nguyen TTT. Synthesis methods, structure, and recent trends of ZIF-8-based materials in the biomedical field. NANOSCALE ADVANCES 2025:d4na01015a. [PMID: 40438665 PMCID: PMC12109618 DOI: 10.1039/d4na01015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/19/2025] [Indexed: 06/01/2025]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is a highly porous material with remarkable structural properties and high drug-loading capacity, and hence this material presents as an exceptional candidate for advanced drug delivery systems. Herein, we comprehensively review the recent developments in ZIF-8 synthesis techniques and critically discuss innovative approaches such as the use of green solvents and advanced methods such as microwave- and ultrasound-assisted syntheses. The multifunctional applications of ZIF-8-based biomaterials in biomedical engineering are critically explored with their pivotal roles in antibacterial and anticancer therapies, drug delivery systems, bone tissue engineering, and diagnostic platforms such as biosensing and bioimaging. The present review also clarifies some innovations of ZIF-8-based materials in pH-sensitive and glucose-responsive drug delivery systems and scaffolds for bone regeneration. Despite these promising advancements, we analyze critical concerns, such as the release of Zn(ii) ions, potential cytotoxicity, and biocompatibility challenges, which remain significant hurdles to the broader adoption of ZIF-8. Addressing these outlined challenges may be necessary in realizing the potential of ZIF-8 in biomedical applications.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Hoang Huy Dang
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Huy Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
- Nong Lam University Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Dai Hai Nguyen
- Institute of Advanced Technology, Vietnam Academy of Science and Technology 1B TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City 700000 Vietnam
| | | |
Collapse
|
2
|
Jing L, Xiao W, Hu Z, Liu X, Yuan M. A Systematic Review of Nanoparticle-Mediated Ferroptosis in Glioma Therapy. Int J Nanomedicine 2025; 20:5779-5797. [PMID: 40351706 PMCID: PMC12065465 DOI: 10.2147/ijn.s523008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Glioma, a highly malignant central nervous system tumor, exhibits aggressive invasiveness, extensive infiltration, and poor prognosis. Conventional treatments such as surgery, radiotherapy, and chemotherapy are hindered by limitations including the inability to overcome the blood-brain barrier (BBB), drug resistance, and high recurrence rates. Ferroptosis induced by nanoparticle-based systems offers an innovative strategy for glioma therapy by efficiently traversing the BBB, precisely delivering ferroptosis inducers, enhancing tumor accumulation, and enabling stimuli-responsive drug release. These features collectively improve the induction efficiency of ferroptosis in glioma cells. Various nanoplatforms, including inorganic nanoparticles, biomimetic carriers, and polymer-based systems, have demonstrated potential in crossing the BBB, inducing ferroptosis, and suppressing glioma progression. These systems enhance reactive oxygen species generation, deplete glutathione, and disrupt tumor microenvironment defense mechanisms, achieving synergistic therapeutic effects. The integration of ferroptosis with nanotechnology is emerging as a promising, non-invasive strategy for the treatment of gliomas, offering substantial therapeutic potential.
Collapse
Affiliation(s)
- Lin Jing
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Wenguang Xiao
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Zhouxing Hu
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Xu Liu
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| |
Collapse
|
3
|
Kim SJ, Maligal-Ganesh RV, Mahmood J, Babar P, Yavuz CT. Structural control over single-crystalline oxides for heterogeneous catalysis. Nat Rev Chem 2025:10.1038/s41570-025-00715-5. [PMID: 40295894 DOI: 10.1038/s41570-025-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
Oxides are integral to heterogeneous catalysis, serving critical roles such as catalyst supports, active materials and electrodes. A highly ordered subset, single-crystalline oxides, have traditionally been used as model catalyst supports in fundamental surface science studies. However, advancements in bulk synthesis have rendered their general use more feasible for real-world applications. In this review, we explore the efficiency of single-crystalline oxides as active metals and supports across a wide range of heterogeneous processes, often performing exceptionally well. Beginning with synthetic methods, we discuss the advantages of single-crystalline oxides in thermo-, electro- and photocatalysis. Previously held conventions about catalytic activity, deactivation and surface-adsorbate interactions are re-evaluated by understanding how these ordered materials behave during the respective reactions. Last, we assess advances in characterization techniques and their impact on designing the next generation of catalysts based on single-crystalline oxides.
Collapse
Affiliation(s)
- Seok-Jin Kim
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Raghu V Maligal-Ganesh
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Sciences, Krea University, Sri City, India
| | - Javeed Mahmood
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pravin Babar
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cafer T Yavuz
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Fang X, Choi JY, Lu C, Reichert E, Pham HTB, Park J. From 0D to 2D: microwave-assisted synthesis of electrically conductive metal-organic frameworks with controlled morphologies. Chem Sci 2025; 16:3168-3172. [PMID: 39829974 PMCID: PMC11740778 DOI: 10.1039/d4sc07025a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Morphology control of electrically conductive metal-organic frameworks (EC-MOFs) can be a powerful means to tune their surface area and carrier transport pathways, particularly beneficial for energy conversion and storage. However, controlling EC-MOFs' morphology is underexplored due to the uncontrollable crystal nucleation and rapid growth kinetics. This work introduces a microwave-assisted strategy to readily synthesize Cu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with controlled morphologies. We controlled solvent compositions to facilitate particles' directional growth to 1D and 2D crystals. Meanwhile, we found that ultrasonication can manipulate crystal seeding, yielding 0D spherical Cu-HHTP crystals. Electronic conductivity measurements suggest that the isotropic nature of the 0D crystals allows a conductivity of 7.34 × 10-1 S cm-1, much higher than 1D and 2D counterparts. Additionally, the controlled 0D morphology enhanced the material's capacitance and effective surface area and significantly improved its photocurrent response. These findings underscore the pivotal impact of controlled morphology in optimizing EC-MOFs' physicochemical properties.
Collapse
Affiliation(s)
- Xiaoyu Fang
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80303 USA
| | - Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80303 USA
| | - Chenwei Lu
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80303 USA
| | - Elizabeth Reichert
- Chemical and Biological Engineering, University of Colorado Boulder Boulder Colorado 80303 USA
| | - Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80303 USA
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80303 USA
| |
Collapse
|
5
|
Lv K, Shen H, Geng Y, Li MC, Du H, Huang X, Sun J. Microwave-Assisted Synthesis of Carbon Nanospheres and Their Application as Plugging Agents for Oil-Based Drilling Fluids. Molecules 2025; 30:463. [PMID: 39942568 PMCID: PMC11820581 DOI: 10.3390/molecules30030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Wellbore instability caused by the invasion of drilling fluids into formations remains a significant challenge in the application of oil-based drilling fluids (ODFs). In this study, carbon nanospheres (CNSs) were synthesized using glucose as the carbon source through a microwave-assisted method. The effects of the reaction temperature, carbon source concentration, and reaction time on the particle size of CNSs were systematically investigated. The results revealed that under optimal conditions, CNSs with an average particle size of 670 nm were successfully synthesized, exhibiting high sphericity and excellent dispersibility. CNSs demonstrated stable dispersion in mineral oil when lecithin was used as a dispersant. The plugging performance of CNSs in ODFs was evaluated through low-pressure filtration and high-temperature, high-pressure (HTHP) filtration tests. After aging at 180 °C for 16 h, the addition of 2% CNSs reduced the filtration volume from 10.6 mL to 2.5 mL on standard filter paper (average pore size: 3 μm) and from 8.5 mL to 1.6 mL on microporous membranes (average pore size: 0.5 μm). Additionally, the HTHP filtration volume decreased from 73 mL to 18 mL, and the permeability of the filter cake formed during HTHP filtration was reduced from 26.5 × 10-3 mD to 1.2 × 10-3 mD. Furthermore, CNSs improved the rheological properties and emulsion stability of ODFs. With excellent compatibility and applicability, CNSs offer a promising solution for enhancing the performance of oil-based drilling fluids.
Collapse
Affiliation(s)
- Kaihe Lv
- Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Key Laboratory of Unconventional Oil & Gas, Development Ministry of Education, Qingdao 266580, China
| | - Haokun Shen
- Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Key Laboratory of Unconventional Oil & Gas, Development Ministry of Education, Qingdao 266580, China
| | - Yuan Geng
- CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China
| | - Mei-Chun Li
- Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Key Laboratory of Unconventional Oil & Gas, Development Ministry of Education, Qingdao 266580, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Du
- Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Key Laboratory of Unconventional Oil & Gas, Development Ministry of Education, Qingdao 266580, China
| | - Xianbin Huang
- Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Key Laboratory of Unconventional Oil & Gas, Development Ministry of Education, Qingdao 266580, China
| | - Jinsheng Sun
- Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Key Laboratory of Unconventional Oil & Gas, Development Ministry of Education, Qingdao 266580, China
- CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China
| |
Collapse
|
6
|
Li S, Morrissey KH, Bartlett BM. Strategies in photochemical alcohol oxidation on noble-metal free nanomaterials as heterogeneous catalysts. Chem Commun (Camb) 2024; 60:10295-10305. [PMID: 39189890 DOI: 10.1039/d4cc01204f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Using light absorbing semiconductors to harvest solar energy has long been considered as a promising approach for driving chemical reactions. Photochemical oxidation of alcohols catalyzed by noble-metal free nanomaterials is particularly attractive due to the bio-derivable nature of the substrate and the wide availability of such catalysts. Here, a number of strategies that could facilitate the progress are discussed, where it is concluded that the photochemical alcohol oxidation process can benefit from both mechanistic optimization of the electron-transfer steps and structural engineering of the light-absorbing nanomaterials.
Collapse
Affiliation(s)
- Siqi Li
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, USA.
| | - Katherine H Morrissey
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, USA.
| | - Bart M Bartlett
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Ding X, He Z, Li J, Xu X, Li Z. Carbon carrier-based rapid Joule heating technology: a review on the preparation and applications of functional nanomaterials. NANOSCALE 2024; 16:12309-12328. [PMID: 38874095 DOI: 10.1039/d4nr01510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Compared to conventional heating techniques, the carbon carrier-based rapid Joule heating (CJH) method is a new class of technologies that offer significantly higher heating rates and ultra-high temperatures. Over the past few decades, CJH technology has spawned several techniques with similar principles for different application scenarios, including ultra-fast high temperature sintering (UHS), carbon thermal shock (CTS), and flash Joule heating (FJH), which have been widely used in material preparation research studies. Functional nanomaterials are a popular direction of research today, mainly including nanometallic materials, nanosilica materials, nanoceramic materials and nanocarbon materials. These materials exhibit unique physical, chemical, and biological properties, including a high specific surface area, strength, thermal stability, and biocompatibility, making them ideal for diverse applications across various fields. The CJH method is a remarkable approach to producing functional nanomaterials that has attracted attention for its significant advantages. This paper aims to delve into the fundamental principles of CJH and elucidate the efficient preparation of functional nanomaterials with superior properties using this technique. The paper is organized into three sections, each dedicated to introducing the process and characteristics of CJH technology for the preparation of three distinct material types: carbon-based nanomaterials, inorganic non-metallic materials, and metallic materials. We discuss the distinctions and merits of the CJH method compared to alternative techniques in the preparation of these materials, along with a thorough examination of their properties. Furthermore, the potential applications of these materials are highlighted. In conclusion, this paper concludes with a discussion on the future research trends and development prospects of CJH technology.
Collapse
Affiliation(s)
- Xinrui Ding
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zihan He
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Jiasheng Li
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd, Foshan 528000, China
| | - Xiaolin Xu
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zongtao Li
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd, Foshan 528000, China
| |
Collapse
|
8
|
Dipalo MC, Yu B, Cheng X, Nie S, Liu J, Shi W, Zhang F, Liu Q, Wang X. Microwave-assisted synthesis of polyoxometalate-Dy 2O 3 monolayer nanosheets and nanotubes. NANOSCALE 2024. [PMID: 38563321 DOI: 10.1039/d4nr00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two-dimensional (2D) materials have shown unique chemical and physical properties; however, their synthesis is highly dependent on the layered structure of building blocks. Herein, we developed monolayer Dy2O3-phosphomolybdic acid (PMA) nanosheets and nanotubes based on microwave synthesis. Microwave-assisted synthesis with high-energy input gives a faster and dynamically driven growth of nanomaterials, resulting in high-purity nanostructures with a narrow size distribution. The reaction times of the nanosheets and nanotubes under microwave synthesis are significantly reduced compared with oven-synthesis. Dy2O3-PMA nanosheets and nanotubes exhibit enhanced activity and stability in photoconductance, with higher sensitivities (0.308 μA cm-2 for nanosheets and 0.271 μA cm-2 for nanotubes) compared to the individual PMA (0.12 μA cm-2) and Dy2O3 (0.025 μA cm-2) building blocks. This work demonstrates the promising application potential of microwave-synthesized 2D heterostructures in superconductors and photoelectronic devices.
Collapse
Affiliation(s)
- Maria C Dipalo
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Biao Yu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Xijun Cheng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Junli Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Fenghua Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Dai YX, Li YX, Zhang XJ, Marks RS, Cosnier S, Shan D. Micelle-Assisted Confined Coordination Spaces for Benzimidazole: Enhanced Electrochemiluminescence for Nitrite Determination. ACS Sens 2024; 9:337-343. [PMID: 38194413 DOI: 10.1021/acssensors.3c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Selective and sensitive detection of nitrite has important medical and biological implications. In the present work, to obtain an enhanced electrochemiluminescence (ECL) determination of nitrite, a novel nano-ECL emitter CoBIM/cetyltrimethylammonium bromide (CTAB) was prepared via a micelle-assisted, energy-saving, and ecofriendly method based on benzimidazole (BIM) and CTAB. Unlike conventional micelle assistance, the deprotonated BIM (BIM-) preferential placement was in the palisade layer of cationic CTAB-based micelles. Enriching the original CTAB micelle with BIM- disrupted its stability and resulted in the formation of considerably smaller BIM/CTAB-based micelles, providing a confined coordination environment for BIM- and Co2+. As a result, the growth of CoBIM/CTAB was also limited. Owing to the unusual nitration reaction between BIM and nitrite, the prepared CoBIM/CTAB was successfully applied as a novel ECL probe for the detection of nitrite with a wide linear range of 1-1500 μM and a low detection limit of 0.67 μM. This work also provides a promising ECL platform for ultrasensitive monitoring of nitrite and it was applied with sausages and pickled vegetables.
Collapse
Affiliation(s)
- Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, PR China
| | - Robert S Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Serge Cosnier
- University Grenoble Alpes, CNRS, DCM UMR 5250, Grenoble F-38000, France
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100, Poland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
10
|
Hussain S, Ali Muazzam M, Ahmed M, Ahmad M, Mustafa Z, Murtaza S, Ali J, Ibrar M, Shahid M, Imran M. Green synthesis of nickel oxide nanoparticles using Acacia nilotica leaf extracts and investigation of their electrochemical and biological properties. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2170162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Shabbir Hussain
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore Pakistan
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore Pakistan
| | - Zeeshan Mustafa
- Department of Physics, Lahore Garrison University, Lahore, Pakistan
- CAS, Ningbo Institute of Materials Technology & Engineering, Ningbo, People’s Republic of China
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Jigar Ali
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Ibrar
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Shahid
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Alharbi TMD. Recent progress on vortex fluidic synthesis of carbon nanomaterials. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2172954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Thaar M. D. Alharbi
- School of Science, Taibah University, Medina, Saudi Arabia
- Nanotechnology Centre, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
12
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Teng Y, Zhou L, Chen YZ, Gan JZ, Xi Y, Jia HL. Orange-peel derived carbon-loaded low content ruthenium nanoparticles as ultra-high performance alkaline water HER electrocatalysts. Dalton Trans 2023; 52:15839-15847. [PMID: 37819679 DOI: 10.1039/d3dt02969g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Carbon materials have a very wide range of applications in the field of electrocatalysis, both as catalyst bodies and as excellent supports for catalysts. In this work, we obtained a graphitic-like orange-peel derived carbon (OPC) material through pre-carbonization and KOH activation strategies using discarded orange-peel as a raw material. OPC has good graphitization characteristics and a few-layer structure, making it very suitable as a support for nanoparticle catalysts. In order to compare the performance of OPC, we used commercial graphene as the benchmark, made two carbon materials uniformly loaded with ruthenium nanoparticles under the same conditions, and obtained two HER catalysts (Ru/OPC and Ru/rGO). The results indicate that Ru/OPC has excellent HER catalytic performance under alkaline conditions, not only superior to Ru/rGO, but also surpassing commercial Pt/C. In 1 M KOH; the overpotential of Ru/OPC is only 3 mV at -10 mA cm-2, greatly exceeding those of Ru/rGO (100 mV) and Pt/C (31 mV). Under high current density (j), the performance of Ru/OPC is even better; the overpotential is 79 mV and 136 mV at -100 mA cm-2 and -200 mA cm-2, respectively. More importantly, Ru/OPC also has a very high TOF and long-term stability, with a TOF of up to 10.62 H2 s-1 at an overpotential of 100 mV and almost no attenuation after 72 h of operation at -50 mA cm-2. Ru/OPC also exhibits good catalytic performance under acidic conditions, significantly superior to that of Ru/rGO. For Ru/OPC, the overpotential is 86 mV, 167 mV and 214 mV at -10 mA cm-2, -100 mA cm-2 and -200 mA cm-2, respectively. Under the same conditions, the overpotential of Ru/rGO is 143 mV, 253 mV and 306 mV at -10 mA cm-2, -100 mA cm-2 and -200 mA cm-2, respectively.
Collapse
Affiliation(s)
- Yang Teng
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Lu Zhou
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Yi-Zhi Chen
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jun-Zhe Gan
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Ye Xi
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Hai-Lang Jia
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
14
|
Szczepankowska J, Khachatryan G, Khachatryan K, Krystyjan M. Carbon Dots-Types, Obtaining and Application in Biotechnology and Food Technology. Int J Mol Sci 2023; 24:14984. [PMID: 37834430 PMCID: PMC10573487 DOI: 10.3390/ijms241914984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Materials with a "nano" structure are increasingly used in medicine and biotechnology as drug delivery systems, bioimaging agents or biosensors in the monitoring of toxic substances, heavy metals and environmental variations. Furthermore, in the food industry, they have found applications as detectors of food adulteration, microbial contamination and even in packaging for monitoring product freshness. Carbon dots (CDs) as materials with broad as well as unprecedented possibilities could revolutionize the economy, if only their synthesis was based on low-cost natural sources. So far, a number of studies point to the positive possibilities of obtaining CDs from natural sources. This review describes the types of carbon dots and the most important methods of obtaining them. It also focuses on presenting the potential application of carbon dots in biotechnology and food technology.
Collapse
Affiliation(s)
- Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| |
Collapse
|
15
|
Schiopu AG, Oproescu M, Iana VG, Ducu CM, Moga SG, Vîlcoci DS, Cîrstea G, Calinescu VM, Ahmed O. Synthesis and Characterization of ZnO-Nanostructured Particles Produced by Solar Ablation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6417. [PMID: 37834554 PMCID: PMC10573445 DOI: 10.3390/ma16196417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Nowadays, nanotechnology offers opportunities to create new features and functions of emerging materials. Correlation studies of nanostructured materials' development processes with morphology, structure, and properties represent one of the most important topics today due to potential applications in all fields: chemistry, mechanics, electronics, optics, medicine, food, or defense. Our research was motivated by the fact that in the nanometric domain, the crystalline structure and morphology are determined by the elaboration mechanism. The objective of this paper is to provide an introduction to the fundamentals of nanotechnology and nanopowder production using the sun's energy. Solar energy, as part of renewable energy sources, is one of the sources that remain to be exploited in the future. The basic principle involved in the production of nanopowders consists of the use of a solar energy reactor concentrated on sintered targets made of commercial micropowders. As part of our study, for the first time, we report the solar ablation synthesis and characterization of Ni-doped ZnO performed in the CNRS-PROMES laboratory, UPR 8521, a member of the CNRS (French National Centre for Scientific Research). Also, we study the effect of the elaboration method on structural and morphological characteristics of pure and doped ZnO nanoparticles determined by XRD, SEM, and UV-Vis.
Collapse
Affiliation(s)
- Adriana-Gabriela Schiopu
- Faculty of Mechanics and Technology, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania;
| | - Mihai Oproescu
- Faculty of Electronics, Communication and Computers, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania;
| | - Vasile Gabriel Iana
- Faculty of Electronics, Communication and Computers, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania;
| | - Catalin Marian Ducu
- Faculty of Mechanics and Technology, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania;
- Regional Center of Research & Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry (CRCD-AUTO), National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (S.G.M.); (G.C.)
| | - Sorin Georgian Moga
- Regional Center of Research & Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry (CRCD-AUTO), National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (S.G.M.); (G.C.)
| | - Denisa Stefania Vîlcoci
- Regional Center of Research & Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry (CRCD-AUTO), National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (S.G.M.); (G.C.)
| | - Georgiana Cîrstea
- Regional Center of Research & Development for Materials, Processes and Innovative Products Dedicated to the Automotive Industry (CRCD-AUTO), National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (S.G.M.); (G.C.)
| | - Valentin Marian Calinescu
- Interdisciplinary Doctoral School, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (V.M.C.); (O.A.)
| | - Omar Ahmed
- Interdisciplinary Doctoral School, National University of Science and Technology POLITEHNICA Bucharest—Pitești University Centre, Targu din Vale, No. 1, 110040 Pitesti, Romania; (V.M.C.); (O.A.)
| |
Collapse
|
16
|
Chang YC, Chiao YC, Hsu PC. Rapid Microwave-Assisted Synthesis of ZnIn 2S 4 Nanosheets for Highly Efficient Photocatalytic Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1957. [PMID: 37446473 DOI: 10.3390/nano13131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
In this study, a facile and rapid microwave-assisted synthesis method was used to synthesize In2S3 nanosheets, ZnS nanosheets, and ZnIn2S4 nanosheets with sulfur vacancies. The two-dimensional semiconductor photocatalysts of ZnIn2S4 nanosheets were characterized by XRD, FESEM, BET, TEM, XPS, UV-vis diffuse reflectance, and PL spectroscopy. The ZnIn2S4 with sulfur vacancies exhibited an evident energy bandgap value of 2.82 eV, as determined by UV-visible diffuse reflectance spectroscopy, and its energy band diagram was obtained through the combination of XPS and energy bandgap values. ZnIn2S4 nanosheets exhibited about 33.3 and 16.6 times higher photocatalytic hydrogen production than In2S3 nanosheets and ZnS nanosheets, respectively, under visible-light irradiation. Various factors, including materials, sacrificial reagents, and pH values, were used to evaluate the influence of ZnIn2S4 nanosheets on photocatalytic hydrogen production. In addition, the ZnIn2S4 nanosheets revealed the highest photocatalytic hydrogen production from seawater, which was about 209.4 and 106.7 times higher than that of In2S3 nanosheets and ZnS nanosheets, respectively. The presence of sulfur vacancies in ZnIn2S4 nanosheets offers promising opportunities for developing highly efficient and stable photocatalysts for photocatalytic hydrogen production from seawater under visible-light irradiation.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Yung-Chang Chiao
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Singh J, Jindal N, Kumar V, Singh K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. CHEMICAL PHYSICS IMPACT 2023; 6:100185. [DOI: 10.1016/j.chphi.2023.100185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
18
|
Karmakar A, Jayan R, Das A, Kalloorkal A, Islam MM, Kundu S. Regulating Surface Charge by Embedding Ru Nanoparticles over 2D Hydroxides toward Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37243613 DOI: 10.1021/acsami.3c05512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Ankit Das
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Althaf Kalloorkal
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
19
|
Liu J, Huang X, Jia L, Liu L, Nie Q, Tan Z, Yu H. Microwave-Assisted Rapid Substitution of Ti for Zr to Produce Bimetallic (Zr/Ti)UiO-66-NH 2 with Congenetic "Shell-Core" Structure for Enhancing Photocatalytic Removal of Nitric Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207198. [PMID: 36799195 DOI: 10.1002/smll.202207198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Indexed: 05/18/2023]
Abstract
Efficient nitric oxide (NO) removal without nitrogen dioxide (NO2 ) emission is desired for the control of air pollution. Herein, a series of (Zr/Ti)UiO-66-NH2 with congenetic shell-core structure, denoted as Ti-UION, are rapidly synthesized by microwave-assisted post-synthetic modification for NO removal. The optimal Ti-UION (i.e., 2.5Ti-UION) exhibits the highest activity of 80.74% without NO2 emission with moisture, which is 21.65% greater than that of the UiO-66-NH2 . The NO removal efficiency of 2.5Ti-UION further increases to 95.92% without photocatalyst deactivation under an anhydrous condition. This is because selectively produced NO2 in photocatalysis is completely adsorbed into micropores, refreshing active sites for subsequent reaction. In addition, the enhanced photocatalytic activity after Ti substitution is due to the presence of Ti electron acceptor, the potential difference between the shell and core of Ti-UION crystal, and the high conductivity of TiO units. Additionally, the improved adsorption of gas molecules not only favors NO oxidation, but also avoids the emission of NO2 . This work provides a feasible strategy for rapid metal substitution in metal-organic frameworks and insights into enhanced NO photodegradation.
Collapse
Affiliation(s)
- Jiayou Liu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P. R. China
| | - Xiaoxiang Huang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P. R. China
| | - Liuhu Jia
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P. R. China
| | - Linfeng Liu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P. R. China
| | - Qianqian Nie
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P. R. China
- Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhongchao Tan
- Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Hesheng Yu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P. R. China
- Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
20
|
Mo X, Xu G, Kang X, Yin H, Cui X, Zhao Y, Zhang J, Tang J, Wang F. A Facile Microwave Hydrothermal Synthesis of ZnFe 2O 4/rGO Nanocomposites for Supercapacitor Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061034. [PMID: 36985927 PMCID: PMC10053183 DOI: 10.3390/nano13061034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/01/2023]
Abstract
As a typical binary transition metal oxide, ZnFe2O4 has attracted considerable attention for supercapacitor electrodes due to its high theoretical specific capacitance. However, the reported synthesis processes of ZnFe2O4 are complicated and ZnFe2O4 nanoparticles are easily agglomerated, leading to poor cycle life and unfavorable capacity. Herein, a facile microwave hydrothermal process was used to prepare ZnFe2O4/reduced graphene oxide (rGO) nanocomposites in this work. The influence of rGO content on the morphology, structure, and electrochemical performance of ZnFe2O4/rGO nanocomposites was systematically investigated. Due to the uniform distribution of ZnFe2O4 nanoparticles on the rGO surface and the high specific surface area and rich pore structures, the as-prepared ZnFe2O4/rGO electrode with 44.3 wt.% rGO content exhibits a high specific capacitance of 628 F g-1 and long cycle life of 89% retention over 2500 cycles at 1 A g-1. This work provides a new process for synthesizing binary transition metal oxide and developing a new strategy for realizing high-performance composites for supercapacitor electrodes.
Collapse
Affiliation(s)
- Xiaoyao Mo
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Guangxu Xu
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Xiaochan Kang
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Hang Yin
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Xiaochen Cui
- College of Mechanical and Electrical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Yuling Zhao
- State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Jianmin Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Jie Tang
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Fengyun Wang
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
21
|
Lin S, Tang J, Zhang K, Chen Y, Gao R, Yin H, Qin LC. Tuning oxygen-containing functional groups of graphene for supercapacitors with high stability. NANOSCALE ADVANCES 2023; 5:1163-1171. [PMID: 36798501 PMCID: PMC9926907 DOI: 10.1039/d2na00506a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
To investigate the relationship between the oxygen-containing functional groups of graphene and the stability of supercapacitors, reduced graphene oxide (rGO) containing different oxygenic functional groups was prepared by varying the reduction time of GO using hydrazine as the reducing agent. TEM, XRD, Raman, and XPS characterizations revealed that, as the reduction time increased, the sp2 structure in the rGO sheet was restored and the obtained rGO had good crystallinity accompanied by removal of the oxygenic functional groups. The analysis of the content of the different functional groups also suggested that the reduction rate of the oxygenic functional group was C-O > C[double bond, length as m-dash]O > O-C[double bond, length as m-dash]O. The supercapacitive performance of rGO showed that the oxygenic functional groups contributed to some pseudocapacitance and resulted in a larger specific capacitance. At the same time, however, it is also accompanied by poorer rate performance and durability, which will be improved by removing the oxygenic functional groups by extending the reduction time. With an optimized reaction condition of a reduction time of 24 h, the obtained rGO exhibited excellent stability in floating tests at 3.0 V and 45 °C for 60 days. These findings pave the way for the development of high quality graphene materials for cost-effective and practical graphene supercapacitors.
Collapse
Affiliation(s)
- Shiqi Lin
- National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-0006 Japan
| | - Jie Tang
- National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-0006 Japan
| | - Kun Zhang
- National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Youhu Chen
- National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Runsheng Gao
- National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Hang Yin
- National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-0006 Japan
| | - Lu-Chang Qin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill Chapel Hill NC 27599-3255 USA
| |
Collapse
|
22
|
Zhong J, Fang Z, Luo D, Ning H, Qiu T, Li M, Yang Y, Fu X, Yao R, Peng J. Effect of Surface Treatment on Performance and Internal Stacking Mode of Electrohydrodynamic Printed Graphene and Its Microsupercapacitor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3621-3632. [PMID: 36598168 DOI: 10.1021/acsami.2c18367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microelectronic devices are developing rapidly in portability, wearability, and implantability. This puts forward an urgent requirement for the delicate deposition process of materials. Electrohydrodynamic printing has attracted academic and industrial attention in preparing ultrahigh-density microelectronic devices as a new noncontact, direct graphic, and low-loss thin film deposition process. In this work, a printed graphene with narrow line width is realized by combining the electrohydrodynamic printing and surface treatment. The line width of printed graphene on the hydrophobic treatment surface reduced from 80 to 28 μm. The resistivity decreased from 0.949 to 0.263 Ω·mm. Unexpectedly, hydrophobic treatment can effectively induce random stacking of electrohydrodynamic printed graphene, which avoids parallel stacking and agglomeration of graphene sheets. The performance of printed graphene is thus effectively improved. After optimization, a graphene planar supercapacitor with a printed line width of 28 μm is successfully obtained. Its capacitance can reach 5.39 mF/cm2 at 50 mV/s, which is twice higher than that of the untreated devices. The device maintains 84.7% capacitance after 5000 cycles. This work provides a reference for preparing microelectronic devices by ultrahigh precision printing and a new direction for optimizing two-dimensional material properties through stacking adjustment.
Collapse
Affiliation(s)
- Jinyao Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongxiang Luo
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou 510006, China
| | - Honglong Ning
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tian Qiu
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Muyun Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuexin Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiao Fu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rihui Yao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junbiao Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Li YS, Tseng WL, Lu CY. Determination of formaldehyde in the daily living environment using membrane-enhanced water plug coupled extraction following peptide-based greener reaction derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
An optical and electrochemical sensor based on L-arginine functionalized reduced graphene oxide. Sci Rep 2022; 12:19398. [PMID: 36371538 PMCID: PMC9653396 DOI: 10.1038/s41598-022-23949-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
The electrochemical and photochemical properties of graphene derivatives could be significantly improved by modifications in the chemical structure. Herein, reduced graphene oxide (RGO) was functionalized with L-arginine (L-Arg) by an amidation reaction between the support and amino acid. Deposition of a powerful ligand, L-Arg, on the optically active support generated an effective optical chemosensor for the determination of Cd(II), Co(II), Pb(II), and Cu(II). In addition, L-Arg-RGO was used as an electrode modifier to fabricate L-Arg-RGO modified glassy-carbon electrode (L-Arg-RGO/GCE) to be employed in the selective detection of Pb(II) ions by differential pulse anodic stripping voltammetry (DP-ASV). L-Arg-RGO/GCE afforded better results than the bare GCE, RGO/GCE, and L-Arg functionalized graphene quantum dot modified GCE. The nanostructure of RGO, modification by L-Arg, and homogeneous immobilization of resultant nanoparticles at the electrode surface are the reasons for outstanding results. The proposed electrochemical sensor has a wide linear range with a limit of detection equal to 0.06 nM, leading to the easy detection of Pb(II) in the presence of other cations. This research highlighted that RGO as a promising support of optical, and electrochemical sensors could be used in the selective, and sensitive determination of transition metals depends on the nature of the modifier. Moreover, L-Arg as an abundant amino acid deserves to perch on the support for optical, and electrochemical determination of transition metals.
Collapse
|
25
|
Li B, Xiang T, Shao Y, Lv F, Cheng C, Zhang J, Zhu Q, Zhang Y, Yang J. Secondary-Heteroatom-Doping-Derived Synthesis of N, S Co-Doped Graphene Nanoribbons for Enhanced Oxygen Reduction Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3306. [PMID: 36234434 PMCID: PMC9565512 DOI: 10.3390/nano12193306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The rareness and weak durability of Pt-based electrocatalysts for oxygen reduction reactions (ORRs) have hindered the large-scale application of fuel cells. Here, we developed an efficient metal-free catalyst consisting of N, S co-doped graphene nanoribbons (N, S-GNR-2s) for ORRs. GNRs were firstly synthesized via the chemical unzipping of carbon nanotubes, and then N, S co-doping was conducted using urea as the primary and sulfourea as the secondary heteroatom sources. The successful incorporation of nitrogen and sulfur was confirmed by elemental mapping analysis as well as X-ray photoelectron spectroscopy. Electrochemical testing revealed that N, S-GNR-2s exhibited an Eonset of 0.89 V, E1/2 of 0.79 V and an average electron transfer number of 3.72, as well as good stability and methanol tolerance. As a result, N, S-GNR-2s displayed better ORR property than either N-GNRs or N, S-GNRs, the control samples prepared with only a primary heteroatom source, strongly clarifying the significance of secondary-heteroatom-doping on enhancing the catalytic activity of carbon-based nanomaterials.
Collapse
|
26
|
Lin J, Yang S, Wang Y, Cui Y, Li Q, Chen Y, Ding L. Sensitive detection of levofloxacin and copper (II) based on fluorescence “turn on-off” of biomass carbonized polymer dots. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Critical Aspects of Various Techniques for Synthesizing Metal Oxides and Fabricating Their Composite-Based Supercapacitor Electrodes: A Review. NANOMATERIALS 2022; 12:nano12111873. [PMID: 35683729 PMCID: PMC9181971 DOI: 10.3390/nano12111873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022]
Abstract
Supercapacitors (SCs) have attracted attention as an important energy source for various applications owing to their high power outputs and outstanding energy densities. The electrochemical performance of an SC device is predominantly determined by electrode materials, and thus, the selection and synthesis of the materials are crucial. Metal oxides (MOs) and their composites are the most widely used pseudocapacitive SC electrode materials. The basic requirements for fabricating high-performance SC electrodes include synthesizing and/or chemically modifying unique conducting nanostructures, optimizing a heterostructure morphology, and generating large-surface-area electroactive sites, all of which predominantly rely on various techniques used for synthesizing MO materials and fabricating MO- and MO-composite-based SC electrodes. Therefore, an SC’s background and critical aspects, the challenges associated with the predominant synthesis techniques (including hydrothermal and microwave-assisted syntheses and chemical-bath and atomic-layer depositions), and resulting electrode electrochemical performances should be summarized in a convenient, accessible report to accelerate the development of materials for industrial SC applications. Therefore, we reviewed the most pertinent studies on these synthesis techniques to provide insight into the most recent advances in synthesizing MOs and fabricating their composite-based SC electrodes as well as to propose research directions for developing MO-based electrodes for applications to next-generation SCs.
Collapse
|
28
|
Kumar R, Sahoo S, Joanni E, Singh RK, Kar KK. Microwave as a Tool for Synthesis of Carbon-Based Electrodes for Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20306-20325. [PMID: 34702030 DOI: 10.1021/acsami.1c15934] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This Spotlight on Applications highlights the significant impact of microwave-assisted methods for synthesis and modification of carbon materials with enhanced properties for electrodes in energy storage applications (supercapacitors and batteries). For the past few years, microwave irradiation has been increasingly used for the synthesis of carbon materials with different morphologies using various precursors. Microwave processing exhibits numerous advantages, such as short processing times, high yield, expanded reaction conditions, high reproducibility, and high purity of products. On this frontier research area, we have discussed microwave-assisted synthesis, defect creation, simultaneous reduction and exfoliation, and heteroatom doping in carbon materials. By careful manipulation of microwave irradiation parameters, the method becomes a powerful and efficient tool to generate different morphologies in carbon-based materials. Other important outcomes are the flexible control over the degree of reduction and exfoliation of graphene derivatives, the generation of defects in graphene-based materials by metals, the intercalation of metal oxides into graphene derivatives, and heteroatom doping of graphene materials. The Spotlight on Applications aims to provide a condensed overview of the current progress in carbon-based electrodes synthesized by microwave, pointing out outstanding challenges and offering a few suggestions to trigger more research endeavors in this important field.
Collapse
Affiliation(s)
- Rajesh Kumar
- Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sumanta Sahoo
- Department of Chemistry, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh 517325, India
| | - Ednan Joanni
- Center for Information Technology Renato Archer (CTI), Campinas 13069-901, Brazil
| | - Rajesh K Singh
- School of Physical and Material Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Dharamshala 176215, Himachal Pradesh, India
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
29
|
Gou D, Huang K, Liu Y, Shi H, Wu Z. Investigation of Spatial Orientation and Kinetic Energy of Reactive Site Collision between Benzyl Chloride and Piperidine: Novel Insight into the Microwave Nonthermal Effect. J Phys Chem A 2022; 126:2690-2705. [PMID: 35447029 DOI: 10.1021/acs.jpca.2c01487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microwave nonthermal effect in chemical reactions is still an uncertain problem. In this work, we have studied the spatial orientation and kinetic energy of reactive site collision between benzyl chloride and piperidine molecules in substitution reaction under microwave irradiation using the molecular dynamics simulation. Our results showed that microwave polarization can change the spatial orientation of reactive site collision. Collision probability between the Cl atom of the C-Cl group of benzyl chloride and the H atom of the N-H group of piperidine increased by up to 33.5% at an effective spatial solid angle (θ, φ) of (100∼110°, 170∼190°) under microwave irradiation. Also, collision probability between the C atom of the C-Cl group of benzyl chloride and the N atom of the N-H group of piperidine also increased by up to 25.6% at an effective spatial solid angle (θ, φ) of (85∼95°, 170∼190°). Moreover, the kinetic energy of collision under microwave irradiation was also changed, that is, for the collision between the Cl atom of the C-Cl group and the H atom of the N-H group, the fraction of high-energy collision greater than 6.39 × 10-19 J increased by 45.9 times under microwave irradiation, and for the collision between the C atom of the C-Cl group and the N atom of the N-H group, the fraction of high-energy collision greater than 6.39 × 10-19 J also increased by 29.2 times. Through simulation, the reaction rate increased by 34.4∼50.3 times under microwave irradiation, which is close to the experimental increase of 46.3 times. In the end, spatial orientation and kinetic energy of molecular collision changed by microwave polarization are summarized as the microwave postpolarization effect. This effect provides a new insight into the physical mechanism of the microwave nonthermal effect.
Collapse
Affiliation(s)
- Dezhi Gou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Liu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Hongxiao Shi
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiyan Wu
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
30
|
Zhang W, Guo X, Zhao J, Zheng Y, Xie H, Zhang Z, Wang S, Xu Q, Fu Q, Zhang T. High performance Flower-Like Mn3O4/rGO composite for supercapacitor applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Zhang Y, Zhang Z, Zhu Y, Zhang Y, Yang M, Li S, Suo K, Li K. N-doped graphene encapsulated MoS 2nanosphere composite as a high-performance anode for lithium-ion batteries. NANOTECHNOLOGY 2022; 33:235703. [PMID: 35240588 DOI: 10.1088/1361-6528/ac5a84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
MoS2is widely used in lithium-ion batteries (LIBs) due to its high capacity (670 mAh g-1) and unique two-dimensional structure. However, the further application was limited of MoS2as anode materials suffer from its volume expansion and low conductivity. In this work, N-doped graphene encapsulated MoS2nanosphere composite (MoS2@NG) were prepared and its unique sandwich structure containing abundant mesopores and defects can efficiently enhance reaction kinetics. The MoS2@NG electrode shows a reversible capacity of 975.9 mAh g-1at 0.1 A g-1after 100 cycles, and a reversible capacity of 325.2 mAh g-1is still maintained after 300 cycles at 5 A g-1. In addition, the MoS2@NG electrode exhibites an excellent rate performance benefiting from the electrochemical properties dominated by capacitive behavior. This suggests that MoS2@NG composite can be used as potential anode materials for LIBs.
Collapse
Affiliation(s)
- Yating Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zhanrui Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Youyu Zhu
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Yongling Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Mengnan Yang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Siyi Li
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Ke Suo
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Keke Li
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| |
Collapse
|
32
|
Yağci Ö, Arvas MB, Yazar S. Facile and single step produced Ba:Sn-codoped PEDOT:PSS thin film electrode with improved optics and electrochemical properties for transparent and flexible supercapacitor applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj04194d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Figure shows preparation and characterization steps of different ratio (0–3 mg ml−1) Ba:Sn-codoped PEDOT:PSS thin films.
Collapse
Affiliation(s)
- Özlem Yağci
- Department of Physics, Yıldız Technical University, Istanbul, 34200, Turkey
- Science and Technology Application and Research Center, Yildiz Technical University, Istanbul, 34200, Turkey
| | - Melih Beşir Arvas
- Department of Chemistry, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Sibel Yazar
- Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey
| |
Collapse
|
33
|
Srinivasan S, Vivek C, Sakthivel P, Chamundeeswari G, Prasanna Bharathi S, Amuthameena S, Balraj B. Synthesis of Ag incorporated ZrO2 nanomaterials for enhanced electrochemical energy storage applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Li S, Xia X, Vogt BD. Microwave-Enabled Size Control of Iron Oxide Nanoparticles on Reduced Graphene Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11131-11141. [PMID: 34499521 DOI: 10.1021/acs.langmuir.1c01990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticle-functionalized 2D material networks are promising for a wide range of applications, but in situ formation of nanoparticles is commonly challenged by rapid growth. Here, we demonstrate controlled synthesis of small and dispersed iron oxide nanoparticles on reduced graphene oxide (rGO) networks through rapid localized heating with microwaves with low-cost iron nitrate as the precursor. The strong coupling of the microwave radiation with the rGO network rapidly heats the network locally to decompose the iron nitrate and generate iron oxide nanoparticles, while cessation of microwaves leads to rapid cooling to minimize crystal growth. Small changes in the microwave reaction time (<1 min) led to very large changes in the iron oxide morphology. The solid-state microwave syntheses produced narrower nanoparticle size distribution than conventional heating. These results illustrate the potential of solid-state microwave syntheses to control the nanoparticle size on 2D materials through rapid localized heating under the microwave process conditions, which should be extendable to a variety of transition metal oxide-rGO systems.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Polymer Engineering, The University of Akron, 250 S Forge St, Akron, Ohio 44325, United States
| | - Xuhui Xia
- Department of Polymer Engineering, The University of Akron, 250 S Forge St, Akron, Ohio 44325, United States
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|