1
|
Zhao RN, Ke YY, Sun HY, Quan C, Xu Q, Li J, Guan JQ, Zhang YM. Achievements and challenges in glucose oxidase-instructed multimodal synergistic antibacterial applications. Microbiol Res 2025; 297:128149. [PMID: 40187057 DOI: 10.1016/j.micres.2025.128149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Glucose oxidase (GOx) with unique catalytic properties and inherent biocompatibility can effectively oxidize both endogenous and exogenous glucose with oxygen (O2) into gluconic acid and hydrogen peroxide (H2O2). Accordingly, the GOx-based catalytic chemistry offers new possibilities for designing and constructing multimodal synergistic antibacterial systems. The consumption of glucose permanently downregulates bacterial cell metabolism by blocking essential energy supplies, inhibiting their growth and survival. Additionally, the production of gluconic acid could downregulates the pH within the bacterial infection microenvironment, enhancing the production of hydroxyl radicals (∙OH) from H2O2 via enhanced Fenton or Fendon-like reactions and triggering the pH-responsive release of drugs. Furthermore, the generated H2O2 in situ avoids the addition of exogenous hydrogen peroxide. Therefore, it is possible to design GOx-based multimodal antibacterial synergistic therapies by combining GOx-instructed cascade reactions with other therapeutic approaches such as chemodynamic therapies (CDT), hypoxia-activated prodrugs, photosensitizers, and stimuli-responsive drug release. Such multimodal strategies are expected to exhibit better therapeutic effects than single therapeutic modes. This tutorial review highlights recent advancements in GOx-instructed multimodal synergistic antibacterial systems, focusing on design philosophy and construction strategies. Current challenges and future prospects for advancing GOx-based multimodal antibacterial synergistic therapies are discussed.
Collapse
Affiliation(s)
- Rui-Nan Zhao
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Yi-Yin Ke
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Hui-Yan Sun
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chunshan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Qingsong Xu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China.
| | - Jing-Qi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China.
| | - Yan-Mei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
2
|
Xu J, Ma X, Wang J, Zhang C, Liu X, Qu Y, Zhao M, Li W, Huang W, Li YQ. Environmental Charge-Mediated Nanopiezocatalysis for Sonodynamic Therapy. NANO LETTERS 2025. [PMID: 40395005 DOI: 10.1021/acs.nanolett.5c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Piezocatalysis garners growing attention in sonodynamic therapy (SDT). However, its mechanism remains controversial due to the prominent but conflicting theories of energy band and piezoelectric effect. The former just focuses on the role of carriers, while the latter emphasizes only the contribution of screening charges. This divergence greatly hinders the development of piezocatalysis-mediated SDT. Here, we demonstrate the combined action of carriers (electrons/holes) and screening charges on piezocatalysis and propose a new piezocatalytic model (termed environmental charge-mediated nanopiezocatalysis) based on defective BaTiO3@TiO2 piezoelectric nanoparticles (D-B@T). The synergistic effect of carriers and screening charges endows D-B@T with superior reactive oxygen species generation capability under ultrasound stimulation and enables effective SDT treatment of bacterial pneumonia in vivo. This work offers an insightful understanding of piezocatalysis and guides the rational design of high-performance piezoelectric nanosonosensitizers for SDT.
Collapse
Affiliation(s)
- Jiachen Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Xiaomin Ma
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Jingming Wang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan 250031, China
| | - Chengmei Zhang
- Laboratory Animal Center, Shandong University, Jinan 250012, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Weimin Huang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan 250031, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Liu H, Nan Z, Zhao C, Bai L, Shi L, He C, Wu D, Wan M, Feng Y. Emerging synergistic strategies for enhanced antibacterial sonodynamic therapy: Advances and prospects. ULTRASONICS SONOCHEMISTRY 2025; 116:107288. [PMID: 40038013 PMCID: PMC11986242 DOI: 10.1016/j.ultsonch.2025.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/29/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Antibacterial therapy has been extensively applied in medical field to alleviate the severity and mortality of infection. However, it still exists some issues such as drug side effects, limited efficacy and bacterial resistance. Among the alternative therapies, antibacterial sonodynamic therapy (aSDT) has been explored as a promising approach to tackle those crises. It is meaningful to investigate superior strategy to augment the therapeutic efficacy of aSDT. This review summarizes the potential aSDT-based antibacterial mechanisms and comprehensively discusses the prevailing synergistic strategies, such as nanomaterials-based aSDT antibacterial strategy, aSDT + strategy with physical, chemical and biological methods. Moreover, we also reviewed the medical applications of aSDT strategies. Finally, the perspectives on the current challenges that need be resolved in aSDT are proposed. We expect that this review could provide robust support to expedite the clinical applications of aSDT.
Collapse
Affiliation(s)
- Hengyu Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhezhu Nan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chen Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Liang Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Linrong Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chenhui He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
4
|
Javanmard Z, Pourhajibagher M, Bahador A. New strategies to enhance antimicrobial photo-sonodynamic therapy based on nanosensitizers against bacterial infections. Folia Microbiol (Praha) 2025; 70:55-70. [PMID: 39367131 DOI: 10.1007/s12223-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance. Antimicrobial sonodynamic therapy, a novel variation, substitutes ultrasound for light to activate the sonosensitizers, expanding the therapeutic reach. To increase the efficiency of antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy, the combination of these two methods, known as antimicrobial photo-sonodynamic therapy, is currently being explored and considered a promising approach. Recent advances, particularly in the application of nanomaterials, have further enhanced the efficacy of these therapies. Nanosensitizers, due to their improved reactive oxygen species generation and targeted delivery, offer significant advantages in overcoming the limitations of conventional sensitizers. These breakthroughs provide new avenues for treating bacterial infections, especially multidrug-resistant strains and biofilm-associated infections. Continued research, including comprehensive clinical studies, is crucial to optimizing nanomaterial-based antimicrobial photo-sonodynamic therapy for clinical use, ensuring their effectiveness in real-world applications.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
5
|
Deng X, Hu L, Xing H, Liu Y, Yin H. Recent progress in gold-derived nanomaterials for tumor theranostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8058-8067. [PMID: 39601081 DOI: 10.1039/d4ay01932f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It is widely acknowledged that gold-based materials are of significant interest in the field of biomedicine. Consequently, considerable efforts have been devoted to identifying gold nanoparticles that exhibit effective performance in tumor diagnosis and treatment. However, the underlying reasons for the enhanced efficacy of these gold-based nanomaterials in cancer therapy and diagnosis remain unclear, primarily due to the lack of an in-depth understanding of the mechanisms involved. Therefore, it is essential to summarize the progress in the field to facilitate the rational design of more efficient nanodevices. In this review, we present recent achievements drawn from the latest research to demonstrate the broad applications of gold-based materials. We begin by illustrating the mechanisms of gold-derived nanoparticles during therapeutic and diagnostic processes, including photothermal therapy, photodynamic therapy, sonodynamic therapy, photoacoustic tomography, fluorescence imaging, and X-ray computed tomography. We then summarize the advancements of gold-based nanomaterials in cancer diagnosis and treatment while also analyzing the factors contributing to their enhanced performance. Finally, we highlight key descriptors for evaluating the efficacy and strategies for designing high-performance nanomaterials. This review aims to pave the way for addressing future challenges and outlines directions for the advancement of gold-based biomedicine.
Collapse
Affiliation(s)
- Xi Deng
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lei Hu
- Department of Oncology, Jiulongpo District People's Hospital, Chongqing, 400050, China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
6
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
7
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
8
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
9
|
Xian T, Liu Y, Song Q, Li J, Liu W, Gu Z. NIR-Mediated Cu 2O/Au Nanomotors for Synergistically Treating Hepatoma Carcinoma Cells. Chem Asian J 2024; 19:e202301137. [PMID: 38285022 DOI: 10.1002/asia.202301137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We presented a NIR-driven Janus Cu2O/Au nanomotor. The nanomotor has a truncated octahedral structure. By asymmetric Au evaporation, the light response range of Cu2O nanomotor is extended to near-infrared range, and the speed of Cu2O/Au nanomotors under NIR is significantly increased. In promoting apoptosis of hepatocellular carcinoma, except the nanotoxicity of Cu2O itself, the Au layer enhances the photothermal properties, allowing Cu2O/Au nanomotors to induce apoptosis in hepatocellular carcinoma cells by heating them. On the other hand, a Schottky barrier formed at the interface of Cu2O and Au, preventing the recombination of electrons, which makes more electrons react with biomolecules to produce toxic ROS to kill hepatocellular cells. The killing rate of hepatocellular carcinoma cells reached 87 % by the combined effect of nanotoxicity inhibition of proliferation and photothermal & photodynamic therapy (PTT & PDT). Nanomotors in combination with multiple approaches are explored as a new treatment to tumor in this article.
Collapse
Affiliation(s)
- Ting Xian
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yilin Liu
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingtao Song
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjuan Liu
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
10
|
He G, Mei C, Chen C, Liu X, Wu J, Deng Y, Liao Y. Application and progress of nanozymes in antitumor therapy. Int J Biol Macromol 2024; 265:130960. [PMID: 38518941 DOI: 10.1016/j.ijbiomac.2024.130960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Tumors remain one of the major threats to public health and there is an urgent need to design new pharmaceutical agents for their diagnosis and treatment. In recent years, due to the rapid development of nanotechnology, biotechnology, catalytic science, and theoretical computing, subtlety has gradually made great progress in research related to tumor diagnosis and treatment. Compared to conventional drugs, enzymes can improve drug distribution and enhance drug enrichment at the tumor site, thereby reducing drug side effects and enhancing drug efficacy. Nanozymes can also be used as tumor tracking imaging agents to reshape the tumor microenvironment, providing a versatile platform for the diagnosis and treatment of malignancies. In this paper, we review the current status of research on enzymes in oncology and analyze novel oncology therapeutic approaches and related mechanisms. To date, a large number of nanomaterials, such as noble metal nanomaterials, nonmetallic nanomaterials, and carbon-based nanomaterials, have been shown to be able to function like natural enzymes, particularly with significant advantages in tumor therapy. In light of this, the authors in this review have systematically summarized and evaluated the construction, enzymatic activity, and their characteristics of nanozymes with respect to current modalities of tumor treatment. In addition, the application and research progress of different types of nicknames and their features in recent years are summarized in detail. We conclude with a summary and outlook on the study of nanozymes in tumor diagnosis and treatment. It is hoped that this review will inspire researchers in the fields of nanotechnology, chemistry, biology, materials science and theoretical computing, and contribute to the development of nano-enzymology.
Collapse
Affiliation(s)
- Gaihua He
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | - Chao Mei
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Chenbo Chen
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xiao Liu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Jiaxuan Wu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Yue Deng
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Ye Liao
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
11
|
Liu L, Fan X, Lu Q, Wang P, Wang X, Han Y, Wang R, Zhang C, Han S, Tsuboi T, Dai H, Yeow J, Geng H. Antimicrobial research of carbohydrate polymer- and protein-based hydrogels as reservoirs for the generation of reactive oxygen species: A review. Int J Biol Macromol 2024; 260:129251. [PMID: 38211908 DOI: 10.1016/j.ijbiomac.2024.129251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Reactive oxygen species (ROS) play an important role in biological milieu. Recently, the rapid growth in our understanding of ROS and their promise in antibacterial applications has generated tremendous interest in the combination of ROS generators with bulk hydrogels. Hydrogels represent promising supporters for ROS generators and can locally confine the nanoscale distribution of ROS generators whilst also promoting cellular integration via biomaterial-cell interactions. This review highlights recent efforts and progress in developing hydrogels derived from biological macromolecules with embedded ROS generators with a focus on antimicrobial applications. Initially, an overview of passive and active antibacterial hydrogels is provided to show the significance of proper hydrogel selection and design. These are followed by an in-depth discussion of the various approaches for ROS generation in hydrogels. The structural engineering and fabrication of ROS-laden hydrogels are given with a focus on their biomedical applications in therapeutics and diagnosis. Additionally, we discuss how a compromise needs to be sought between ROS generation and removal for maximizing the efficacy of therapeutic treatment. Finally, the current challenges and potential routes toward commercialization in this rapidly evolving field are discussed, focusing on the potential translation of laboratory research outcomes to real-world clinical outcomes.
Collapse
Affiliation(s)
- Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Pengxu Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Yuxing Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Runming Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Canyang Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Tatsuhisa Tsuboi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW 2052, Australia.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
12
|
Chang M, Zhang L, Wang Z, Chen L, Dong Y, Yang J, Chen Y. Nanomedicine/materdicine-enabled sonocatalytic therapy. Adv Drug Deliv Rev 2024; 205:115160. [PMID: 38110153 DOI: 10.1016/j.addr.2023.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
The advent of numerous treatment modalities with desirable therapeutic efficacy has been made possible by the fast development of nanomedicine and materdicine, among which the ultrasound (US)-triggered sonocatalytic process as minimal or non-invasive method has been frequently employed for diagnostic and therapeutic purposes. In comparison to phototherapeutic approaches with inherent penetration depth limitations, sonocatalytic therapy shatters the depth limit of photoactivation and offers numerous remarkable prospects and advantages, including mitigated side effects and appropriate tissue-penetration depth. Nevertheless, the optimization of sonosensitizers and therapies remains a significant issue in terms of precision, intelligence and efficiency. In light of the fact that nanomedicine and materdicine can effectively enhance the theranostic efficiency, we herein aim to furnish a cutting-edge review on the latest progress and development of nanomedicine/materdicine-enabled sonocatalytic therapy. The design methodologies and biological features of nanomedicine/materdicine-based sonosensitizers are initially introduced to reveal the underlying relationship between composition/structure, sonocatalytic function and biological effect, in accompany with a thorough discussion of nanomedicine/materdicine-enabled synergistic therapy. Ultimately, the facing challenges and future perspectives of this intriguing sonocatalytic therapy are highlighted and outlined to promote technological advancements and clinical translation in efficient disease treatment.
Collapse
Affiliation(s)
- Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei University, Baoding 071000, PR China
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Jishun Yang
- Naval Medical Center of PLA, Medical Security Center, Shanghai 200052, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
13
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Sonodynamic therapy-based nanoplatforms for combating bacterial infections. ULTRASONICS SONOCHEMISTRY 2023; 100:106617. [PMID: 37769588 PMCID: PMC10542942 DOI: 10.1016/j.ultsonch.2023.106617] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
14
|
Zhu Y, Gao M, Su M, Shen Y, Zhang K, Yu B, Xu FJ. A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections. Angew Chem Int Ed Engl 2023; 62:e202306803. [PMID: 37458367 DOI: 10.1002/anie.202306803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the "singlet oxygen battery" CARG-1 O2 and released singlet oxygen without external irradiation or oxygen. CARG-1 O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1 O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1 O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.
Collapse
Affiliation(s)
- Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minzheng Gao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengrui Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhe Shen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
15
|
He Z, Du J, Miao Y, Li Y. Recent Developments of Inorganic Nanosensitizers for Sonodynamic Therapy. Adv Healthc Mater 2023; 12:e2300234. [PMID: 37070721 DOI: 10.1002/adhm.202300234] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/07/2023] [Indexed: 04/19/2023]
Abstract
As a noninvasive treatment, sonodynamic therapy (SDT) has been widely used in the treatment of tumors because of its ability to penetrate deep tissue with few side effects. As the key factor of SDT, it is meaningful to design and synthesize efficient sonosensitizers. Compared with organic sonosensitizers, inorganic sonosensitizers can be easily excited by ultrasound. In addition, inorganic sonosensitizers with stable properties, good dispersion, and long blood circulation time, have great development potential in SDT. This review summarizes possible mechanisms of SDT (sonoexcitation and ultrasonic cavitation) in detail. Based on these mechanisms, the design and synthesis of inorganic nanosonosensitizers can be divided into three categories: traditional inorganic semiconductor sonosensitizers, enhanced inorganic semiconductor sonosensitizers, and cavitation-enhanced sonosensitizers. Subsequently, the current efficient construction methods of sonosensitizers are summarized including accelerated semiconductor charge separation and enhanced production of reactive oxygen species through ultrasonic cavitation. Furthermore, the advantages and disadvantages of different inorganic sonosensitizers and detailed strategies are systematically discussed on how to enhance SDT. Hopefully, this review could provide new insights into the design and synthesis of efficient inorganic nano-sonosensitizers for SDT.
Collapse
Affiliation(s)
- Zongyan He
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
16
|
Jiang Z, Xiao W, Fu Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J Control Release 2023; 361:547-567. [PMID: 37567504 DOI: 10.1016/j.jconrel.2023.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Sonodynamic therapy (SDT) has gained significant attention in the treatment of deep tumors and multidrug-resistant (MDR) bacterial infections due to its high tissue penetration depth, high spatiotemporal selectivity, and noninvasive therapeutic method. SDT combines low-intensity ultrasound (US) and sonosensitizers to produce lethal reactive oxygen species (ROS) and external damage, which is the main mechanism behind this therapy. However, traditional organic small-molecule sonosensitizers display poor water solubility, strong phototoxicity, and insufficient targeting ability. Inorganic sonosensitizers, on the other hand, have low ROS yield and poor biocompatibility. These drawbacks have hindered SDT's clinical transformation and application. Hence, designing stimuli-responsive nano-sonosensitizers that make use of the lesion's local microenvironment characteristics and US stimulation is an excellent alternative for achieving efficient, specific, and safe treatment. In this review, we provide a comprehensive overview of the currently accepted mechanisms in SDT and discuss the application of responsive nano-sonosensitizers in the treatment of tumor and bacterial infections. Additionally, we emphasize the significance of the principle and process of response, based on the classification of response patterns. Finally, this review emphasizes the potential limitations and future perspectives of SDT that need to be addressed to promote its clinical transformation.
Collapse
Affiliation(s)
- Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
17
|
Zheng L, Zhu Y, Sun Y, Xia S, Duan S, Yu B, Li J, Xu FJ. Flexible Modulation of Cellular Activities with Cationic Photosensitizers: Insights of Alkyl Chain Length on Reactive Oxygen Species Antimicrobial Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302943. [PMID: 37231625 DOI: 10.1002/adma.202302943] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Cationic photosensitizers have good binding ability with negatively charged bacteria and fungi, exhibiting broad applications potential in antimicrobial photodynamic therapy (aPDT). However, cationic photosensitizers often display unsatisfactory transkingdom selectivity between mammalian cells and pathogens, especially for eukaryotic fungi. It is unclear which biomolecular sites are more efficient for photodynamic damage, owing to the lack of systematic research with the same photosensitizer system. Herein, a series of cationic aggregation-induced emission (AIE) derivatives (CABs) (using berberine (BBR) as the photosensitizers core) with different length alkyl chains are successfully designed and synthesized for flexible modulation of cellular activities. The BBR core can efficiently produce reactive oxygen species (ROS) and achieve high-performance aPDT . Through the precise regulation of alkyl chain length, different bindings, localizations, and photodynamic killing effects of CABs are achieved and investigated systematically among bacteria, fungi, and mammalian cells. It is found that intracellular active substances, not membranes, are more efficient damage sites of aPDT. Moderate length alkyl chains enable CABs to effectively kill Gram-negative bacteria and fungi with light, while still maintaining excellent mammalian cell and blood compatibility. This study is expected to provide systematic theoretical and strategic research guidance for the construction of high-performance cationic photosensitizers with good transkingdom selectivity.
Collapse
Affiliation(s)
- Liang Zheng
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yujie Sun
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuai Xia
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Li
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Yang SR, Wang R, Yan CJ, Lin YY, Yeh YJ, Yeh YY, Yeh YC. Ultrasonic interfacial crosslinking of TiO 2-based nanocomposite hydrogels through thiol-norbornene reactions for sonodynamic antibacterial treatment. Biomater Sci 2023. [PMID: 37128891 DOI: 10.1039/d2bm01950g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanocomposite (NC) hydrogels used for sonodynamic therapy (SDT) face challenges such as lacking interfacial interactions between the polymers and nanomaterials as well as presenting uneven dispersion of nanomaterials in the hydrogel network, reducing their mechanical properties and treatment efficiency. Here, we demonstrate a promising approach of co-engineering nanomaterials and interfacial crosslinking to expand the materials construction and biomedical applications of NC hydrogels in SDT. In this work, mesoporous silica-coated titanium dioxide nanoparticles with thiolated surface functionalization (TiO2@MS-SH) are utilized as crosslinkers to react with norbornene-functionalized dextran (Nor-Dex) through ultrasound-triggered thiol-norbornene reactions, forming TiO2@MS-SH/Nor-Dex NC hydrogels. The TiO2@MS-SH nanoparticles act not only as multivalent crosslinkers to improve the mechanical properties of hydrogels under ultrasound irradiation but also as reactive oxygen species (ROS) generators to allow the use of TiO2@MS-SH/Nor-Dex NC hydrogels in SDT applications. Particularly, the TiO2@MS-SH/Nor-Dex NC hydrogels present tailorable microstructures, properties, and sonodynamic killing of bacteria through the modulation of the ultrasound frequency. Taken together, a versatile TiO2-based NC hydrogel platform prepared under ultrasonic interfacial crosslinking reactions is developed for advancing the applications in SDT.
Collapse
Affiliation(s)
- Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, National Taiwan University, Taipei, Taiwan
- GIP-TRIAD Master's Degree in Agro-Biomedical Science, National Taiwan University, Taipei, Taiwan
| | - Chen-Jie Yan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Yun Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Abstract
The conventional microbubble-based ultrasound biomedicine clinically plays a vital role in providing the dynamic detection of macro and microvasculature and disease theranostics. However, the intrinsic limitation of particle size severely decreases the treatment effectiveness due to their vascular transport characteristics, which promotes the development and application of multifunctional ultrasound-responsive nanomaterials. Herein, we put forward a research field of "ultrasound nanomedicine and materdicine", referring to the interdiscipline of ultrasound, nanobiotechnology and materials, which seeks to produce specific biological effects for addressing the challenges faced and dilemma of conventional ultrasound medicine. We comprehensively summarize the state-of-the-art scientific advances in the latest progress in constructing ultrasound-based platforms and ultrasound-activated sonosensitizers, ranging from the synthesis strategies, biological functions to ultrasound-triggered therapeutic applications. Ultimately, the unresolved challenges and clinical-translation potentials of ultrasound nanomedicine and materdicine are discussed and prospected in this evolving field.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Xue Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China.
| | - Jia Guo
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
20
|
Liang M, Shang L, Yu Y, Jiang Y, Bai Q, Ma J, Yang D, Sui N, Zhu Z. Ultrasound activatable microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Acta Biomater 2023; 158:811-826. [PMID: 36572249 DOI: 10.1016/j.actbio.2022.12.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Chemodynamic therapy (CDT) employs Fenton catalysts to kill bacteria by converting hydrogen peroxide (H2O2) into toxic hydroxyl radical (•OH). Among them, Fenton-type metal peroxide nanoparticles fascinate nanomaterials with intriguing physiochemical properties, but research on this antibacterial agent is still in its infancy. Herein, a distinct CuO2/TiO2 heterostructure constituted of ultrasmall copper peroxide (CuO2) nanoclusters and sonosensitized ultrathin oxygen vacancy-rich porous titanium oxide (OV-TiO2) nanosheets was developed and was incorporated into microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Engineering CuO2 nanoclusters on the surface of TiO2 nanosheets not only endows the Fenton catalytic activity for sono-chemodynamic therapy (SCDT), but also improves the sonodynamic and sonothermal performance of TiO2 by narrowing the bandgap of TiO2 and suppressing the recombination of electron-hole pairs. The high efficacy of this CuO2/TiO2 integrated microneedle (CTMN) patch was systematically demonstrated both in vitro and in vivo with the eliminating rate >99.9999% against multidrug resistant (MDR) pathogens in 5 min as well as accelerated wound tissue healing. This work highlights a promisingly new and efficient strategy for the development of sonosensitive and chemoreactive nanomedicine for non-antibiotic therapies. STATEMENT OF SIGNIFICANCE: Feton-type metal peroxides, a novel nanomaterial with self-supplied oxygen and hydrogen peroxide, can achieve effective antimicrobial activity in vitro. However, there is a lack of effective nanomaterial delivery systems and suitable means for in vivo activation/enhancement of antimicrobial activity during bacterial infected skin wound treatment. In this study, we designed and prepared efficient ultrasound activable microneedles that effectively addressed the deficiencies mentioned above and established a new paradigm for efficient utilization of metal peroxide nanomaterials and ultrasound based strategies. Noticeably, copper peroxide nanoclusters/oxygen vacancy-rich porous titanium oxide nanosheets (CuO2/TiO2) integrated microneedle (CTMN) patch combines advantages of both sono-chemodynamic and sonothermal antibacterial therapy, achieving one of the most instant and effective antibacterial efficacy (>99.9999% in 5 min) in vivo reported till now.
Collapse
Affiliation(s)
- Manman Liang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Limin Shang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yujie Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Junchi Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| |
Collapse
|
21
|
Zhu Z, Gou X, Liu L, Xia T, Wang J, Zhang Y, Huang C, Zhi W, Wang R, Li X, Luo S. Dynamically evolving piezoelectric nanocomposites for antibacterial and repair-promoting applications in infected wound healing. Acta Biomater 2023; 157:566-577. [PMID: 36481503 DOI: 10.1016/j.actbio.2022.11.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Wound healing from bacterial infections is one of the major challenges in the biomedical field. The traditional single administration methods are usually accompanied with side effects or unsatisfactory efficacy. Herein, we design dynamically evolving antibacterial and repair-promoting nanocomposites (NCs) by in situ self-assembling of zeolitic imidazolate framework-8 (ZIF-8) on the surface of barium titanate (BTO), and further loading with a small amount of ciprofloxacin (CIP). The new strategy of combining pH-stimulated drug delivery and ultrasound-controlled sonodyamics has the potential to dynamically evolve in infected wound sites, offering a multifunctional therapy. In vitro study demonstrates that the enhancement generation of reactive oxygen species through the sonodynamic process due to the heterostructures and a small amount of CIP released in an acidic environment are synergistically antibacterial, and the inhibition rate was >99.9%. In addition, reduced sonodynamic effect and Zn2+ generated along with the gradual degradation of ZIF-8 simultanously promote cell migration and tissue regeneration. The in vivo study of full-thickness skin wounds in mouse models demonstrate a healing rate of 99.3% could be achieved under the treatment of BTO@ZIF-8/CIP NCs. This work provides a useful improvement in rational design of multi-stimulus-responsive nanomaterials for wound healing. STATEMENT OF SIGNIFICANCE: A novel piezoelectric nanocomposite was proposed to realize sonodynamic therapy and pH-stimulated drug releasing simultaneously in wound healing treatment. The dynamically evolving structure of the piezoelectric nanocomposite in acidic microenvironment has been theoretically and experimentally verified to contribute to a continuous variation of sonodymanic strength, which accompanied with the gradual releasing of drug and biocompatible Zn2+effectively balanced antibacterial and repair-promoting effects. Both of the in vitro and in vivo study demonstrated that the strategy could significantly accelerate wound healing, inspiring researchers to optimize the design of multi-stimulus-responsive nanomaterials for various applications in biomedical and biomaterial fields.
Collapse
Affiliation(s)
- Zixin Zhu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xue Gou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Laiyi Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Tian Xia
- Department of Pathology, Western Theater Command Air Force Hospital, Chengdu 610021, China
| | - Jiayi Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Chenjun Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Ran Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shengnian Luo
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
22
|
Emerging nanosonosensitizers augment sonodynamic-mediated antimicrobial therapies. Mater Today Bio 2023; 19:100559. [PMID: 36798535 PMCID: PMC9926023 DOI: 10.1016/j.mtbio.2023.100559] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
With the widespread prevalence of drug-resistant pathogens, traditional antibiotics have limited effectiveness and do not yield the desired outcomes. Recently, alternative antibacterial therapies based on ultrasound (US) have been explored to overcome the crisis of bacterial pathogens. Antimicrobial sonodynamic therapy (aSDT) offers an excellent solution that relies on US irradiation to produce reactive oxygen species (ROS) and achieve antibiotic-free mediated antimicrobial effects. In addition, aSDT possesses the advantage of superior tissue penetrability of US compared to light irradiation, demonstrating great feasibility in treating deep infections. Although existing conventional sonosensitizers can produce ROS for antimicrobial activity, some limitations, such as low penetration rate, nonspecific distribution and poor ROS production under hypoxic conditions, result in suboptimal sterilization in aSDT. Recently, emerging nanosonosensitizers have enormous advantages as high-performance agents in aSDT, which overcome the deficiencies of conventional sonosensitizers as described above. Thus, nanosonosensitizer-mediated aSDT has a bright future for the management of bacterial infections. This review classifies the current available nanosonosensitizers and provides an overview of the mechanisms, biomedical applications, recent advances and perspectives of aSDT.
Collapse
|
23
|
Wang Q, Zhang Y, Liu Y, Wang K, Qiu W, Chen L, Li J, Li W. Core–Shell In/Cu 2O Nanowires Schottky Junction for Enhanced Photoelectrochemical CO 2 Reduction under Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingmei Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yanfang Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Keke Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weixin Qiu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Long Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, 410083, China
| |
Collapse
|
24
|
Liu Q, Zhang W, Jiao R, Lv Z, Lin X, Xiao Y, Zhang K. Rational Nanomedicine Design Enhances Clinically Physical Treatment-Inspired or Combined Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203921. [PMID: 36002305 PMCID: PMC9561875 DOI: 10.1002/advs.202203921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Indexed: 05/19/2023]
Abstract
Independent of tumor type and non-invasive or minimally-invasive feature, current physical treatments including ultrasound therapy, microwave ablation (MWA), and radiofrequency ablation (RFA) are widely used as the local treatment methods in clinics for directly killing tumors and activating systematic immune responses. However, the activated immune responses are inadequate and incompetent for tumor recession, and the incomplete thermal ablation even aggravates the immunosuppressive tumor microenvironment (ITM), resulting in the intractable tumor recurrence and metastasis. Intriguingly, nanomedicine provides a powerful platform as they can elevate energy utilization efficiency and augment oncolytic effects for mitigating ITM and potentiating the systematic immune responses. Especially after combining with clinical immunotherapy, the anti-tumor killing effect by activating or enhancing the human anti-tumor immune system is reached, enabling the effective prevention against tumor recurrence and metastasis. This review systematically introduces the cutting-edge progress and direction of nanobiotechnologies and their corresponding nanomaterials. Moreover, the enhanced physical treatment efficiency against tumor progression, relapse, and metastasis via activating or potentiating the autologous immunity or combining with exogenous immunotherapeutic agents is exemplified, and their rationales are analyzed. This review offers general guidance or directions to enhance clinical physical treatment from the perspectives of immunity activation or magnification.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Wei Zhang
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
| | - Rong Jiao
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Zheng Lv
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Xia Lin
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| | - Yunping Xiao
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
| | - Kun Zhang
- Department of RadiologyLiuzhou People's Hospital Affiliated to Guangxi Medical UniversityNo. 8 Wenchang RoadLiuzhou545006P. R. China
- Central LaboratoryShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNo. 22 Shuangyong Road 22Nanning530021P. R. China
| |
Collapse
|
25
|
Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, Cui D. Recent developments of sonodynamic therapy in antibacterial application. NANOSCALE 2022; 14:12999-13017. [PMID: 36052726 DOI: 10.1039/d2nr01847k] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid emergence of pathogenic bacteria poses a serious threat to global health. Notably, traditional antibiotic therapies suffer from the risk of strengthening bacterial drug resistance. Sonodynamic therapy (SDT) combining sonosensitizers and low-intensity ultrasound (US) has broadened the way towards treating drug-resistant bacteria. The allure of this therapy emerges from the capacity to focus the US energy on bacterial infection sites buried deep in tissues, locally activating the sonosensitizers to produce cytotoxic reactive oxygen species (ROS) with the ability to induce bacterial death. The past decade has witnessed the rapid development of antibacterial SDT owing to their excellent penetration, favorable biocompatibility and specific targeting ability. This review summarizes available sonosensitizers for antibacterial SDT, and digs into innovative biotechnologies to improve SDT efficiency, such as enhancing the targeting ability of sonosensitizers, image-guided assisted SDT, improvement of hypoxia and combination of SDT with other therapies. Finally, we conclude with the present challenges and provide insights into the future research of antibacterial SDT.
Collapse
Affiliation(s)
- Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
- State Key Laboratory of Ocean Engineering, Key Laboratory of Hydrodynamics of Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China
| | - Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| |
Collapse
|
26
|
Jia B, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li Y. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105252. [PMID: 35088586 PMCID: PMC8981469 DOI: 10.1002/advs.202105252] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Indexed: 05/02/2023]
Abstract
The emergence of bacterial resistance due to the evolution of microbes under antibiotic selection pressure, and their ability to form biofilm, has necessitated the development of alternative antimicrobial therapeutics. Physical stimulation, as a powerful antimicrobial method to disrupt microbial structure, has been widely used in food and industrial sterilization. With advances in nanotechnology, nanophysical antimicrobial strategies (NPAS) have provided unprecedented opportunities to treat antibiotic-resistant infections, via a combination of nanomaterials and physical stimulations. In this review, NPAS are categorized according to the modes of their physical stimulation, which include mechanical, optical, magnetic, acoustic, and electrical signals. The biomedical applications of NPAS in combating bacterial infections are systematically introduced, with a focus on their design and antimicrobial mechanisms. Current challenges and further perspectives of NPAS in the clinical treatment of bacterial infections are also summarized and discussed to highlight their potential use in clinical settings. The authors hope that this review will attract more researchers to further advance the promising field of NPAS, and provide new insights for designing powerful strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Bingqing Jia
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yong‐Qiang Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
- Suzhou Research InstituteShandong UniversitySuzhou215123China
| |
Collapse
|
27
|
Wei H, Song X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. BIOMATERIALS ADVANCES 2022; 135:212739. [PMID: 35929213 DOI: 10.1016/j.bioadv.2022.212739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria and biofilm-related infections (BRIs) has urgently called for new strategies to combat severe orthopaedic device-related infections (ODRIs). Antimicrobial coating has emerged as a promising strategy in halting the incidence of ODRIs and treating ODRIs in long term. With the advancement of material science and biotechnology, numerous antimicrobial coatings have been reported in literature, showing superior antimicrobial and osteogenic functions. This review has specifically discussed the currently developed antimicrobial coatings in the perspective of drug release from the coating system, focusing on their realization of controlled and on demand antimicrobial agents release, as well as multi-functionality. Acknowledging the multidisciplinary nature of antimicrobial coating, the conceptual design, the deposition method and the therapeutic effect of the antimicrobial coatings have been described in detail and discussed critically. Particularly, the challenges and opportunities on the way toward the clinical translation of antimicrobial coatings have been highlighted.
Collapse
Affiliation(s)
- Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
28
|
Peng L, Yang X, Wang S, Chan YK, Chen Y, Yang Z, Mao Y, Li L, Yang W, Deng Y. Bimetal metal-organic framework domino micro-reactor for synergistic antibacterial starvation/chemodynamic therapy and robust wound healing. NANOSCALE 2022; 14:2052-2064. [PMID: 35076646 DOI: 10.1039/d1nr07611f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antibacterial chemodynamic therapy (aCDT) has captured considerable attention in the treatment of pathogen-induced infections due to its potential to inactivate bacteria through germicidal reactive oxygen species (ROS). However, the lifespan of ROS generated by CDT is too short to achieve the efficacy of complete sterilization; thus, residual bacteria inevitably reproduce and cause super-infections. To address this concern, we devise an innovative bimetal, metal-organic framework (BMOF) domino micro-reactor (BMOF-DMR), consisting of Cu/Zn-rich BMOF and glucose oxidase (GOx), via electrostatic self-assembly. GOx catalyzes conversion of glucose into H2O2, and the Cu2+ ions then convert H2O2 into ˙OH to kill bacteria, thereby showing a domino effect. Accordingly, the BMOF-DMR not only blocks the nutrient/energy supply for bacteria, but also triggers a Fenton(-like) reaction and glutathione (GSH) depletion in a self-generating H2O2 microenvironment, all leading to high-efficiency bactericidal performance through synergistic starvation/chemodynamic therapy. Remarkably, in vitro and in vivo assessments demonstrate that the BMOF-DMR has superior cytocompatibility and exhibits robust ability to accelerate infectious full-thickness cutaneous regeneration through eradicating bacteria, promoting epithelialization of the wound beds and facilitating angiogenesis from the antibacterial activity and delivery of bimetal elements. The advantage of this antibacterial platform is that it suppresses bacterial metabolism by blocking the energy supply, which might prevent secondary infections from residual bacteria. As envisaged, the use of such a micro-reactor with starvation/chemodynamic therapy is a promising approach for combating bacterial skin wounds.
Collapse
Affiliation(s)
- Liming Peng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, Frontiers Science Centre for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Wang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, China
| | - Yong Chen
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhaopu Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yurong Mao
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Limei Li
- Science and Technology Achievement Incubation Centre, Kunming Medical University, Kunming 650500, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|