1
|
Fodor B, Álvarez-Miguel I, Biglione C, López GG, González-Fernández Á, Salles F, Hidalgo T, Horcajada P. A Potential 3-in-1 Combined AntiSARS-CoV-2 Therapy Using Pulmonary MIL-100(Fe) Formulation. Adv Healthc Mater 2025:e2403988. [PMID: 39905976 DOI: 10.1002/adhm.202403988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Indexed: 02/06/2025]
Abstract
The emergence and rapid propagation of infectious diseases, including the COVID-19 pandemic, has evidenced the vulnerabilities in global health surveillance, the ease of transmission, and the imperative need for effective treatments. In this context, nanomedicines based on metal-organic frameworks (MOFs) have garnered great relevance as promising drug delivery platforms in a large range of complex diseases (e.g., cancer, and infections). However, most research has focused on sensing with scarce examples in antiviral therapies. Hence, here a pioneer combined 3-in-1 effect anti-COVID pulmonary multitherapy based on the mesoporous iron(III) carboxylate MIL-100(Fe) nanoparticles is proposed, with the proven intrinsic MOF effect, associated with favipiravir drug into their porosity and heparin on their external surface. A significant antiviral effect against a real scenario of COVID-19 infection is demonstrated (≈70% inhibition), ensuring a suitable cellular viability. Further, a convenient pulmonary formulation is prepared based on mannitol-based microspheres, testing its safety and biodistribution in healthy mice. No significant side effects are observed, reaching successfully the deep lungs, emphasizing a reduced immunological response compared to their controls. Therefore, these promising results open new horizons for future (pre)clinical trials targeting challenging infectious/pulmonary pathologies, enhancing the feasibility of designing customized therapeutic MOF platforms.
Collapse
Affiliation(s)
- Beatrice Fodor
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
- Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Inés Álvarez-Miguel
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Guillermo G López
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - África González-Fernández
- CINBIO, Immunology Group, Universidade de Vigo, Vigo, 36310, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Pontevedra, 36312, Spain
| | - Fabrice Salles
- ICGM, Université Montpellier, CNRS ENSCM, Montpellier, 34090, France
| | - Tania Hidalgo
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| |
Collapse
|
2
|
Zhao C, Song W, Wang J, Tang X, Jiang Z. Immunoadjuvant-functionalized metal-organic frameworks: synthesis and applications in tumor immune modulation. Chem Commun (Camb) 2025; 61:1962-1977. [PMID: 39774558 DOI: 10.1039/d4cc06510g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy, which leverages the body's immune system to recognize and attack cancer cells, has made significant progress, particularly in the treatment of metastatic tumors. However, challenges such as drug stability and off-target effects still limit its clinical success. To address these issues, metal-organic frameworks (MOFs) have emerged as promising nanocarriers in cancer immunotherapy. MOFs have unique porous structure, excellent drug loading capacity, and tunable surface modification properties. MOFs not only enhance drug delivery efficiency but also allow for precise control of drug release. They reduce off-target effects and significantly improve targeting and therapy efficacy. As research deepens, MOFs' effectiveness as drug carriers has been refined. When combined with immunoadjuvants or anticancer drugs, MOFs further stimulate the immune response. This improves the specificity of immune attacks on tumors. This review provides a comprehensive overview of the applications of MOFs in cancer immunotherapy. It focuses on synthesis, drug loading strategies, and surface modifications. It also analyzes their role in enhancing immunotherapy effectiveness. By integrating current research, we aim to provide insights for the future development of immunoadjuvant-functionalized MOFs, accelerating their clinical application for safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Jianing Wang
- School of Medical Technology, the Qiushi College, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Wijesundara YH, Arora N, Ehrman RN, Howlett TS, Weyman TM, Trashi I, Trashi O, Kumari S, Diwakara SD, Tang W, Senarathna MC, Drewniak KH, Wang Z, Smaldone RA, Gassensmith JJ. A Self-Adjuvanting Large Pore 2D Covalent Organic Framework as a Vaccine Platform. Angew Chem Int Ed Engl 2025; 64:e202413020. [PMID: 39621809 DOI: 10.1002/anie.202413020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Vaccines are one of the greatest human achievements in public health, as they help prevent the spread of diseases, reduce illness and death rates, saving thousands of lives with few side effects. Traditional vaccine development is centered around using live attenuated or inactivated pathogens, which is expensive and has resulted in vaccine-associated illnesses. Advancements have led to the development of safer subunit vaccines, which contain recombinant proteins isolated from pathogens. Their short half-life and small size make most subunit vaccines less immunogenic. Here, we introduce a large pore 2D covalent organic framework (COF), PyCOFamide, as a promising solution for an effective subunit platform. Our study demonstrates that simple adsorption of a model antigen, ovalbumin (OVA), onto PyCOFamide (OVA@COF) significantly enhances humoral and cell-mediated immune response compared to free OVA. OVA@COF exhibited heightened immune cell activation and acts as an antigen reservoir, facilitating antigen-presenting cell trafficking to the draining lymph nodes, amplifying the humoral immune response. Additionally, the breakdown of the COF releases monomers that adjuvant the activation of immune cells vital to creating strong immunity. This platform offers a potential avenue for safer, more effective subunit vaccines.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Niyati Arora
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Thomas Sinclair Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Trevor M Weyman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Shashini D Diwakara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Wendy Tang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Milinda C Senarathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Katarzyna H Drewniak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ziqi Wang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| |
Collapse
|
4
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
5
|
Deng Y, Huang S, Jiang G, Zhou L, Nezamzadeh-Ejhieh A, Liu J, Zhou Z. Current status and prospects of MOFs loaded with H 2O 2-related substances for ferroptosis therapy. RSC Med Chem 2024; 15:2996-3016. [PMID: 39309362 PMCID: PMC11411616 DOI: 10.1039/d4md00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a programmed cell death mechanism characterized by the accumulation of iron (Fe)-dependent lipid peroxides within cells. Ferroptosis holds excellent promise in tumor therapy. Metal-organic frameworks (MOFs) offer unique advantages in tumor ferroptosis treatment due to their high porosity, excellent stability, high biocompatibility, and targeting capabilities. Inducing ferroptosis in tumor cells primarily involves the production of reactive oxygen species (ROS), like hydroxyl radicals (˙OH), through iron-mediated Fenton reactions. However, the intrinsic H2O2 levels in tumor cells are often insufficient to sustain prolonged consumption, limiting therapeutic efficacy if ˙OH production is inadequate. Therefore, catalyzing or supplementing the intracellular H2O2 levels in tumor cells is essential for inducing ferroptosis by nanoscale metal-organic frameworks. This article reviews the biological characteristics and molecular mechanisms of ferroptosis, introduces H2O2-related substances, and reviews MOF-based nanoscale strategies for enhancing intracellular H2O2 levels in tumor cells. Finally, the challenges and prospects of this approach are discussed, aiming to provide insights into improving the effectiveness of ferroptosis induced by MOFs.
Collapse
Affiliation(s)
- Yu Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Guanming Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital) 78 Wandao Road South Dongguan 523059 Guangdong China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
6
|
Tousian B, Khosravi AR, Ghasemi MH, Kadkhodaie M. Biomimetic functionalized metal organic frameworks as multifunctional agents: Paving the way for cancer vaccine advances. Mater Today Bio 2024; 27:101134. [PMID: 39027676 PMCID: PMC11255118 DOI: 10.1016/j.mtbio.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Biomimetic functionalized metal-organic frameworks (Fn-MOFs) represent a cutting-edge approach in the realm of cancer vaccines. These multifunctional agents, inspired by biological systems, offer unprecedented opportunities for the development of next-generation cancer vaccines. The vast surface area, tunable pore size, and diverse chemistry of MOFs provide a versatile scaffold for the encapsulation and protection of antigenic components, crucial for vaccine stability and delivery. This work delves into the innovative design and application of Fn-MOFs, highlighting their role as carriers for immune enhancement and their potential to revolutionize vaccine delivery. By mimicking natural processes, Fn-MOFs, with their ability to be functionalized with a myriad of chemical and biological entities, exhibit superior biocompatibility and stimuli-responsive behavior and facilitate targeted delivery to tumor sites. This review encapsulates the latest advancements in Fn-MOF technology, from their synthesis and surface modification to their integration into stimuli-responsive and combination therapies. It underscores the significance of biomimetic approaches in overcoming current challenges in cancer vaccine development, such as antigen stability and immune evasion. By leveraging the biomimetic nature of Fn-MOFs, this work paves the way for innovative strategies in cancer vaccines, aiming to induce potent and long-lasting immune responses against malignancies.
Collapse
Affiliation(s)
- Bushra Tousian
- Department of Microbiology and Immunology, Veterinary Medicine Faculty, University of Tehran, PO Box 1419963111, Tehran, Iran
| | - Ali Reza Khosravi
- Department of Microbiology and Immunology, Veterinary Medicine Faculty, University of Tehran, PO Box 1419963111, Tehran, Iran
| | - Mohammad Hadi Ghasemi
- Applied Chemistry Research Group, ACECR-Tehran Organization, PO Box 13145-186, Tehran, Iran
| | - Majid Kadkhodaie
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Álvarez-Miguel I, Fodor B, López GG, Biglione C, Grape ES, Inge AK, Hidalgo T, Horcajada P. Metal-Organic Frameworks: Unconventional Nanoweapons against COVID. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32118-32127. [PMID: 38862123 PMCID: PMC11212624 DOI: 10.1021/acsami.4c06174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The SARS-CoV-2 (COVID-19) pandemic outbreak led to enormous social and economic repercussions worldwide, felt even to this date, making the design of new therapies to combat fast-spreading viruses an imperative task. In the face of this, diverse cutting-edge nanotechnologies have risen as promising tools to treat infectious diseases such as COVID-19, as well as challenging illnesses such as cancer and diabetes. Aside from these applications, nanoscale metal-organic frameworks (nanoMOFs) have attracted much attention as novel efficient drug delivery systems for diverse pathologies. However, their potential as anti-COVID-19 therapeutic agents has not been investigated. Herein, we propose a pioneering anti-COVID MOF approach by studying their potential as safe and intrinsically antiviral agents through screening various nanoMOF. The iron(III)-trimesate MIL-100 showed a noteworthy antiviral effect against SARS-CoV-2 at the micromolar range, ensuring a high biocompatibility profile (90% of viability) in a real infected human cellular scenario. This research effectively paves the way toward novel antiviral therapies based on nanoMOFs, not only against SARS-CoV-2 but also against other challenging infectious and/or pulmonary diseases.
Collapse
Affiliation(s)
- Inés Álvarez-Miguel
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Beatrice Fodor
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Guillermo G. López
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Erik Svensson Grape
- Wallenberg
Initiative Materials Science for Sustainability, Department of Materials
and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - A. Ken Inge
- Wallenberg
Initiative Materials Science for Sustainability, Department of Materials
and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Tania Hidalgo
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
8
|
Fawzy EM, Selim MA, Mostafa NE, Abdelhameed RM, Darwish AM, Yousef AM, Alabiad MA, Ibrahim MN, Fawzy HM, Abdel Hamed EF. The prophylactic and therapeutic impact of Trichinella spiralis larvae excretory secretory antigens- loaded Ca-BTC metal organic frameworks on induced murine colitis. J Helminthol 2024; 98:e41. [PMID: 38785193 DOI: 10.1017/s0022149x24000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Background: Inflammatory bowel disease is an autoimmune disease that affects the gut. T. spiralis larvae (E/S Ags) loaded on calcium-benzene-1,3,5-tricarboxylate metal-organic frameworks (Ca-BTC MOFs) were tested to determine whether they might prevent or cure acetic acid-induced murine colitis. Methods: T. spiralis larvae E/S Ags/Ca-BTC MOFs were used in prophylactic and therapeutic groups to either precede or follow the development of murine colitis. On the seventh day after colitis, mice were slaughtered. The effect of our target antigens on the progress of the colitis was evaluated using a variety of measures, including survival rate, disease activity index, colon weight/bodyweight, colon weight/length) ratios, and ratings for macroscopic and microscopic colon damage. The levels of inflammatory cytokines (interferon-γ and interleukin-4), oxidative stress marker malondialdehyde, and glutathione peroxidase in serum samples were evaluated. Foxp3 T-reg expression was carried out in colonic and splenic tissues. Results: T. spiralis larvae E/S Ags/Ca-BTC MOFs were the most effective in alleviating severe inflammation in murine colitis. The survival rate, disease activity index score, colon weight/length and colon weight/bodyweight ratios, and gross and microscopic colon damage scores have all considerably improved. A large decrease in proinflammatory cytokine (interferon-γ) and oxidative stress marker (malondialdehyde) expression and a significant increase in interleukin-4 and glutathione peroxidase expression were obtained. The expression of Foxp3+ Treg cells was elevated in colonic and splenic tissues. Conclusion: T. spiralis larvae E/S Ags/Ca-BTC MOFs had the highest anti-inflammatory, antioxidant, and cytoprotective capabilities against murine colitis and might be used to develop new preventative and treatment strategies.
Collapse
Affiliation(s)
- E M Fawzy
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - M A Selim
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - N E Mostafa
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - R M Abdelhameed
- Department of Applied Organic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - A M Darwish
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - A M Yousef
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - M A Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt
| | - M N Ibrahim
- Department of Clinical Laboratories, College of applied Medical Sciences, Jouf University, Qurrayat77451, KSA
| | - H M Fawzy
- Department of Community, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - E F Abdel Hamed
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
9
|
García-García A, Cristobal-Cueto P, Hidalgo T, Vitórica-Yrezábal IJ, Rodríguez-Diéguez A, Horcajada P, Rojas S. Potential antiprostatic performance of novel lanthanide-complexes based on 5-nitropicolinic acid. J Biol Inorg Chem 2024; 29:331-338. [PMID: 38717473 PMCID: PMC11111526 DOI: 10.1007/s00775-024-02054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 05/24/2024]
Abstract
Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 μg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuente Nueva S/N, 18071, Granada, Spain
| | - Pablo Cristobal-Cueto
- Advanced Porous Material Unit, IMDEA Energy Institute, Av. Ramón de La Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Material Unit, IMDEA Energy Institute, Av. Ramón de La Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Iñigo J Vitórica-Yrezábal
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuente Nueva S/N, 18071, Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuente Nueva S/N, 18071, Granada, Spain
| | - Patricia Horcajada
- Advanced Porous Material Unit, IMDEA Energy Institute, Av. Ramón de La Sagra 3, 28935, Móstoles, Madrid, Spain.
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuente Nueva S/N, 18071, Granada, Spain.
| |
Collapse
|
10
|
Wijesundara YH, Howlett TS, Kumari S, Gassensmith JJ. The Promise and Potential of Metal-Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chem Rev 2024; 124:3013-3036. [PMID: 38408451 DOI: 10.1021/acs.chemrev.3c00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development. Although these materials have been widely explored in the context of drug delivery, imaging, and cancer immunotherapy, their role in immunology and vaccine-related applications is a recent yet rapidly developing field. This review seeks to elucidate the prospective use of MOFs and COFs for biomaterial stabilization, eliminating the necessity for cold chains, enhancing antigen potency as adjuvants, and potentializing needle-free delivery of vaccines. It provides an expansive and critical viewpoint on this rapidly evolving field of research and emphasizes the vital contribution of chemists in driving further advancements.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
11
|
Sadiq S, Khan S, Khan I, Khan A, Humayun M, Wu P, Usman M, Khan A, Alanazi AF, Bououdina M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon 2024; 10:e25521. [PMID: 38356588 PMCID: PMC10864983 DOI: 10.1016/j.heliyon.2024.e25521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Iltaf Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Aftab Khan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amal Faleh Alanazi
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
12
|
Guerrero F, Carmona A, Vidal V, Franco A, Martín-Malo A, Sánchez-Fernández EM, Carrillo-Carrión C. A selenoureido-iminoglycolipid transported by zeolitic-imidazolate framework nanoparticles: a novel antioxidant therapeutic approach. NANOSCALE HORIZONS 2023; 8:1700-1710. [PMID: 37819240 DOI: 10.1039/d3nh00363a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A selenium-containing metal-organic framework with remarkable antioxidant capacity and ROS-scavenging activity was constructed by a controlled de novo encapsulation approach of a glycoconjugate mimetic, specifically a sp2-iminoglycolipid bearing a selenoureido fragment (DSeU), within a zeolitic-imidazolate framework exoskeleton. Biocompatible and homogeneous nanosized particles of ∼70 nm (DSeU@ZIF8) were obtained, which could be efficiently internalized in cells, overcoming the poor solubility in biological media and limited bioavailability of glycolipids. The ZIF-particle served as nanocarrier for the intracellular delivery of the selenocompound to cells, promoted by the acidic pH inside endosomes/lysosomes. As demonstrated by in vitro studies, the designed DSeU@ZIF8 nanoparticles displayed a high antioxidant activity at low doses; lower intracellular ROS levels were observed upon the uptake of DSeU@ZIF8 by human endothelial cells. Even more interesting was the finding that these DSeU@ZIF8 particles were able to reverse to a certain level the oxidative stress induced in cells by pre-treatment with an oxidizing agent. This possibility of modulating the oxidative stress in living cells may have important implications in the treatment of diverse pathological complications that are generally accompanied with elevated ROS levels.
Collapse
Affiliation(s)
- Fátima Guerrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Andrés Carmona
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Victoria Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Ana Franco
- Leibniz Institute für Katalyse e. V., 18059 Rostock, Germany
| | - Alejandro Martín-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain.
| | - Carolina Carrillo-Carrión
- Institute for Chemical Research (IIQ), CSIC-University of Seville, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
13
|
Lin Z, Liao D, Jiang C, Nezamzadeh-Ejhieh A, Zheng M, Yuan H, Liu J, Song H, Lu C. Current status and prospects of MIL-based MOF materials for biomedicine applications. RSC Med Chem 2023; 14:1914-1933. [PMID: 37859709 PMCID: PMC10583815 DOI: 10.1039/d3md00397c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
This article mainly reviews the biomedicine applications of two metal-organic frameworks (MOFs), MIL-100(Fe) and MIL-101(Fe). These MOFs have advantages such as high specific surface area, adjustable pore size, and chemical stability, which make them widely used in drug delivery systems. The article first introduces the properties of these two materials and then discusses their applications in drug transport, antibacterial therapy, and cancer treatment. In cancer treatment, drug delivery systems based on MIL-100(Fe) and MIL-101(Fe) have made significant progress in chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), nano-enzyme therapy, and related combined therapy. Overall, these MIL-100(Fe) and MIL-101(Fe) materials have tremendous potential and diverse applications in the field of biomedicine.
Collapse
Affiliation(s)
- Zengqin Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Chenyi Jiang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Minbin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital Huizhou Guangdong 516001 China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital Dongguan 523770 China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
14
|
Abánades Lázaro I, Vicent-Morales M, Mínguez Espallargas G, Giménez-Marqués M. Hierarchical mesoporous NanoMUV-2 for the selective delivery of macromolecular drugs. J Mater Chem B 2023; 11:9179-9184. [PMID: 37718709 DOI: 10.1039/d3tb01819a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Although Metal-organic frameworks (MOFs) have received attention as drug delivery systems, their application in the delivery of macromolecules is limited by their pore size and opening. Herein, we present the synthesis of nanostructured MUV-2, a hierarchical mesoporous iron-based MOF that can store high payloads of the macromolecular drug paclitaxel (ca. 23% w/w), increasing its selectivity towards HeLa cancer cells over HEK non-cancerous cells. Moreover, this NanoMUV-2 permits full degradation under simulated physiological conditions while maintaining biocompatibility, and is amenable to specific surface modifications that increase its cell permeation, efficient cytosol delivery and cancer-targeting effect, further intensifying the cancer selectivity of paclitaxel.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez No 2, 46980 Paterna, Valencia, Spain.
| | - María Vicent-Morales
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez No 2, 46980 Paterna, Valencia, Spain.
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez No 2, 46980 Paterna, Valencia, Spain.
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez No 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
15
|
Wiśniewska P, Haponiuk J, Saeb MR, Rabiee N, Bencherif SA. Mitigating Metal-Organic Framework (MOF) Toxicity for Biomedical Applications. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 471:144400. [PMID: 39280062 PMCID: PMC11394873 DOI: 10.1016/j.cej.2023.144400] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline porous materials, consisting of metal ions and organic linkers. These hybrid materials possess exceptional porosity and specific surface area, which have recently garnered significant interest due to their potential applications in gas separation and storage, energy storage, biomedical imaging, and drug delivery. As MOFs are being explored for biomedical applications, it is essential to comprehensively assess their toxicity. Although nearly ninety thousand MOFs have been investigated, evaluating and optimizing their physico-chemical properties in relevant biological systems remain critical for their clinical translation. In this review article, we first provide a brief classification of MOFs based on their chemical structures. We then conduct a comprehensive evaluation of in vitro and in vivo studies that assess the biocompatibility of MOFs. Additionally, we discuss various approaches to mitigate the critical factors associated with MOF toxicity. To this end, the effects of chemistry, particle size, morphology, and particle aggregation are examined. To better understand MOFs' potential toxicity to living organisms, we also delve into the toxicity mechanisms of nanoparticles (NPs). Furthermore, we introduce and evaluate strategies such as surface modification to reduce the inherent toxicity of MOFs. Finally, we discuss current challenges, the path to clinical trials, and new research directions.
Collapse
Affiliation(s)
- Paulina Wiśniewska
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150 Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109 Australia
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA 02155, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02155, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02155, USA
| |
Collapse
|
16
|
Quijia CR, Navegante G, Sábio RM, Valente V, Ocaña A, Alonso-Moreno C, Frem RCG, Chorilli M. Macrophage Cell Membrane Coating on Piperine-Loaded MIL-100(Fe) Nanoparticles for Breast Cancer Treatment. J Funct Biomater 2023; 14:319. [PMID: 37367283 DOI: 10.3390/jfb14060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Piperine (PIP), a compound found in Piper longum, has shown promise as a potential chemotherapeutic agent for breast cancer. However, its inherent toxicity has limited its application. To overcome this challenge, researchers have developed PIP@MIL-100(Fe), an organic metal-organic framework (MOF) that encapsulates PIP for breast cancer treatment. Nanotechnology offers further treatment options, including the modification of nanostructures with macrophage membranes (MM) to enhance the evasion of the immune system. In this study, the researchers aimed to evaluate the potential of MM-coated MOFs encapsulated with PIP for breast cancer treatment. They successfully synthesized MM@PIP@MIL-100(Fe) through impregnation synthesis. The presence of MM coating on the MOF surface was confirmed through SDS-PAGE analysis, which revealed distinct protein bands. Transmission electron microscopy (TEM) images demonstrated the existence of a PIP@MIL-100(Fe) core with a diameter of around 50 nm, surrounded by an outer lipid bilayer layer measuring approximately 10 nm in thickness. Furthermore, the researchers evaluated the cytotoxicity indices of the nanoparticles against various breast cancer cell lines, including MCF-7, BT-549, SKBR-3, and MDA. The results demonstrated that the MOFs exhibited between 4 and 17 times higher cytotoxicity (IC50) in all four cell lines compared to free PIP (IC50 = 193.67 ± 0.30 µM). These findings suggest that MM@PIP@MIL-100(Fe) holds potential as an effective treatment for breast cancer. The study's outcomes highlight the potential of utilizing MM-coated MOFs encapsulated with PIP as an innovative approach for breast cancer therapy, offering improved cytotoxicity compared to free PIP alone. Further research and development are warranted to explore the clinical translation and optimize the efficacy and safety of this treatment strategy.
Collapse
Affiliation(s)
- Christian Rafael Quijia
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| | - Geovana Navegante
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| | - Rafael Miguel Sábio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| | - Valeria Valente
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| | - Alberto Ocaña
- Department of Medical Oncology, Hospital Clinico San Carlos and Health Research Institute of the Hospital Clinico San Carlos, 28040 Madrid, Spain
| | - Carlos Alonso-Moreno
- Unidad NanoDrug, Facultad de Farmacia, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Regina Célia Galvão Frem
- Institute of Chemistry, São Paulo State University (UNESP), Prof. Francisco Degni 55, Araraquara 14800-060, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jau, Km 01-s/n-Campos Ville, Araraquara 14800-903, Brazil
| |
Collapse
|
17
|
Ge X, Jiang F, Wang M, Chen M, Li Y, Phipps J, Cai J, Xie J, Ong J, Dubovoy V, Masters JG, Pan L, Ma S. Naringin@Metal-Organic Framework as a Multifunctional Bioplatform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:677-683. [PMID: 36562661 DOI: 10.1021/acsami.2c19904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Naringin, a natural product, can be used as a therapeutic agent due to its low systemic toxicity and negligible adverse effect. However, due to its hydrophobic nature and thereby low solubility, high-dose treatment is required when used for human therapy. Herein, we demonstrate the employment of a metal-organic framework (MOF) as a nontoxic loading carrier to encapsulate naringin, and the afforded nairngin@MOF composite can serve as a multifunctional bioplatform capable of treating Gram-positive bacteria and certain cancers by slowly and progressively releasing the encapsulated naringin as well as improving and modulating immune system functions through synergy between naringin and the MOF.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Meng Chen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Yiming Li
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Jin Xie
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Jane Ong
- Colgate Palmolive Co, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Viktor Dubovoy
- Colgate Palmolive Co, 909 River Road, Piscataway, New Jersey 08855, United States
| | - James G Masters
- Colgate Palmolive Co, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Long Pan
- Colgate Palmolive Co, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| |
Collapse
|
18
|
Li X, Chen L, Huang M, Zeng S, Zheng J, Peng S, Wang Y, Cheng H, Li S. Innovative strategies for photodynamic therapy against hypoxic tumor. Asian J Pharm Sci 2023; 18:100775. [PMID: 36896447 PMCID: PMC9989661 DOI: 10.1016/j.ajps.2023.100775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Photodynamic therapy (PDT) is applied as a robust therapeutic option for tumor, which exhibits some advantages of unique selectivity and irreversible damage to tumor cells. Among which, photosensitizer (PS), appropriate laser irradiation and oxygen (O2) are three essential components for PDT, but the hypoxic tumor microenvironment (TME) restricts the O2 supply in tumor tissues. Even worse, tumor metastasis and drug resistance frequently happen under hypoxic condition, which further deteriorate the antitumor effect of PDT. To enhance the PDT efficiency, critical attention has been received by relieving tumor hypoxia, and innovative strategies on this topic continue to emerge. Traditionally, the O2 supplement strategy is considered as a direct and effective strategy to relieve TME, whereas it is confronted with great challenges for continuous O2 supply. Recently, O2-independent PDT provides a brand new strategy to enhance the antitumor efficiency, which can avoid the influence of TME. In addition, PDT can synergize with other antitumor strategies, such as chemotherapy, immunotherapy, photothermal therapy (PTT) and starvation therapy, to remedy the inadequate PDT effect under hypoxia conditions. In this paper, we summarized the latest progresses in the development of innovative strategies to improve PDT efficacy against hypoxic tumor, which were classified into O2-dependent PDT, O2-independent PDT and synergistic therapy. Furthermore, the advantages and deficiencies of various strategies were also discussed to envisage the prospects and challenges in future study.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Chen
- Department of Anesthesiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaoting Huang
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shaoting Zeng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Jiayi Zheng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuyi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuqing Wang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
19
|
Cases
Díaz J, Lozano-Torres B, Giménez-Marqués M. Boosting Protein Encapsulation through Lewis-Acid-Mediated Metal-Organic Framework Mineralization: Toward Effective Intracellular Delivery. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7817-7827. [PMID: 36117882 PMCID: PMC9476658 DOI: 10.1021/acs.chemmater.2c01338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/15/2022] [Indexed: 05/10/2023]
Abstract
Encapsulation of biomolecules using metal-organic frameworks (MOFs) to form stable biocomposites has been demonstrated to be a valuable strategy for their preservation and controlled release, which has been however restricted to specific electrostatic surface conditions. We present a Lewis-acid-mediated general in situ strategy that promotes the spontaneous MOF growth on a broad variety of proteins, for the first time, regardless of their surface nature. We demonstrate that MOFs based on cations exhibiting considerable inherent acidity such as MIL-100(Fe) enable efficient biomolecule encapsulation, including elusive alkaline proteins previously inaccessible by the well-developed in situ azolate-based MOF encapsulation. Specifically, we prove the MIL-100(Fe) scaffold for the encapsulation of a group of proteins exhibiting very different isoelectric points (5 < pI < 11), allowing triggered release under biocompatible conditions and retaining their activity after exposure to denaturing environments. Finally, we demonstrate the potential of the myoglobin-carrying biocomposite to facilitate the delivery of O2 into hypoxic human lung carcinoma A549 cells, overcoming hypoxia-associated chemoresistance.
Collapse
|
20
|
Hao F, Yan Z, Yan X. Recent Advances in Research on the Effect of Physicochemical Properties on the Cytotoxicity of Metal-Organic Frameworks. SMALL SCIENCE 2022; 2:2200044. [PMID: 40212638 PMCID: PMC11935883 DOI: 10.1002/smsc.202200044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Indexed: 05/07/2025] Open
Abstract
Metal-organic frameworks (MOFs) have been utilized with increasing interest in various fields, including gas storage and separation, catalysis, sensing, adsorption, and biomedicine. Recently, the scale-up production and commercialization of MOFs have paved their way to real-world applications. However, the accidental and intentional exposures of MOFs to humans and organisms make an increasing concern on their health risks and sustainable development. Thus, toxicity assessment is essential for the application of MOFs. In vitro toxic evaluation based on cell culture is low cost, fast, and high throughput, making it an ideal model in toxicity research. To understand the cytotoxicity of MOFs, a short review on the effect of key physicochemical factors on cytotoxicity is necessary. Herein, the application of MOFs is summarized and the possible exposure routes of MOFs to humans are discussed. Moreover, the key physicochemical factors affecting the cytotoxicity of MOFs such as chemical composition, size, and shape are also elucidated. It is expected that this short review helps to understand the cytotoxicity of MOFs and sheds light on the importance of the toxicity assessment of MOFs.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetySchool of Food Science and TechnologyJiangnan UniversityWuxi214122China
| | - Zhu‐Ying Yan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122China
| | - Xiu‐Ping Yan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetySchool of Food Science and TechnologyJiangnan UniversityWuxi214122China
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationJiangnan UniversityWuxi214122China
| |
Collapse
|
21
|
Singh R, White JF, de Vries M, Beddome G, Dai M, Bean AG, Mulet X, Layton D, Doherty CM. Biomimetic metal-organic frameworks as protective scaffolds for live-virus encapsulation and vaccine stabilization. Acta Biomater 2022; 142:320-331. [PMID: 35134566 DOI: 10.1016/j.actbio.2022.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/20/2022]
Abstract
The invaluable health, economic and social impacts of vaccination are hard to exaggerate. The ability to stabilize vaccines is urgently required for their equitable distribution without the dependence on the 'cold-chain' logistics. Herein, for the first time we report biomimetic-mineralization of live-viral vaccines using metal-organic frameworks (MOFs) to enhance their storage stability from days to months. Applying ZIF-8 and aluminium fumarate (Alfum), the Newcastle Disease Virus (NDV) V4 strain and Influenza A WSN strain were encapsulated with remarkable retention of their viral titre. The ZIF-8@NDV, ZIF-8@WSN and Alfum@WSN composites were validated for live-virus recovery using a tissue culture infectious dose (TCID50) assay. With the objective of long-term stabilization, we developed a novel, trehalose (T) and skim milk (SM) stabilized, freeze-dried MOF@Vaccine composite, ZIF-8@NDV+T/SM. The thermal stability of this composite was investigated and compared with the control NDV and non-encapsulated, freeze-dried NDV+T/SM composite at 4 °C, RT, and 37 °C over a period of 12 weeks. We demonstrate the fragility of the control NDV vaccine which lost all viability at RT and 37°C by 12 and 4 weeks, respectively. Comparing the freeze-dried counterparts, the MOF encapsulated ZIF-8@NDV+T/SM demonstrated significant enhancement in stability of the NDV+T/SM composite especially at RT and 37 °C upto 12 weeks. STATEMENT OF SIGNIFICANCE: Vaccination is undoubtedly one of the most effective medical interventions, saving millions of lives each year. However, the requirement of 'cold-chain' logistics is a major impediment to widespread immunization. Live viral vaccines (LVVs) are widely used vaccine types with proven efficacy and low cost. Nonetheless, their complex composition increases their susceptability to thermal stress. Several LVV thermostabilization approaches have been investigated, including their complex engineering and the facile addition of stabilizers. Still, the lack of a universal approach urgently requires finding a stabilization technique especially when additives alone may not be sufficient. Herein, we demonstrate MOF biomimetic-mineralization technology to encapsulate LVVs developing an optimised composite which significantly preserves vaccines without refrigeration for extended periods of time.
Collapse
Affiliation(s)
- Ruhani Singh
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia.
| | - Jacinta F White
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Malisja de Vries
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Gary Beddome
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia
| | - Meiling Dai
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia
| | - Andrew G Bean
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Daniel Layton
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia.
| | - Cara M Doherty
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia.
| |
Collapse
|