1
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM, Giovannuzzi S, Supuran CT. Development of novel amino-benzenesulfonamide derivatives and their analogues as carbonic anhydrase inhibitors: Design, synthesis, anticancer activity assessment, and pharmacokinetic studies using UPLC-MS/MS. Bioorg Chem 2025; 159:108335. [PMID: 40086186 DOI: 10.1016/j.bioorg.2025.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
The present study outlines the design and synthesis of dual-tail analogues of SLC-0111 as carbonic anhydrase inhibitors (CAIs) targeting tumor isoforms IX and XII 4a-h and 5a-h, along with pharmacokinetic studies. The synthesized compounds were evaluated for their inhibitory activity against four carbonic anhydrase isoforms (hCA I, II, IX, and XII), revealing potent activity, particularly against hCA IX and XII. Notably, compounds 4b, 5a, and 5b demonstrated strong inhibition of hCA IX with Ki values of 20.4, 12.9, and 18.2 nM, respectively, compared to acetazolamide (AAZ), which has a Ki of 25 nM. Additionally, compounds 5a, 5b, 5c, and 5d showed selective inhibition of hCA XII, with Ki values of 26.6, 8.7, 17.2, and 10.9 nM, respectively, relative to AAZ (Ki = 5.7 nM). Moreover, both series were tested for their anti-proliferative activity following the US-NCI protocol against a panel of more than fifty cancer cell lines. Compound 5h met the activity criteria and was automatically scheduled for further evaluation at five concentrations with 10-fold dilutions, revealing high toxicity toward leukemia and lower toxicity against melanoma. In addition, the MTT cytotoxicity assay was performed on 5f, 5d and acetazolamide using WI-38 cells. Furthermore, an in vivo pharmacokinetic study was conducted using UPLC-MS/MS on the most potent derivative, 5d, demonstrating a comparable pharmacokinetic profile compared to the reference drug acetazolamide. Furthermore, molecular docking prediction studies were conducted for the most active compounds, 5d and 5h, to elucidate their interactions with the active site hot spots of the CA isoform.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, New Giza University, New Giza, km 22 Cairo- Alexandria Desert Road, Cairo, Egypt.
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Simone Giovannuzzi
- Department NEUROFARBA - Pharmaceutical and Nutraceutical section, University of Firenze, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and Nutraceutical section, University of Firenze, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Fadaly WAA, Nemr MTM, Abd El-Hameed AM, Giovannuzzi S, Alkabbani MA, Hefina MM, Nocentini A, Mohamed MFA, Supuran CT, Eldehna WM, Zidan TH. Novel benzenesulfonamide derivatives linked to diaryl pyrazole tail as potential carbonic anhydrase II/VII inhibitors with anti-epileptic activity. Eur J Med Chem 2025; 291:117619. [PMID: 40249969 DOI: 10.1016/j.ejmech.2025.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Two new series of 1,2,3-triazole benzenesulfonamide derivatives 16a-f and imino-thiazolidinone benzenesulfonamide derivatives 19a-f with diaryl pyrazole tail were synthesized as carbonic anhydrase (CA) II, VII inhibitors and assessed for antiepileptic activity. All compounds were tested in vitro for their inhibition activity against the human (h) carbonic anhydrase I, II, and VII isoforms. Among these series, compounds 16b, 16d, 19b, and 19d exhibited exceptional inhibitory activity against hCA II, with Ki 10.9-47.1 nM, and hCA VII, with Ki 8.4-23.6 nM, while the two series did not show significant activity against hCA I. Furthermore, 16b, 16d, 19b, and 19d were tested against in vivo pilocarpine-induced seizure model, and they showed excellent neuroprotective activity; they delayed seizure onset, reduced seizure severity, and improved survival rates compared to the pilocarpine group, which highlighted their efficacy in regulating neuronal excitability through CA inhibition and chloride homeostasis. Also, hippocampal levels of KCC2 and mTOR were analyzed, as these markers are critical in regulating neuronal excitability and are closely linked to epilepsy. Noteworthy, Compounds 16d and 19b surpassed the standard anti-convulsant valproic acid in key parameters, underscoring their superior efficacy. In addition, they do not show any significant neurotoxic effects or alterations in liver and kidney function. Moreover, the results of in vitro cytotoxicity of compounds 16d and 19b against Vero cells indicate their safety at the doses given (IC50 = 59.7, 71.9 μM respectively) compared to acetazolamide (IC50 = 32.3 μM). Finally, molecular docking of sulfonamide derivatives with hCA II (PDB code: 2h4h) and hCA VII (PDB code: 3ml5) was performed.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt
| | - Abeer M Abd El-Hameed
- Chemistry Department, Faculty of Science, Taibah University, P.O. BOX 30002, Al-Madinah Al-Munawarah, 14177, Saudi Arabia
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Mohamed M Hefina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524, Sohag, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley, 72511, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria, 21648, Egypt.
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
3
|
Ezugwu JA, Ugwu DI, Rudrapal M, Rakshit G, Ghosh R, Hariprasad KS, Abonyi EO. Design, Synthesis, In Vivo Antimalarial Activity, and In Silico Studies of Sulfonamide-Alkanamido Thiazole-5-Carboxylate Derivatives. Chem Biodivers 2025:e202403504. [PMID: 40131203 DOI: 10.1002/cbdv.202403504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 03/26/2025]
Abstract
A series of nine substituted derivatives of 4-methyl-2-(3-methyl-2-(4-methylphenylsulfonamido)-butanamido)thiazole-5-carboxylate were synthesized, characterized, and evaluated for antimalarial activity. The synthesis involved a two-step process using methyl acetoacetate and various substituted benzenesulfonamoyl alkanamides. Structural confirmation was achieved using NMR and mass spectroscopy. The in vivo antimalarial efficacy was tested against Plasmodium berghei in Swiss albino mice, with artemisinin as the reference drug. Compounds 4e and 4h exhibited the highest inhibition rates of 81.68% and 85.34%, respectively, closely matching artemisinin (90%). Structure-activity relationship (SAR) analysis identified the sulfonamide group, alkyl chain length, and molecular flexibility as critical determinants of activity. Docking studies revealed strong binding affinities for 4e and 4h, supported by stable hydrogen bonds and hydrophobic interactions with the enzyme's active site, corroborated by molecular dynamics simulations. ADMET analysis revealed favorable pharmacokinetic and safety profiles, including high GI absorption, acceptable solubility, and low mutagenic risk. These findings highlight compounds 4e and 4h as promising leads for antimalarial drug development.
Collapse
Affiliation(s)
- James A Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
- Organic Synthesis and Processing Chemistry Division, CSIR-India Institute of Chemical Technology, Hyderabad, India
| | - David I Ugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research, Guntur, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Ranchi, India
| | - Rahul Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Ranchi, India
| | - Kurma S Hariprasad
- Organic Synthesis and Processing Chemistry Division, CSIR-India Institute of Chemical Technology, Hyderabad, India
| | - Emmanuel O Abonyi
- Department of Medical Biochemistry, Enugu State University College of Medicine, Enugu, Nigeria
| |
Collapse
|
4
|
Jung HJ, Kim HJ, Park HS, Park HS, Ko J, Yoon D, Park Y, Chun P, Chung HY, Moon HR. Design, Synthesis, and Antioxidant and Anti-Tyrosinase Activities of ( Z)-5-Benzylidene-2-(naphthalen-1-ylamino)thiazol-4(5 H)-one Analogs: In Vitro and In Vivo Insights. Molecules 2025; 30:289. [PMID: 39860159 PMCID: PMC11767423 DOI: 10.3390/molecules30020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Fifteen compounds (1-15) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5H)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds (10 and 15) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of 10 (IC50 value: 1.60 μM) was 11 times stronger than that of kojic acid. Lineweaver-Burk plots indicated that these two compounds were competitive inhibitors that bound to the mushroom tyrosinase active site, which was supported by in silico experiments. Compound 10 was an anti-tyrosinase and anti-melanogenic substance in B16F10 cells and was more potent than kojic acid, without cytotoxicity. Compound 15 exhibited the most potent effect on zebrafish larval depigmentation and showed a depigmentation effect comparable to kojic acid, even at a concentration 200 times lower. Compounds 8 and 10 exhibited strong antioxidant capacities, scavenging 2,2-diphenyl-1-picrylhydrazyl, (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid)+ radicals, and reactive oxygen species. Hybrid compounds 10 and 15 are potential therapeutic agents for skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.J.K.); (H.S.P.); (H.S.P.); (J.K.); (D.Y.)
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.J.K.); (H.S.P.); (H.S.P.); (J.K.); (D.Y.)
| | - Hyeon Seo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.J.K.); (H.S.P.); (H.S.P.); (J.K.); (D.Y.)
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.J.K.); (H.S.P.); (H.S.P.); (J.K.); (D.Y.)
| | - Jeongin Ko
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.J.K.); (H.S.P.); (H.S.P.); (J.K.); (D.Y.)
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.J.K.); (H.S.P.); (H.S.P.); (J.K.); (D.Y.)
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea;
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea;
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.J.K.); (H.S.P.); (H.S.P.); (J.K.); (D.Y.)
| |
Collapse
|
5
|
Fadaly WAA, Mohamed FEA, Nemr MTM, Sayed AM, Khalil RG, Zidan TH. Novel benzenesulfonamide derivatives as potential selective carbonic anhydrase IX, XII inhibitors with anti-proliferative activity: Design, synthesis and in silico studies. Bioorg Chem 2024; 153:107881. [PMID: 39396453 DOI: 10.1016/j.bioorg.2024.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
As inhibitors of carbonic anhydrases (CAs) IX and XII, a novel series of 1,2,3-triazole benzenesulfonamide derivatives 17a-l containing pyrazolyl-thiazole moiety was designed, synthesized, and tested for anti-proliferative activity. Compounds 17e-h demonstrated more effective inhibitory activity than acetazolamide (IC50 63 nM CA IX and IC50 92 nM CA XII), with IC50 range of 25-52 nM against CA IX and IC50 range of 31-80 nM against CA XII. To verify selectivity against CA IX and CA XII, carbonic anhydrase inhibitory activity of compounds 17e-h against the physiological CA I and CA II isoforms was carried out. The results showed that compounds 17e-h induced lower inhibitory activity against CA I and CA II with IC50 range of 0.428-0.638 μM (CA I) and 0.095-0.164 μM (CA II), in addition to higher selectivity indices (CA I/CA IX S.I. 8.9-19.92, CA I/CA XII S.I. 5.78-16.06) and (CA II/CA IX S.I. 2.83-4.35, CA II/CA XII S.I. 2.05-3.15) when compared to that of acetazolamide, IC50 of 0.199 μM (CA I), 0.133 μM (CA II) (CA I/CA IX S.I. 3.15, CA I/CA XII S.I. 2.16) and (CA II/CA IX S.I. 2.11, CA II/CA XII S.I. 1.44). Concerning anti-proliferative activity of compounds 17e-h, investigations were done on HEPG-2 cell line with IC50 ranges of 3.44-15.03 μM in comparison, 5-FU and doxorubicin showed IC50 values of 11.80 and 9.53 μM, respectively. Furthermore IC50 of MCF-7 and MDA-MB-231 were determined under both normoxic and hypoxic conditions with IC50 values ranging from 3.18-8.26 μM MCF-7 (normoxic), 1.39-6.05 μM MCF-7 (hypoxic), 7.13-26.3 μM MDA-MB-231 (normoxic), 0.76-16.3 μM MDA-MB-231 (hypoxic) using acetazolamide and SLC-0111 as selective CA inhibition references. Moreover, compounds 17e-h demonstrated greater safety against the normal cell line, MCF-10A, with IC50 of 23.06-99.50 μM in comparison to 5-FU and doxorubicin IC50 of 59.8 and 71.8 μM respectively. They also demonstrated (MCF-7 S.I. range of 3.77-31.28) in contrast to doxorubicin (S.I. 13.72) and (HepG-2 S.I. range of 3.60-6.95) in comparison to doxorubicin (S.I. 7.53). In relation to CA IX, XII inhibition, molecular docking of and ADME studies of sulfonamide derivatives 17a-l with CA IX (PDB: 5FL6) and CA XII (PDB: 1JD0) was carried out. Additionally, molecular dynamic simulation was carried out for compounds 17e and 17g which maintained good stability inside the active sites of both enzymes, with average RMSDs of 2.3 Å and 2.1 Å, respectively.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
6
|
Zengin M, Unsal Tan O, Sabuncuoglu S, Arafa RK, Balkan A. Design and Discovery of New Dual Carbonic Anhydrase IX and VEGFR-2 Inhibitors Based on the Benzenesulfonamide-Bearing 4-Thiazolidinones/2,4-Thiazolidinediones Scaffold. Drug Dev Res 2024; 85:e70030. [PMID: 39660547 DOI: 10.1002/ddr.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Dual-targeting drug design has become a popular approach in investigating and developing potent anticancer agents. In this regard, carbonic anhydrase (CAIX) and vascular endothelial growth factor receptor (VEGFR-2) are emerging as highly effective targets in the battle against cancer. In the present study, two series of 4-thiazolidinones/2,4-thiazolidinediones carrying 2-methylbenzenesulfonamide derivatives were designed and synthesized as potential dual CAIX/VEGFR-2 inhibitors. All the target compounds were evaluated against CAIX enzyme compared to dorzolamide and acetazolamide, subsequently the most potent CAIX inhibitors (3a, 3b, 3o, 6d, 6g, and 6i) were selected to evaluate their inhibitory activity against VEGFR-2 using sorafenib as a reference drug. These compounds were also evaluated against MCF-7 breast cancer cells and the murine fibroblast 3T3 cell line. According to the results, 3b (CAIX IC50 = 0.035 µM, VEGFR-2 IC50 = 0.093 µM) and 6i (CAIX IC50 = 0.041 µM, VEGFR-2 IC50 = 0.048 µM) emerged the most potent compounds against CAIX and VEGFR-2. Furthermore, docking studies of selected compounds were performed with the CAIX and the tyrosine kinase domain of VEGFR-2 to comprehend the ligand-binding interactions. Physicochemical predictions were examined using in silico techniques. In conclusion, these scaffolds present promising leads and furnish promising chemical backbones for the design of potent dual CAIX and VEGFR-2 inhibitors.b.
Collapse
Affiliation(s)
- Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo, Egypt
- Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, Cairo, Egypt
| | - Ayla Balkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Ketha S, Sudhakar C, Kethireddy S, Eppakayala L. New Chalcone Incorporated Structurally Modified Pyridine-Pyrimidine Derivatives as Anticancer Agents: Their Design, Synthesis, and in-vitro Evaluation. Chem Biodivers 2024; 21:e202401122. [PMID: 39176466 DOI: 10.1002/cbdv.202401122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Chalcone-incorporated pyridine-pyrimidines i.e. derivatives of (5-(6-(pyrimidin-5-yl)pyridin-3-yl)thiophen-2-yl)prop-2-en-1-one were synthesized and their structures were confirmed by analytical techniques. In addition, all the derivatives were examined for their capacity to fight against cancer towards four cell lines, including breast (MCF-7), prostate (DU-145 and PC3), and lung (A549) by utilizing the MTT technique and the clinically used chemotherapy medication, etoposide serving as a positive reference. All these results were expressed in IC50 μM, and values of synthesized compounds are compared with a reference drug, showing values ranging from 1.97±0.45 μM to 3.08±0.135 μM. Among those, a few compounds 10(a-e) demonstrated strong activities with corresponding cell lines.
Collapse
Affiliation(s)
- Swarupa Ketha
- Department of Chemistry, GITAM Deemed to be University, Patancheru, Hyderabad 502329, Telangana, India
- Geethanjali College of Engineering and Technology, Keesara, Rangareddy 501301, Telangana, India
| | - Chithaluri Sudhakar
- Department of Chemistry, GITAM Deemed to be University, Patancheru, Hyderabad 502329, Telangana, India
| | - Shashikala Kethireddy
- Geethanjali College of Engineering and Technology, Keesara, Rangareddy 501301, Telangana, India
| | - Laxminarayana Eppakayala
- Department of Chemistry Sreenidhi Institute of Science and Technology (Autonomous) Yamnampet, Ghatkesar, Hyderabad 501301, Telangana, India
| |
Collapse
|
8
|
Nemr MTM, Abdelaziz MA, Teleb M, Elmasry AE, Elshaier YAAM. An overview on pharmaceutical applications of phosphodiesterase enzyme 5 (PDE5) inhibitors. Mol Divers 2024:10.1007/s11030-024-11016-2. [PMID: 39592536 DOI: 10.1007/s11030-024-11016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024]
Abstract
Phosphodiesterase enzyme 5 (PDE5) inhibitors have emerged as one of the leading molecules for the treatment of erectile dysfunction (ED). PDE5 inhibitors are categorized structurally into several classes. PDE5 inhibitors have been a multidisciplinary endeavor that attracts the attention of researchers because of their multiple pharmaceutical applications. Beyond their action on ED, PDE5 inhibitors are widely used in treatment of benign prostatic hypertrophy (BPH), Eisenmenger's syndrome, Raynaud's Disease, Intrauterine growth retardation (IUGR), Mountain sickness, Bladder pain syndrome/interstitial cystitis (BPS/IC), pulmonary arterial hypertension and type II diabetes (insulin resistance). In addition, PDE5 inhibitors also show promising antiproliferative activity, anti-Alzheimer and COX-1/COX-2 inhibitory activity (anti-inflammatory). Pharmacokinetics, Pharmacogenetics and toxicity of PDE5 inhibitors were finally explored. The diverse therapeutic applications, the high feasibility of structural modification and the appropriate pharmacokinetic properties of PDE5 inhibitors have motivated researchers to develop new scaffolds that have been either under clinical trials or approved by FDA and utilize them to overcome some recent global concerns, such as COVID-19.
Collapse
Affiliation(s)
- Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street 11562, Cairo, Egypt.
| | | | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Alamein City, 5060310, Egypt
| | - Ahmed E Elmasry
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Yaseen A A M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt.
| |
Collapse
|
9
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
10
|
Xie T, Hu W, You L, Wang X. Design, synthesis and biological evaluation of thienopyridine derivatives as c-Met kinase inhibitors. Mol Divers 2024:10.1007/s11030-024-10998-3. [PMID: 39356364 DOI: 10.1007/s11030-024-10998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024]
Abstract
With cabozantinib as the precursor, a novel small molecule inhibitors of c-Met kinase with thieno [2,3-b] pyridine as the scaffold were designed, synthesized and evaluated for their biological activity against A549, Hela and MCF-7 cell lines. The in vitro activities of 16 compounds were tested by MTT method with cabozantinib as control drug. Most compounds had moderate to strong inhibitory activities on cells. Among them, compound 10 had the strongest inhibitory activity, which was superior to the lead compound cabozantinib. Its IC50 values for A549, Hela and MCF-7 cells were 0.005, 2.833 and 13.581 μM, respectively. The colony formation assay demonstrated that compound 10 significantly inhibited the colony formation of A549 cells and suppressed their growth in a concentration-dependent manner. The wound healing assay showed that compound 10 could effectively inhibit the migration of cancer cells compared to a blank control group. The AO/EB assay demonstrated that compound 10 possesses the capability to effectively trigger apoptosis in a concentration-dependent manner. The elementary structure-activity relationship, molecular docking and pharmacokinetics studies revealed the significance of thieno [2,3-b] pyridine derivatives in anti-tumor activity.
Collapse
Affiliation(s)
- Tianyu Xie
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Wenbo Hu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Lin You
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang, 110036, China.
| |
Collapse
|
11
|
Wu Z, Zhang F, Chen Z, Wang X, Liu X, Yang G, Wang S, Huang S, Luo HB, Huang YY, Wu D. Discovery and optimization of 4-(imidazo[1,2-a]pyrimidin-3-yl)thiazol-2-amine derivatives as novel phosphodiesterase 4 inhibitors. Mol Divers 2024:10.1007/s11030-024-10991-w. [PMID: 39313709 DOI: 10.1007/s11030-024-10991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Phosphodiesterases (PDEs) are important intracellular enzymes that hydrolyze the second messengers cAMP and/or cGMP. Now several studies have shown that PDE4 received particular attention due to which it represents the most prominent cAMP-metabolizing enzyme involved in many diseases. In this study, we performed prescreening of our internal compound library and discovered the compound (PTC-209) with moderate PDE4 inhibitory activity (IC50 of 4.78 ± 0.08 μM). And a series of 4-(imidazo[1,2-a]pyrimidin-3-yl)thiazol-2-amine derivatives as novel PDE4 inhibitors starting from PTC-209 were successfully designed and synthesized using a structure-based discovery strategy. L19, the most potent inhibitor, exhibited good inhibitory activity (IC50 of 0.48 ± 0.02 μM) and remarkable metabolic stability in rat liver microsomes. Our study presents an example of discovery novel PDE4 inhibitors, which would be helpful for design and optimization of novel inhibitors in future.
Collapse
Affiliation(s)
- Zongmin Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Furong Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Zhexin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xue Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xingfu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Guofeng Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Sen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Deyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Nemr MTM, Elshewy A, Ibrahim ML, El Kerdawy AM, Halim PA. Design, synthesis, antineoplastic activity of new pyrazolo[3,4-d]pyrimidine derivatives as dual CDK2/GSK3β kinase inhibitors; molecular docking study, and ADME prediction. Bioorg Chem 2024; 150:107566. [PMID: 38896936 DOI: 10.1016/j.bioorg.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
In the current study, novel pyrazolo[3,4-d]pyrimidine derivatives 5a-h were designed and synthesized as targeted anti-cancer agents through dual CDK2/GSK-3β inhibition. The designed compounds demonstrated moderate to potent activity on the evaluated cancer cell lines (MCF-7 and T-47D). Compounds 5c and 5 g showed the most promising cytotoxic activity against the tested cell lines surpassing that of the used reference standard; staurosporine. On the other hand, both compounds showed good safety and tolerability on normal fibroblast cell line (MCR5). The final compounds 5c and 5 g showed a promising dual CDK2/GSK-3β inhibitory activity with IC50 of 0.244 and 0.128 μM, respectively, against CDK2, and IC50 of 0.317 and 0.160 μM, respectively, against GSK-3β. Investigating the effect of compounds 5c and 5 g on CDK2 and GSK-3β downstream cascades showed that they reduced the relative cellular content of phosphorylated RB1 and β-catenin compared to that in the untreated MCF-7 cells. Moreover, compounds 5c and 5 g showed a reasonable selective inhibition against the target kinases CDK2/GSK-3β in comparison to a set of seven off-target kinases. Furthermore, the most potent compound 5 g caused cell cycle arrest at the S phase in MCF-7 cells preventing the cells' progression to G2/M phase inducing cell apoptosis. Molecular docking studies showed that the final pyrazolo[3,4-d]pyrimidine derivatives have analogous binding modes in the target kinases interacting with the hinge region key amino acids. Molecular dynamics simulations confirmed the predicted binding mode by molecular docking. Moreover, in silico predictions indicated their favorable physicochemical and pharmacokinetic properties in addition to their promising cytotoxic activity.
Collapse
Affiliation(s)
- Mohamed T M Nemr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ahmed Elshewy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Mohammed L Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Peter A Halim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
13
|
Abd El-Mawgoud HK, AboulMagd AM, Nemr MTM, Hemdan MM, Hassaballah AI, Farag PS. Design, synthesis and cytotoxic evaluation of new thieno[2,3-d]pyrimidine analogues as VEGFR-2/AKT dual inhibitors, apoptosis and autophagy inducers. Bioorg Chem 2024; 150:107622. [PMID: 38996545 DOI: 10.1016/j.bioorg.2024.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Novel thieno[2,3-d]pyrimidine analogues were designed, synthesized and evaluated for anti-proliferative activity against HepG-2, PC-3 and MCF-7 cancer cell lines. In addition, WI-38 normal cell line was used to explore the safety of all the tested compounds. Compounds 2 (IC50 = 4.29 µM HePG-2, 10.84 µM MCF-7), 6 (IC50 = 14.86 μM HePG-2, 8.04 μM PC-3 and 12.90 μM MCF-7) and 17 (IC50 = 9.98 μM HePG-2, 33.66 μM PC-3 and 14.62 μM MCF-7) were the most promising candidates on the tested cancer cells with high selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where compound 2 inhibited VEGFR-2 and AKT at IC50 = 0.161 and 1.06 μM, respectively, Furthermore, derivative 6 inhibited VEGFR-2 and AKT at IC50 = 0.487 and 0.364 μM, respectively, while compound 17 showed IC50 = 0.164 and 0.452 μM, respectively. Moreover, compounds 2, 6 resulted in G1 phase cell cycle arrest while candidate 17 arrest cell cycle at G2/M phase. Similar to the apoptosis results, compound 17 showed the highest autophagic induction among the evaluated derivatives. Finally, docking studies were conducted to assess the binding patterns of these active derivatives. The results showed that the binding patterns inside the active sites of both the VEGFR-2 and AKT-1 (allosteric pocket) crystal structures were identical to the reference ligands.
Collapse
Affiliation(s)
- Heba K Abd El-Mawgoud
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, 11767 Cairo, Egypt.
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt.
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street 11562, Cairo, Egypt
| | - Magdy M Hemdan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| | - Aya I Hassaballah
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| | - Paula S Farag
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| |
Collapse
|
14
|
Xu G, Li L, Lv M, Li C, Yu J, Zeng X, Meng X, Yu G, Liu K, Cheng S, Luo H, Xu B. Discovery of novel 4-trifluoromethyl-2-anilinoquinoline derivatives as potential anti-cancer agents targeting SGK1. Mol Divers 2024:10.1007/s11030-024-10951-4. [PMID: 39117890 DOI: 10.1007/s11030-024-10951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Given the critical necessity for the development of more potent anti-cancer drugs, a series of novel compounds incorporating trifluoromethyl groups within the privileged 2-anilinoquinoline scaffold was designed, synthesized, and subjected to biological evaluation through a pharmacophore hybridization strategy. Upon evaluating the in vitro anti-cancer characteristics of the target compounds, it became clear that compound 8b, which contains a (4-(piperazin-1-yl)phenyl)amino substitution at the 2-position of the quinoline skeleton, displayed superior efficacy against four cancer cell lines by inducing apoptosis and cell cycle arrest. Following research conducted in a PC3 xenograft mouse model, it was found that compound 8b exhibited significant anti-cancer efficacy while demonstrating minimal toxicity. Additionally, the analysis of a 217-kinase panel pinpointed SGK1 as a potential target for this compound class with anti-cancer capabilities. This finding was further verified through molecular docking analysis and cellular thermal shift assays. To conclude, our results emphasize that compound 8b can be used as a lead compound for the development of anti-cancer drugs that target SGK1.
Collapse
Affiliation(s)
- Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Lanlan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Mengfan Lv
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Cheng Li
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Xiaoping Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Xueling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China.
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China.
| |
Collapse
|
15
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
16
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM. Sulfonamides as anticancer agents: A brief review on sulfonamide derivatives as inhibitors of various proteins overexpressed in cancer. Bioorg Chem 2024; 147:107409. [PMID: 38714116 DOI: 10.1016/j.bioorg.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Sulfonamides have gained prominence as versatile agents in cancer therapy, effectively targeting a spectrum of cancer-associated enzymes. This review provides an extensive exploration of their multifaceted roles in cancer biology. Sulfonamides exhibit adaptability by acting as tyrosine kinase inhibitors, disrupting pivotal signaling pathways in cancer progression. Moreover, they disrupt pH regulation mechanisms in cancer cells as carbonic anhydrase inhibitors, inhibiting growth, and survival. Sulfonamides also serve as aromatase inhibitors, interfering with estrogen synthesis in hormone-driven cancers. Inhibition of matrix metalloproteinases presents an opportunity to impede cancer cell invasion and metastasis. Additionally, their emerging role as histone deacetylase inhibitors offers promising prospects in epigenetic-based cancer therapies. These diverse roles underscore sulfonamides as invaluable tools for innovative anti-cancer treatments, warranting further exploration for enhanced clinical applications and patient outcomes.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo, 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
17
|
Fadaly WAA, Nemr MTM, Kahk NM. Discovery of novel pyrazole based Urea/Thiourea derivatives as multiple targeting VEGFR-2, EGFR WT, EGFR T790M tyrosine kinases and COX-2 Inhibitors, with anti-cancer and anti-inflammatory activities. Bioorg Chem 2024; 147:107403. [PMID: 38691909 DOI: 10.1016/j.bioorg.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt.
| | - Nesma M Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
18
|
Moustafa AH, AboulMagd AM, Ali AM, Khodairy A, Marzouk AA, Nafady A, T M Nemr M. Novel guanidine derivatives targeting leukemia as selective Src/Abl dual inhibitors: Design, synthesis and anti-proliferative activity. Bioorg Chem 2024; 147:107410. [PMID: 38688197 DOI: 10.1016/j.bioorg.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, 1H-, 13C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines. Among all, compound 3b was the most potent, with IC50 of 0.018 μM for normoxia, and 0.001 μM for hypoxia, compared to staurosporine against HL-60 leukemia cell line. To verify the selectivity of this derivative, it was assessed against a panel of tyrosine kinase EGFR, VEGFR-2, B-raf, ERK, CK1, p38-MAPK, Src and Abl enzymes. Results revealed that compound 3b can effectively and selectively inhibit Src/Abl with IC500.25 μM and Abl inhibitory activity with IC500.08 μM, respectively, and was found to be more potent on these enzymes than other kinases that showed the following results: EGFR IC500.31 μM, VEGFR-2 IC500.68 μM, B-raf IC500.33 μM, ERK IC501.41 μM, CK1 IC500.29 μM and p38-MAPK IC500.38 μM. Moreover, cell cycle analysis and apoptosis performed to compound 3b against HL-60 suggesting its antiproliferative activity through Src/Abl inhibition. Finally, molecular docking studies and physicochemical properties prediction for compounds 3b, 3c, and 3 h were carried out to investigate their biological activities and clarify their bioavailability.
Collapse
Affiliation(s)
- Amr H Moustafa
- Faculty of Science, King Salman International University, Ras Sudr, Sinai 46612, Egypt; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, El-Nahda University, Beni-Suef, Egypt
| | - Ali M Ali
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Ahmed Khodairy
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut-71524, Egypt; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt.
| |
Collapse
|
19
|
Zhao C, Liu Y, Cui Z. Recent development of azole-sulfonamide hybrids with the anticancer potential. Future Med Chem 2024; 16:1267-1281. [PMID: 38989985 PMCID: PMC11244697 DOI: 10.1080/17568919.2024.2351291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Cancer exhibits heterogeneity that enables adaptability and remains grand challenges for effective treatment. Chemotherapy is a validated and critically important strategy for the treatment of cancer, but the emergence of multidrug resistance which may lead to recurrence of disease or even death is a major hurdle for successful chemotherapy. Azoles and sulfonamides are important anticancer pharmacophores, and azole-sulfonamide hybrids have the potential to simultaneously act on dual/multiple targets in cancer cells, holding great promise to overcome drug resistance. This review outlines the current scenario of azole-sulfonamide hybrids with the anticancer potential, and the structure-activity relationships as well as mechanisms of action are also discussed, covering articles published from 2020 onward.
Collapse
Affiliation(s)
- Chenyuan Zhao
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| | - Yang Liu
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| | - Zhuo Cui
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| |
Collapse
|
20
|
Ezelarab HAA, Ali TFS, Abbas SH, Sayed AM, Beshr EAM, Hassan HA. New antiproliferative 3-substituted oxindoles inhibiting EGFR/VEGFR-2 and tubulin polymerization. Mol Divers 2024; 28:563-580. [PMID: 36790582 PMCID: PMC11070402 DOI: 10.1007/s11030-023-10603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| |
Collapse
|
21
|
Poyraz S, Döndaş HA, Yamali C, Belveren S, Demir Y, Aydınoglu S, Döndaş NY, Taskin-Tok T, Taş S, Ülger M, Sansano JM. Design, synthesis, biological evaluation and docking analysis of pyrrolidine-benzenesulfonamides as carbonic anhydrase or acetylcholinesterase inhibitors and antimicrobial agents. J Biomol Struct Dyn 2024; 42:3441-3458. [PMID: 37232497 DOI: 10.1080/07391102.2023.2214224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
The synthesis and biological assessment of novel multi-functionalized pyrrolidine-containing benzenesulfonamides were reported along with their antimicrobial, antifungal, CAs inhibition, and AChE inhibition as well as DNA-binding effects. The chemical structure of the compounds was elucidated by using FTIR, NMR, and HRMS. Compound 3b, which had Ki values of 17.61 ± 3.58 nM (hCA I) and 5.14 ± 0.61 nM (hCA II), was found the be the most potent CAs inhibitor. Compounds 6a and 6b showed remarkable AChE inhibition effects with Ki values 22.34 ± 4.53 nM and 27.21 ± 3.96 nM in comparison to tacrine. Compounds 6a-6c had moderate antituberculosis effect on M. tuberculosis with a MIC value of 15.62 μg/ml. Compounds had weaker antifungal and antibacterial activity in the range of MIC 500-62.5 μg/ml against standard bacterial and fungal strains. Besides these above, molecular docking studies were performed to examine and evaluate the interaction of the remarkable compounds (3b, 6a and 6b) against the current enzymes (CAs and AChE). Novel compounds gained interest in terms of enzyme inhibitory potencies. Therefore, the most potent enzyme inhibitors may be considered lead compounds to be modified for further research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - H Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Cem Yamali
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Samet Belveren
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye
| | - Sabriye Aydınoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Naciye Yaktubay Döndaş
- Department of Pharmacology, Faculty of Medicine, Çukurova University, Balcalı, Adana, Türkiye
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Türkiye
- gDepartment of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Türkiye
| | - Senanur Taş
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Mahmut Ülger
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye
| | - Jose M Sansano
- Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, and Instituto de Síntesis Orgánica (ISO), Alicante, Spain
| |
Collapse
|
22
|
Fadaly WAA, Nemr MTM, Zidan TH, Mohamed FEA, Abdelhakeem MM, Abu Jayab NN, Omar HA, Abdellatif KRA. New 1,2,3-triazole/1,2,4-triazole hybrids linked to oxime moiety as nitric oxide donor selective COX-2, aromatase, B-RAF V600E and EGFR inhibitors celecoxib analogs: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis and molecular modeling study. J Enzyme Inhib Med Chem 2023; 38:2290461. [PMID: 38061801 PMCID: PMC11003496 DOI: 10.1080/14756366.2023.2290461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A new series of bis-triazole 19a-l was synthesised for the purpose of being hybrid molecules with both anti-inflammatory and anti-cancer activities and assessed for cell cycle arrest, NO release. Compounds 19c, 19f, 19h, 19 l exhibited COX-2 selectivity indexes in the range of 18.48 to 49.38 compared to celecoxib S.I. = 21.10), inhibit MCF-7 with IC50 = 9-16 μM compared to tamoxifen (IC50 = 27.9 μM). and showed good inhibitory activity against HEP-3B with IC50 = 4.5-14 μM compared to sorafenib (IC50 = 3.5 μM) (HEP-3B). Moreover, derivatives 19e, 19j, 19k, 19 l inhibit HCT-116 with IC50 = 5.3-13.7 μM compared to 5-FU with IC50 = 4.8 μM (HCT-116). Compounds 19c, 19f, 19h, 19 l showed excellent inhibitory activity against A549 with IC50 = 3-4.5 μM compared to 5-FU with IC50 = 6 μM (A549). Compounds 19c, 19f, 19h, 19 l inhibit aromatase (IC50 of 22.40, 23.20, 22.70, 30.30 μM), EGFR (IC50 of 0.112, 0.205, 0.169 and 0.066 μM) and B-RAFV600E (IC50 of 0.09, 0.06, 0.07 and 0.05 μM).
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pharmacology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Abdoli M, De Luca V, Capasso C, Supuran CT, Žalubovskis R. Novel thiazolone-benzenesulphonamide inhibitors of human and bacterial carbonic anhydrases. J Enzyme Inhib Med Chem 2023; 38:2163243. [PMID: 36629426 PMCID: PMC9848287 DOI: 10.1080/14756366.2022.2163243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A small library of novel thiazolone-benzenesulphonamides has been prepared and evaluated for their ability to inhibit three human cytosolic carbonic anhydrases (hCA I, hCA II, and hCA VII) and three bacterial carbonic anhydrases (MscCAβ, StCA1, and StCA2). All investigated hCAs were inhibited by the prepared compounds 4a-4j in the low nanomolar range. These compounds were effective hCA I inhibitors (KIs of 31.5-637.3 nM) and excellent hCA II (KIs in the range of 1.3-13.7 nM) and hCA VII inhibitors (KIs in the range of 0.9-14.6 nM). The most active analog in the series, 4-((4-oxo-5-propyl-4,5-dihydrothiazol-2-yl)amino)benzenesulphonamide 4d, strongly inhibited bacterial MscCAβ, with KI of 73.6 nM, considerably better than AAZ (KI of 625 nM). The tested compounds displayed medium inhibitory potency against StCA1 (KIs of 69.2-163.3 nM) when compared to the standard drug (KI of 59 nM). However, StCA2 was poorly inhibited by the sulphonamides reported here, with KIs in the micromolar range between 275.2 and 4875.0 nM.
Collapse
Affiliation(s)
- Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy,Claudiu T. Supuran Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Raivis Žalubovskis
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia,Latvian Institute of Organic Synthesis, Riga, Latvia,CONTACT Raivis Žalubovskis Latvian Institute of Organic Synthesis, 21 Aizkraukles Str, Riga, LV-1006, Latvia
| |
Collapse
|
24
|
El-Zoghbi MS, El-Sebaey SA, AL-Ghulikah HA, Sobh EA. Design, synthesis, docking, and anticancer evaluations of new thiazolo[3,2- a] pyrimidines as topoisomerase II inhibitors. J Enzyme Inhib Med Chem 2023; 38:2175209. [PMID: 36776024 PMCID: PMC9930781 DOI: 10.1080/14756366.2023.2175209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
New thiazolopyrimidine derivatives 2, 3a-d, 4a-c, 5, 6a-c, and 7a,b were synthesised. All prepared compounds were evaluated by MTT cytotoxicity assay against three human tumour cell lines. Compounds 3c, 3d, 4c, 6a, 6b, and 7b exhibited potent to strong anticancer activity that was nearly comparable or superior to Doxorubicin. Compounds exhibiting significant cytotoxicity were further selected to study their inhibitory activity on the Topo II enzyme. Compound 4c was the most potent Topo II inhibitor with an IC50 value of 0.23 ± 0.01 µM, which was 1.4-fold and 3.6-fold higher than the IC50 values of Etoposide and Doxorubicin. Furthermore, compound 4c showed significant cell cycle disruption and apoptosis on A549 cells compared to control cells. Molecular docking of the most active compounds illustrated proper fitting to the Topo II active site, suggesting that our designed compounds are promising candidates for the development of effective anticancer agents acting through Topo II inhibition.
Collapse
Affiliation(s)
- Mona S. El-Zoghbi
- Department of Pharmaceutical Chemistry, Menoufia University, Menoufia, Egypt,CONTACT Mona S. El-Zoghbi
| | - Samiha A. El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Al-Azhar University, Nasr City, Cairo, Egypt,Samiha A. El-Sebaey
| | - Hanan A. AL-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eman A. Sobh
- Department of Pharmaceutical Chemistry, Menoufia University, Menoufia, Egypt
| |
Collapse
|
25
|
Fadaly WAA, Zidan TH, Kahk NM, Mohamed FEA, Abdelhakeem MM, Khalil RG, Nemr MTM. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J Enzyme Inhib Med Chem 2023; 38:2281262. [PMID: 38010912 PMCID: PMC11003491 DOI: 10.1080/14756366.2023.2281262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Two new series of pyrazolyl-thiazolidinone/thiazole derivatives 16a-b and 18a-j were synthesised, merging the scaffolds of celecoxib and dasatinib. Compounds 16a, 16b and 18f inhibit COX-2 with S.I. 134.6, 26.08 and 42.13 respectively (celecoxib S.I. = 24.09). Compounds 16a, 16b, 18c, 18d and 18f inhibit MCF-7 with IC50 = 0.73-6.25 μM (dasatinib IC50 = 7.99 μM) and (doxorubicin IC50 = 3.1 μM) and inhibit A549 with IC50 = 1.64-14.3 μM (dasatinib IC50 = 11.8 μM and doxorubicin IC50 = 2.42 μM) with S.I. (F180/MCF7) of 33.15, 7.13, 18.72, 13.25 and 8.28 respectively higher than dasatinib (4.03) and doxorubicin (3.02) and S.I. (F180/A549) of 14.75, 12.96, 4.16, 7.07 and 18.88 respectively higher than that of dasatinib (S.I. = 2.72) and doxorubicin (S.I = 3.88). Derivatives 16a, 18c, 18d, 18f inhibit EGFR and HER-2 IC50 for EGFR of 0.043, 0.226, 0.388, 0.19 μM respectively and for HER-2 of 0.032, 0.144, 0.195, 0.201 μM respectively.
Collapse
Affiliation(s)
- Wael A. A. Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H. Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M. Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E. A. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M. Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G. Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T. M. Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Shaldam M, Tawfik H, Elmansi H, Belal F, Yamaguchi K, Sugiura M, Magdy G. Synthesis, crystallographic, DNA binding, and molecular docking/dynamic studies of a privileged chalcone-sulfonamide hybrid scaffold as a promising anticancer agent. J Biomol Struct Dyn 2023; 41:8876-8890. [PMID: 36310097 DOI: 10.1080/07391102.2022.2138551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
Abstract
In the present study, a drug-like molecular hybrid structure between chalcone and sulfonamide moieties was synthesized and characterized. The structural peculiarities of the synthesized hybrid were further verified by means of single crystal X-ray crystallography. Furthermore, its biological activity as an anticancer agent was evaluated. The synthesized model of chalcone-sulfonamide hybrid 3 was found to have potent anticancer properties against the studied cancer cell lines. Hence, the in vitro binding interaction of hybrid 3 with Calf thymus DNA (CT-DNA) was studied at a simulated physiological pH to confirm its anticancer activity for the first time. This was investigated by applying different spectroscopic techniques, ionic strength measurements, viscosity measurements, thermodynamics, molecular dynamic simulation and molecular docking studies. The obtained results showed a clear binding interaction between hybrid 3 and CT-DNA with a moderate affinity via a minor groove binding mechanism. The binding constant (Kb) at 298 K calculated from the Benesi-Hildebrand equation was found to be 3.49 × 104 M-1. The entropy and enthalpy changes (ΔS0 and ΔH0) were 204.65 J mol-1 K-1 and 35.08 KJ mol-1, respectively, indicating that hydrophobic interactions constituted the major binding forces. The results obtained from molecular docking and dynamic simulation studies confirmed the minor groove binding interaction and the stability of the formed complex. This study can contribute to further understanding of the molecular mechanism of hybrid 3 as a potential antitumor agent and can also guide future clinical and pharmacological studies for rational drug design with enhanced or more selective activity and greater efficacy.[Figure: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Haytham Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
27
|
Umar AH, Ratnadewi D, Rafi M, Sulistyaningsih YC, Hamim H, Kusuma WA. Drug candidates and potential targets of Curculigo spp. compounds for treating diabetes mellitus based on network pharmacology, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:8544-8560. [PMID: 36300505 DOI: 10.1080/07391102.2022.2135597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Curculigo spp. is a herb that is commonly used in Indonesia to treat diabetes mellitus (DM) . The main active components of Curculigo spp. were identified through our previous metabolomic study and online database platform. However, the biological mechanisms underlying Curculigo spp. activity in treating DM remain unclear. Therefore, in this study, a network pharmacology was used to explore the active compounds of Curculigo spp. and their potential molecular mechanisms for treating DM. Oral bioavailability and drug-likeness from the compounds of Curculigo spp. were screened using Lipinski's rule of five, BBB, HIA + and Caco-2 permeability criteria. A network of compound-target-disease-pathway was then constructed using Cytoscape. The highest degree compounds and targets were then confirmed by molecular docking and molecular dynamics (MD) simulations. The human body can absorb 33 compounds derived from Curculigo spp. In addition, 58 nodes and 62 edges generated a network analysis with the DM target. The highest degree of the compound-target-disease pathway was for orcinol glucoside, AKR1B1, autoimmune diabetes, bile acid and bile salt metabolism. Furthermore, the computational docking method on Curculigo spp. compounds with the highest degree revealed that orcinol glucoside interacted with PTPN1 through a hydrogen bond and resulted in a binding energy of -7.2 kcal mol-1. Through hydrogen bonds, orcinol glucoside in PTPN1 regulates multiple signaling pathways via the adherens junction pathway, which may play a therapeutic role in DM (type 2 diabetes: obesity). In addition, MD simulation confirmed that orcinol glucoside, is suitable for DM treatment by interacting with PTPN1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul Halim Umar
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, Indonesia
| | - Diah Ratnadewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | | | - Hamim Hamim
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| |
Collapse
|
28
|
Redka M, Baumgart S, Kupczyk D, Kosmalski T, Studzińska R. Lipophilic Studies and In Silico ADME Profiling of Biologically Active 2-Aminothiazol-4(5 H)-one Derivatives. Int J Mol Sci 2023; 24:12230. [PMID: 37569606 PMCID: PMC10418735 DOI: 10.3390/ijms241512230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudothiohydantoin derivatives have a wide range of biological activities and are widely used in the development of new pharmaceuticals. Lipophilicity is a basic, but very important parameter in the design of potential drugs, as it determines solubility in lipids, nonpolar solvents, and makes it possible to predict the ADME profile. The aim of this study was to evaluate the lipophilicity of 28 pseudothiohydantoin derivatives showing the inhibition of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) using chromatographic methods. Experimentally, lipophilicity was determined by reverse phase thin layer chromatography (RP-TLC) and reverse phase high-performance liquid chromatography (RP-HPLC). In both methods, methanol was used as the organic modifier of the mobile phase. For each 2-aminothiazol-4(5H)-one derivative, a relationship was observed between the structure of the compound and the values of the lipophilicity parameters (log kw, RM0). Experimental lipophilicity values were compared with computer calculated partition coefficient (logP) values. A total of 27 of the 28 tested compounds had a lipophilicity value < 5, which therefore met the condition of Lipinski's rule. In addition, the in silico ADME assay showed favorable absorption, distribution, metabolism, and excretion parameters for most of the pseudothiohydantoin derivatives tested. The study of lipophilicity and the ADME analysis indicate that the tested compounds are good potential drug candidates.
Collapse
Affiliation(s)
- Małgorzata Redka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (M.R.); (S.B.); (T.K.)
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (M.R.); (S.B.); (T.K.)
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland;
| | - Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (M.R.); (S.B.); (T.K.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (M.R.); (S.B.); (T.K.)
| |
Collapse
|
29
|
Baumgart S, Kupczyk D, Archała A, Koszła O, Sołek P, Płaziński W, Płazińska A, Studzińska R. Synthesis of Novel 2-(Cyclopentylamino)thiazol-4(5 H)-one Derivatives with Potential Anticancer, Antioxidant, and 11β-HSD Inhibitory Activities. Int J Mol Sci 2023; 24:ijms24087252. [PMID: 37108415 PMCID: PMC10139140 DOI: 10.3390/ijms24087252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, a series of nine new 2-(cyclopentylamino)thiazol-4(5H)-one derivatives were synthesized, and their anticancer, antioxidant, and 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitory activities were tested. Anticancer activity has been assessed using the MTS (MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay against human colon carcinoma (Caco-2), human pancreatic carcinoma (PANC-1), glioma (U-118 MG), human breast carcinoma (MDA-MB-231), and skin melanoma (SK-MEL-30) cancer cell lines. Cell viability reductions, especially in the case of Caco-2, MDA-MB-231, and SK-MEL-30 lines, were observed for most compounds. In addition, the redox status was investigated and oxidative, but nitrosative stress was not noted at a concentration of 500 µM compounds tested. At the same time, a low level of reduced glutathione was observed in all cell lines when treated with compound 3g (5-(4-bromophenyl)-2-(cyclopentylamino)thiazol-4(5H)-one) that most inhibited tumor cell proliferation. However, the most interesting results were obtained in the study of inhibitory activity towards two 11β-HSD isoforms. Many compounds at a concentration of 10 µM showed significant inhibitory activity against 11β-HSD1 (11β-hydroxysteroid dehydrogenase type 1). The compound 3h (2-(cyclopentylamino)-1-thia-3-azaspiro[4.5]dec-2-en-4-one) showed the strongest 11β-HSD1 inhibitory effect (IC50 = 0.07 µM) and was more selective than carbenoxolone. Therefore, it was selected as a candidate for further research.
Collapse
Affiliation(s)
- Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Aneta Archała
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Wojciech Płaziński
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| |
Collapse
|
30
|
Design, synthesis, modeling studies and biological evaluation of pyrazole derivatives linked to oxime and nitrate moieties as nitric oxide donor selective COX-2 and aromatase inhibitors with dual anti-inflammatory and anti-neoplastic activities. Bioorg Chem 2023; 134:106428. [PMID: 36893546 DOI: 10.1016/j.bioorg.2023.106428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/21/2023]
Abstract
Two new series of pyrazole derivatives 10a-f and 11a-f with selective COX-2 inhibition pharmacophore and oxime/nitrate moieties as NO donor moiety were designed, synthesized and tested for anti-inflammatory, cytotoxic activities and NO release. Compounds 10c, 11a, 11e were more selective for COX-2 isozyme (S.I. = 25.95, 22.52 and 21.54 respectively) in comparison to celecoxib (S.I. = 21.41). Regarding anti-cancer activity, all synthesized compounds were screened by the National Cancer Institute (NCI), Bethesda, USA for anticancer activity against 60 human cancer cell lines representing the following cancer types: leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast cancers. Compounds 10c, 11a, 11e were found to be the most potent inhibitors on breast, ovarian and melanoma cell lines (MCF-7, IGROV1 and SK-MEL-5), compound 11a causing 79 % inhibition in case of MCF-7, 78.80 % inhibition in case of SK-MEL-5 and unexpected cell growth -26.22 % inhibition in case of IGROV1 (IC50 = 3.12, 4.28, 4.13 μM respectively). On the other hand, compounds 10c and 11e showed lower inhibition on the same cell lines with IC50 = 3.58, 4.58, 4.28 μM respectively for 10c, IC50 = 3.43, 4.73, 4.43 μM respectively for 11e. Furthermore, DNA-flow cytometric analysis showed that compound 11a induces cell cycle arrest at G2/M phase leading to cell proliferation inhibition and apoptosis. Additionally, these derivatives examined against F180 fibroblasts to investigate their selectivity indexes. The pyrazole derivative with internal oxime 11a was the most potent compound against most used cell lines especially MCF-7, IGROV1 and SK-MEL-5 (IC50 = 3.12, 4.28, 4.13 μM respectively) with 4.82-fold selectivity towards MCF-7 than F180 fibroblasts. Moreover, oxime derivative 11a showed potent aromatase inhibitory activity (IC50 16.50 μM) when compared with reference compound letrozole (IC50 15.60 μM). All compounds 10a-f and 11a-f released NO in a slow rate (0.73-3.88 %) and the six derivatives 10c, 10e, 11a, 11b, 11c and 11e were the highest NO releasers (3.88, 2.15, 3.27, 2.27, 2.55 and 3.74 % respectively). Herein structure based and ligand based studies were implemented to under stand and evaluate the compounds activity for further in vivo and preclinical studies. Docking mode of final designed compounds with celecoxib (ID: 3LN1) represented that their triazole ring adopted as the core aryl in Y shaped structure. Regarding aromatase enzyme inhibition, docking was carried out with ID: 1 M17. The internal oxime series was more active as anticancer because of their ability to form extra HBs with receptor cleft.
Collapse
|
31
|
Emam SH, Hassan RA, Osman EO, Hamed MIA, Abdou AM, Kandil MM, Elbaz EM, Mikhail DS. Coumarin derivatives with potential anticancer and antibacterial activity: Design, synthesis, VEGFR-2 and DNA gyrase inhibition, and in silico studies. Drug Dev Res 2023; 84:433-457. [PMID: 36779381 DOI: 10.1002/ddr.22037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/14/2023]
Abstract
A series of coumarin derivatives were designed, synthesized, and evaluated for their antiproliferative activity. Compound 3e exhibited significant antiproliferative activity and was further evaluated at five doses at the National Cancer Institute. It effectively inhibited vascular endothelial growth factor receptor-2 (VEGFR-2) with an IC50 value of 0.082 ± 0.004 µM compared with sorafenib. While compound 3e significantly downregulated total VEGFR-2 and its phosphorylation, it markedly reduced the HUVEC's migratory potential, resulting in a significant disruption in wound healing. Furthermore, compound 3e caused a 22.51-fold increment in total apoptotic level in leukemia cell line HL-60(TB) and a 6.91-fold increase in the caspase-3 level. Compound 3e also caused cell cycle arrest, mostly at the G1/S phase. Antibacterial activity was evaluated against Gram-positive and Gram-negative bacterial strains. Compound 3b was the most active derivative, with the same minimum inhibitory concentration and minimum bactericidal concentration value of 128 μg/mL against K. pneumonia and high stability in mammalian plasma. Moreover, compounds 3b and 3f inhibited Gram-negative DNA gyrase with IC50 = 0.73 ± 0.05 and 1.13 ± 0.07 µM, respectively, compared to novobiocin with an IC50 value of 0.17 ± 0.02 µM. The binding affinity and pattern of derivative 3e toward the VEGFR-2 active site and compounds 3a-c and 3f in the DNA gyrase active site were evaluated using molecular modeling. Overall, ADME studies of the synthesized coumarin derivatives displayed promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman O Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - Mai M Kandil
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - Eman Maher Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Wang D, Li M, Li J, Fang Y, Zhang Z. Synthesis of 3,4-dihydroisoquinolin-1(2 H)-one derivatives and their antioomycete activity against the phytopathogen Pythium recalcitrans†. RSC Adv 2023; 13:10523-10541. [PMID: 37021099 PMCID: PMC10068754 DOI: 10.1039/d3ra00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
In an effort to exploit the bioactive natural scaffold 3,4-dihydroisoquinolin-1(2H)-one for plant disease management, 59 derivatives of this scaffold were synthesized using the Castagnoli–Cushman reaction. The results of bioassay indicated that their antioomycete activity against Pythium recalcitrans was superior to the antifungal activity against the other 6 phytopathogens. Compound I23 showed the highest in vitro potency against P. recalcitrans with an EC50 value of 14 μM, which was higher than that of the commercial hymexazol (37.7 μM). Moreover, I23 exhibited in vivo preventive efficacy of 75.4% at the dose of 2.0 mg/pot, which did not show significant differences compared with those of hymexazol treatments (63.9%). When the dose was 5.0 mg per pot, I23 achieved a preventive efficacy of 96.5%. The results of the physiological and biochemical analysis, the ultrastructural observation and lipidomics analysis suggested that the mode of action of I23 might be the disruption of the biological membrane systems of P. recalcitrans. In addition, the established CoMFA and CoMSIA models with reasonable statistics in the three-dimensional quantitative structure–activity relationship (3D-QSAR) study revealed the necessity of the C4-carboxyl group and other structural requirements for activity. Overall, the above results would help us to better understand the mode of action and the SAR of these derivatives, and provide crucial information for further design and development of more potent 3,4-dihydroisoquinolin-1(2H)-one derivatives as antioomycete agents against P. recalcitrans. A collection of 3,4-dihydroisoquinolin-1(2H)-one derivatives were synthesized by Castagnoli–Cushman reaction to screen antioomycete agents against Pythium recalcitrans.![]()
Collapse
Affiliation(s)
- Delong Wang
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| | - Min Li
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| | - Jing Li
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| | - Yali Fang
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| | - Zhijia Zhang
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| |
Collapse
|
33
|
Spectroscopic, structural, and intermolecular interactions of 4-(2‑hydroxy-3-methoxybenzylideneamino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide enol-imine and keto-amine isomers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Tawfik HO, Belal A, Abourehab MAS, Angeli A, Bonardi A, Supuran CT, El-Hamamsy MH. Dependence on linkers' flexibility designed for benzenesulfonamides targeting discovery of novel hCA IX inhibitors as potent anticancer agents. J Enzyme Inhib Med Chem 2022; 37:2765-2785. [PMID: 36210545 PMCID: PMC9559471 DOI: 10.1080/14756366.2022.2130285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Herein we reported the design and synthesis of two series comprising twenty-two benzenesulfonamides that integrate the s-triazine moiety. Target compounds successfully suppressed the hCA IX, with IC50 ranging from 28.6 to 871 nM. Compounds 5d, 11b, 5b, and 7b were the most active analogues, which inhibited hCA IX isoform in the low nanomolar range (KI = 28.6, 31.9, 33.4, and 36.6 nM, respectively). Furthermore, they were assessed for their cytotoxic activity against a panel of 60 cancer cell lines following US-NCI protocol. According to five-dose assay, 13c showed significant anticancer activity than 5c with GI50-MID values of 25.08 and 189.01 µM, respectively. Additionally, 13c's effects on wound healing, cell cycle disruption, and apoptosis induction in NCI-H460 cancer cells were examined. Further, docking studies combined with molecular dynamic simulation showed a stable complex with high binding affinity of 5d to hCA IX, exploiting a favourable H-bond and lipophilic interactions.HIGHLIGHTSCarbonic anhydrase (CA) inhibitors comprising rigid and flexible linkers were developed.Compound 5d is the most potent CA IX inhibitor in the study (IC50: 28.6 nM).Compounds 5c and 13c displayed the greatest antiproliferative activity towards 60 cell lines.Compound 13c exposed constructive outcomes on normal cell lines, metastasis, and wound healing.Molecular docking and molecular dynamics (MDs) simulation was utilised to study binding mode.
Collapse
Affiliation(s)
- Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt,CONTACT H. O. Tawfik Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy,C. T. Supuran Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
35
|
Nemr MT, Teleb MI, AboulMagd AM, El-Naggar ME, Gouda N, Abdel-Ghany A, Elshaier YA. Design, synthesis and chemoinformatic studies of new thiazolopyrimidine derivatives as potent anticancer agents via phosphodiesterase-5 inhibition and apoptotic inducing activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Hassan RA, Hamed MI, Abdou AM, El-Dash Y. Novel antiproliferative agents bearing substituted thieno[2,3-d]pyrimidine scaffold as dual VEGFR-2 and BRAF kinases inhibitors and apoptosis inducers; design, synthesis and molecular docking. Bioorg Chem 2022; 125:105861. [DOI: 10.1016/j.bioorg.2022.105861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
37
|
In-silico predicting as a tool to develop plant-based biomedicines and nanoparticles: Lycium shawii metabolites. Biomed Pharmacother 2022; 150:113008. [PMID: 35489282 DOI: 10.1016/j.biopha.2022.113008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION AND PURPOSE In silico approach helps develop biomedicines and is useful for exploring the pharmacology of potential therapeutics using computer-simulated models. In vitro assays were used to determine the anti-microbial and cytotoxic efficacies of silver nanoparticles (AgNPs) synthesized with the shrub Lycium shawii. METHODS In silico predicting was performed to assess the L. shawii metabolites identified using QTOF-LCMS for their pharmacological properties. L. shawii mediated AgNPs were synthesized and characterized (FTIR, TEM, SEM, DLS and EDX). The anti-bacterial efficacies of L. shawii extract, AgNPs, and penicillin-conjugated AgNPs (pen-AgNPs) were determined. The cytotoxicity of the AgNPs was measured against colorectal cancer cell line (HCT116), normal breast epithelium (MCF 10 A), and breast cancer cell line (MDA MB 231). RESULTS AND DISCUSSION Five molecules (costunolide, catechin, emodin, lyciumaside, and aloe emodin 11-O-rhamnoside) were detected in the L. shawii extract. AgNPs (69 nm) were spherical with crystallographic structure. All three agents prepared showed inhibitory activity against the tested bacteria, the most efficacious being pen-AgNPs. High cytotoxicity of AgNPs (IC50 62 μg/ml) was observed against HCT116, IC50 was 78 μg/ml for MCF 10 A, and 250 μg/ml for MDA MB 231, of which cells showed apoptotic features under TEM examination. The in silico approach indicated that the carbonic anhydrase IX enzyme was the target molecule mediating anti-cancer and anti-bacterial activities and that emodin was the metabolite in action. CONCLUSIONS Combining in vitro studies and in silico molecular target prediction helps find novel therapeutic agents. Among L. shawii metabolites, emodin is suggested for further studies as an agent for drug development against pathogenic bacteria and cancer.
Collapse
|
38
|
El-Kalyoubi SA, Taher ES, Ibrahim TS, El-Behairy MF, Al-Mahmoudy AMM. Uracil as a Zn-Binding Bioisostere of the Allergic Benzenesulfonamide in the Design of Quinoline-Uracil Hybrids as Anticancer Carbonic Anhydrase Inhibitors. Pharmaceuticals (Basel) 2022; 15:494. [PMID: 35631321 PMCID: PMC9146896 DOI: 10.3390/ph15050494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
A series of quinoline-uracil hybrids (10a-l) has been rationalized and synthesized. The inhibitory activity against hCA isoforms I, II, IX, and XII was explored. Compounds 10a-l demonstrated powerful inhibitory activity against all tested hCA isoforms. Compound 10h displayed the best selectivity profile with good activity. Compound 10d displayed the best activity profile with minimal selectivity. Compound 10l emerged as the best congener considering both activity (IC50 = 140 and 190 nM for hCA IX and hCA XII, respectively) and selectivity (S.I. = 13.20 and 9.75 for II/IX, and II/XII, respectively). The most active hybrids were assayed for antiproliferative and pro-apoptotic activities against MCF-7 and A549. In silico studies, molecular docking, physicochemical parameters, and ADMET analysis were performed to explain the acquired CA inhibitory action of all hybrids. A study of the structure-activity relationship revealed that bulky substituents at uracil N-1 were unfavored for activity while substituted quinoline and thiouracil were effective for selectivity.
Collapse
Affiliation(s)
- Samar A. El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt;
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32897, Egypt;
| | - Amany M. M. Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
39
|
Design, synthesis, biological assessment, and in-Silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors. Bioorg Chem 2022; 121:105687. [DOI: 10.1016/j.bioorg.2022.105687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
|
40
|
Tawfik HO, Petreni A, Supuran CT, El-Hamamsy MH. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur J Med Chem 2022; 232:114190. [PMID: 35182815 DOI: 10.1016/j.ejmech.2022.114190] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
Abstract
The hydrophobic and the hydrophilic rims in the active site of human carbonic anhydrase IX (hCA IX) which as well contains a zinc ion as part of the catalytic core, were simultaneously matched to design and synthesize potent and selective inhibitors using a dual-tail approach. Seventeen new compounds, 5a-q, were designed to have the benzenesulfonamide moiety as a zinc binding group. In addition, N-substituted hydrazone and N-phenyl fragments were chosen as the hydrophilic and hydrophobic parts, respectively to achieve favorable interactions with the corresponding halves of the active site. All synthesized compounds successfully suppressed the CA IX, with IC50 values in nanomolar range from 13.3 to 259 nM. Compounds, 5h, 5c, 5m, 5e, and 5k were the top-five compounds efficiently inhibited the tumor-related CA IX isoform in the low nanomolar range (KI = 13.3, 22.6, 25.8, 26.9 and 27.2 nM, respectively). The target compounds 5a-q developed remarkable selectivity toward the tumor-associated isoforms (hCA IX and XII) over the off-target isoforms (hCA I and II). Furthermore, they were assessed for their anti-proliferative activity, according to US-NCI protocol, against a panel of fifty-nine cancer cell lines. Compounds 5d, 5k and 5o were passed the criteria for activity and scheduled automatically for evaluation at five concentrations with 10-fold dilutions. Compound 5k exhibited significant in vitro anticancer activity with GI50-MID; 8.68 μM compared to compounds 5d and 5o with GI50-MID; 25.76 μM and 34.97 μM respectively. The most selective compounds 5h and 5k were further screened for their in vitro cytotoxic activity against SK-MEL-5, HCC-2998 and RXF 393 cancer cell lines under hypoxic conditions. Furthermore, 5k was screened for cell cycle disturbance, apoptosis induction and intracellular reactive oxygen species (ROS) production in SK-MEL-5 cancer cells. Finally, molecular docking studies were performed to gain insights for the plausible binding interactions and affinities for selected compounds within hCA IX active site.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
41
|
Dimić DS, Kaluđerović GN, Avdović EH, Milenković DA, Živanović MN, Potočňák I, Samoľová E, Dimitrijević MS, Saso L, Marković ZS, Dimitrić Marković JM. Synthesis, Crystallographic, Quantum Chemical, Antitumor, and Molecular Docking/Dynamic Studies of 4-Hydroxycoumarin-Neurotransmitter Derivatives. Int J Mol Sci 2022; 23:1001. [PMID: 35055194 PMCID: PMC8780855 DOI: 10.3390/ijms23021001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.
Collapse
Affiliation(s)
- Dušan S. Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, DE-06217 Merseburg, Germany;
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Dejan A. Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Marko N. Živanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Ivan Potočňák
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia;
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic;
| | - Milena S. Dimitrijević
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Zoran S. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | | |
Collapse
|
42
|
Elshaier YA, Nemr MTM, Al Refaey M, Fadaly WAA, Barakat A. Chemistry of 2-Vinylindoles: Synthesis and Applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj00460g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a class of compounds, 2-vinylindoles have demonstrated a wide range of biological properties. Due to the general interest in these synthons, new divergent protocols of chemical synthesis have been...
Collapse
|
43
|
Hassan RA, Emam SH, Hwang D, Kim GD, Hassanin SO, Khalil MG, Abdou AM, Sonousi A. Design, synthesis and evaluation of anticancer activity of new pyrazoline derivatives by down-regulation of VEGF: Molecular docking and apoptosis inducing activity. Bioorg Chem 2021; 118:105487. [PMID: 34798455 DOI: 10.1016/j.bioorg.2021.105487] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
Two series of pyrazoline compounds were designed and synthesized as antiproliferative agents by VEGFR pathway inhibition. All synthesized compounds were screened by the National Cancer Institute (NCI), Bethesda, USA for anticancer activity against 60 human cancer cell lines. Compound 3f exhibited the highest anticancer activity on the ovarian cell line (OVCAR-4) with IC50 = 0.29 μM and on the breast cell line (MDA-MB-468) with IC50 = 0.35 μM. It also exhibited the highest selectivity index (SI = 74). Compound 3f caused cell cycle arrest in OVCAR-4 cell line at the S phase which consequently inhibited cell proliferation and induced apoptosis. Moreover, 3f showed potent down-regulation of VEGF and p-VEGFR-2. Docking studies showed that compound 3f interacts in a similar pattern to axitinib on the VEGFR-2 receptor. The same compound was also able to fit into the gorge of STAT3 binding site, the transcription factor for VEGF, which explains the VEGF down-regulation.
Collapse
Affiliation(s)
- Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Dukhyun Hwang
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Korea
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Amr Sonousi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.
| |
Collapse
|
44
|
Fareed MR, Shoman ME, Hamed MIA, Badr M, Bogari HA, Elhady SS, Ibrahim TS, Abuo-Rahma GEDA, Ali TFS. New Multi-Targeted Antiproliferative Agents: Design and Synthesis of IC261-Based Oxindoles as Potential Tubulin, CK1 and EGFR Inhibitors. Pharmaceuticals (Basel) 2021; 14:1114. [PMID: 34832895 PMCID: PMC8620390 DOI: 10.3390/ph14111114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022] Open
Abstract
A series of 3-benzylideneindolin-2-one compounds was designed and synthesized based on combretastatin A-4 and compound IC261, a dual casein kinase (CK1)/tubulin polymerization inhibitor, taking into consideration the pharmacophore required for EGFR-tyrosine kinase inhibition. The new molecular entities provoked significant growth inhibition against PC-3, MCF-7 and COLO-205 at a 10 μM dose. Compounds 6-chloro-3-(2,4,6-trimethoxybenzylidene) indolin-2-one, 4b, and 5-methoxy-3-(2,4,6-trimethoxybenzylidene)indolin-2-one, 4e, showed potent activity against the colon cancer COLO-205 cell line with an IC50 value of 0.2 and 0.3 μM. A mechanistic study demonstrated 4b's efficacy in inhibiting microtubule assembly (IC50 = 1.66 ± 0.08 μM) with potential binding to the colchicine binding site (docking study). With an IC50 of 1.92 ± 0.09 μg/mL, 4b inhibited CK1 almost as well as IC261. Additionally, 4b and 4e were effective inhibitors of EGFR-TK with IC50s of 0.19 μg/mL and 0.40 μg/mL compared to Gifitinib (IC50 = 0.05 μg/mL). Apoptosis was induced in COLO-205 cells treated with 4b, with apoptotic markers dysregulated. Caspase 3 levels were elevated to more than three-fold, while Cytochrome C levels were doubled. The cell cycle was arrested in the pre-G1 phase with extensive cellular accumulation in the pre-G1 phase, confirming apoptosis induction. Levels of cell cycle regulating proteins BAX and Bcl-2 were also defective. The binding interaction patterns of these compounds at the colchicine binding site of tubulin and the Gifitinib binding site of EGFR were verified by molecular docking, which adequately matched the reported experimental result. Hence, 4b and 4e are considered promising potent multitarget agents against colon cancer that require optimization.
Collapse
Affiliation(s)
- Momen R. Fareed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.R.F.); (T.F.S.A.); (G.E.-D.A.A.-R.)
| | - Mai E. Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.R.F.); (T.F.S.A.); (G.E.-D.A.A.-R.)
| | - Mohammed I. A. Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shibin el Kom 32511, Egypt;
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Gamal El-Din A. Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.R.F.); (T.F.S.A.); (G.E.-D.A.A.-R.)
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Taha F. S. Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.R.F.); (T.F.S.A.); (G.E.-D.A.A.-R.)
| |
Collapse
|
45
|
Mikulová MB, Kružlicová D, Pecher D, Petreni A, Supuran CT, Mikuš P. Synthesis and Inhibition Activity Study of Triazinyl-Substituted Amino(alkyl)-benzenesulfonamide Conjugates with Polar and Hydrophobic Amino Acids as Inhibitors of Human Carbonic Anhydrases I, II, IV, IX, and XII. Int J Mol Sci 2021; 22:11283. [PMID: 34681940 PMCID: PMC8537140 DOI: 10.3390/ijms222011283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Primary sulfonamide derivatives with various heterocycles represent the most widespread group of potential human carbonic anhydrase (hCA) inhibitors with high affinity and selectivity towards specific isozymes from the hCA family. In this work, new 4-aminomethyl- and aminoethyl-benzenesulfonamide derivatives with 1,3,5-triazine disubstituted with a pair of identical amino acids, possessing a polar (Ser, Thr, Asn, Gln) and non-polar (Ala, Tyr, Trp) side chain, have been synthesized. The optimized synthetic, purification, and isolation procedures provided several pronounced benefits such as a short reaction time (in sodium bicarbonate aqueous medium), satisfactory yields for the majority of new products (20.6-91.8%, average 60.4%), an effective, well defined semi-preparative RP-C18 liquid chromatography (LC) isolation of desired products with a high purity (>97%), as well as preservation of green chemistry principles. These newly synthesized conjugates, plus their 4-aminobenzenesulfonamide analogues prepared previously, have been investigated in in vitro inhibition studies towards hCA I, II, IV and tumor-associated isozymes IX and XII. The experimental results revealed the strongest inhibition of hCA XII with low nanomolar inhibitory constants (Kis) for the derivatives with amino acids possessing non-polar side chains (7.5-9.6 nM). Various derivatives were also promising for some other isozymes.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Dáša Kružlicová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Daniel Pecher
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Andrea Petreni
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, 50139 Florence, Italy; (A.P.); (C.T.S.)
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, 50139 Florence, Italy; (A.P.); (C.T.S.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
46
|
Desai NC, Rupala YM, Khasiya AG, Shah KN, Pandit UP, Khedkar VM. Synthesis, biological evaluation, and molecular docking study of thiophene‐, piperazine‐, and thiazolidinone‐based hybrids as potential antimicrobial agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nisheeth C. Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar India
| | - Yogesh M. Rupala
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar India
| | - Ashvinkumar G. Khasiya
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar India
| | - Keyur N. Shah
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar India
| | - Unnat P. Pandit
- Special Centre for Systems Medicine Jawaharlal Nehru University New Delhi India
| | | |
Collapse
|