1
|
Kwok T, Chan SL, Xu N, Huang T, Bo T. Advancing protein heterogeneity analysis: Nano-flow pressure mobilization for precise icIEF fractionation and online MS detection. Anal Biochem 2025; 701:115825. [PMID: 40037501 DOI: 10.1016/j.ab.2025.115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
This study addresses the challenges of high-resolution protein charge variant fractionation and efficient online mass spectrometry (MS) detection in imaged capillary isoelectric focusing (icIEF)-based workflows. icIEF often faces limitations in efficiency, peak integrity, and detection sensitivity due to diffusion and uncontrolled mobilization. To overcome these, we developed a novel icIEF fractionation framework that integrates nano-flow pressure mobilization with the capillary diameter transformation technique (CDTT). Using a model system with a 320 μm ID separation channel and a 50 μm ID transfer capillary, we investigated the electrophoretic and nano-flow transport mechanisms influencing fractionation efficiency. The impact of these innovations on peak area, height, and width for charge proteoforms was assessed, showing improvements in precision. These insights were applied to a 200 μm ID separation channel system, resulting in enhanced separation efficiency and icIEF-MS sensitivity. This study offers a scalable, high-precision solution for charge heterogeneity analysis in biopharmaceutical development and regulatory applications.
Collapse
Affiliation(s)
- Teresa Kwok
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - She Lin Chan
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - Niusheng Xu
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - Tiemin Huang
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - Tao Bo
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada.
| |
Collapse
|
2
|
Chan SL, Kwok T, Xu N, Bo T, Huang T. Imaged capillary isoelectric focusing and online mass spectrometry for milk whey protein characterization in dairy products. Anal Biochem 2025; 699:115765. [PMID: 39778730 DOI: 10.1016/j.ab.2025.115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Characterizing major bovine milk proteins, including whey and casein, is of significant interest in the dairy industry. The diverse array of protein proteoforms can be different in terms of genetic variation, breed ways, lactation stage, and animal nutritional status. Current routine methods for bovine milk protein profiling are typically based on immunological techniques, infrared spectroscopy, slab gel isoelectric focusing, capillary electrophoresis, and high-performance liquid chromatography. However, there are obvious disadvantages of existing approaches including low throughput, tedious operation, unsatisfactory repeatability, and lack of robust quantitation capability. In this study, we present a novel approach that, for the first time, combines imaged capillary isoelectric focusing with mass spectrometry to separate and characterize whey proteins in milk products. The established method provided a rapid, repeatable, accurate, and simultaneous analysis of α-lactalbumin, β-lactoglobulin A, and β-lactoglobulin B within 10 min for diverse bovine milk samples. The methodology was systematically validated regarding repeatability of pI and peak area, sensitivity, linearity and recovery. The integration of high-resolution mass spectrometry with nano-electrospray ionization and icIEF has been pivotal in accurately identifying intact whey proteins in milk products. This approach has significantly enhanced the precise characterization of protein proteoforms in milk.
Collapse
Affiliation(s)
- She Lin Chan
- Advanced Electrophoresis Solutions Ltd., 380 Jamieson Parkway, Unit 7 and 8, ON, N3C 4N4, Canada
| | - Teresa Kwok
- Advanced Electrophoresis Solutions Ltd., 380 Jamieson Parkway, Unit 7 and 8, ON, N3C 4N4, Canada
| | - Niusheng Xu
- Advanced Electrophoresis Solutions Ltd., 380 Jamieson Parkway, Unit 7 and 8, ON, N3C 4N4, Canada
| | - Tao Bo
- Advanced Electrophoresis Solutions Ltd., 380 Jamieson Parkway, Unit 7 and 8, ON, N3C 4N4, Canada.
| | - Tiemin Huang
- Advanced Electrophoresis Solutions Ltd., 380 Jamieson Parkway, Unit 7 and 8, ON, N3C 4N4, Canada; AES Biotech Jiaxing Ltd., No. 501 South Changsheng Road, Economic and Technological Development Zone, Jiaxing City, Zhejiang Province, PR China.
| |
Collapse
|
3
|
Ghizzani V, Ascione A, Gonnella F, Massolini G, Luciani F. Exploring imaged capillary isoelectric focusing parameters for enhanced charge variants quality control. Front Chem 2025; 13:1536222. [PMID: 40084275 PMCID: PMC11904914 DOI: 10.3389/fchem.2025.1536222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/22/2025] [Indexed: 03/16/2025] Open
Abstract
Biopharmaceuticals are increasingly utilised in the treatment of oncological, inflammatory, and autoimmune diseases, largely due to their exceptional specificity in targeting antigens. However, their structural complexity, heterogeneity, and sensitivity pose crucial challenges in their production, purification, and delivery. Charge heterogeneity analysis, a Critical Quality Attribute of these biomolecules used in their Quality Control, is often performed using separative analytical techniques such as imaged capillary Isoelectric Focusing (icIEF). Recognized as a gold standard by the industry, icIEF leverages a pH gradient to provide high-resolution profiling of charge variants in biotherapeutics. In this review, critical experimental parameters for icIEF method development in the context of biotherapeutic drug development and QC will be discussed. Key aspects, including sample preparation, capillary properties, carrier ampholytes, stabilizers, and detection are examined, and supported by recent literature. Advances in icIEF technology and its expanding applications underline its robustness, reproducibility, and compliance with regulatory standards, affirming its pivotal role in ensuring the identity and consistency of biological products.
Collapse
Affiliation(s)
- Virginia Ghizzani
- National Centre for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Ascione
- National Centre for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| | - Federico Gonnella
- National Centre for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| | | | - Francesca Luciani
- National Centre for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Wittmann A, Wilke Y, Grammel N, Wätzig H. Evaluation of a cIEF Fractionation Workflow for Offline MS Analysis of Charge Variants of the Monoclonal Antibody Matuzumab. Electrophoresis 2025; 46:240-249. [PMID: 39964944 PMCID: PMC11865688 DOI: 10.1002/elps.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Biological drugs like monoclonal antibodies require careful analysis and characterization to ensure product quality, safety, and efficacy. Charge variants of the molecule are of key interest and are analyzed using imaged capillary isoelectric focusing (icIEF). However, deeper characterization of these variants poses challenges. Two workflows for their characterization exist: an ion-exchange chromatography method for variant collection before mass spectrometry (MS) analysis, which is labor-intensive, and direct coupling of CE to MS, which allows detailed structural characterization but has limitations, for example, due to incompatibilities with ES ionization using high BGE concentrations. This study evaluates a platform that fractionates charge variants for offline MS analysis. The suitability of a procedure in which analytical icIEF methods are converted into preparative cIEF fractionation methods by increasing the sample concentration and adding 20 mM arginine as a cathodic spacer was tested. After chemical mobilization and fraction collection, the identity of the fractions was determined by fluorescence measurement and reinjection of the protein-containing fractions, using the previously developed analytical icIEF method. MS was subsequently performed. The general suitability of the workflow was demonstrated using Matuzumab. Transferring the analytical method from a concentration of 0.2 to 1.2 mg/mL in fractionation yielded an identical number of peaks and visually comparable peak profiles. The preparative separation took 50 min, with an additional 25 min for mobilization and 45 s per fraction collection, totaling approximately 2.5 h. Verification of charge variant isolation was straightforward via analytical icIEF. Following fractionation, MS allowed for the identification of the main peaks. Preliminary results with other antibodies indicated that the concentration range for MS experiments needs further investigation. Future work will aim to optimize sensitivity, selectivity, analysis time, and reproducibility.
Collapse
Affiliation(s)
- Antonia Wittmann
- Institute of Pharmaceutical Technology and BiopharmaceuticsTU BraunschweigBraunschweigGermany
- Institute of Medicinal and Pharmaceutical ChemistryTU BraunschweigBraunschweigGermany
| | - Yannick Wilke
- Institute of Medicinal and Pharmaceutical ChemistryTU BraunschweigBraunschweigGermany
| | | | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical ChemistryTU BraunschweigBraunschweigGermany
| |
Collapse
|
5
|
Wu G, Zhang X, Wang X, Du J, Li M, Xu G, Du M, Yu C. In-depth characterization of a cysteine-linked ADC disitamab vedotin by multiple LC-MS analysis methods and cutting-edge imaged capillary isoelectric focusing coupled with native mass spectrometry. J Chromatogr A 2024; 1736:465353. [PMID: 39270568 DOI: 10.1016/j.chroma.2024.465353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
The characterization of cysteine-linked antibody‒drug conjugates (ADCs) can be more challenging than that of monoclonal antibodies (mAbs) and lysine-linked ADCs because the interchain disulfide bonds are reduced for payload conjugation, and the chains are noncovalently bonded to each other. Furthermore, payload conjugation and disulfide bond reduction/scrambling may introduce additional charge heterogeneity to biomolecules. This study illustrates an innovative workflow employing multiple separation techniques and tandem high-resolution mass spectrometry for comprehensive and in-depth characterization of disitamab vedotin, a recent-generation cysteine-linked ADC, including reversed-phase liquid chromatography (RPLC), ion exchange chromatography (IEX) and image capillary isoelectric focusing (icIEF). RPLC was employed for reduced chains analysis, subunit analysis and peptide mapping. IEX and icIEF were used for charge heterogeneity analysis. The innovation of the integrated methodology emphasizes the importance of cutting-edge icIEF-MS online coupling under near-native conditions to reveal the heterogeneity of disitamab vedotin.
Collapse
Affiliation(s)
- Gang Wu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Daxing District, Beijing, 102629, China
| | - Xiaoxi Zhang
- Thermo Fisher Scientific, Shanghai,200000, China
| | - Xin Wang
- Fujian Institute for Food and Drug Quality Control, Fuzhou, 350000,China
| | - Jialiang Du
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Daxing District, Beijing, 102629, China
| | - Meng Li
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Daxing District, Beijing, 102629, China
| | - Gangling Xu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Daxing District, Beijing, 102629, China
| | - Min Du
- Thermo Fisher Scientific, Lexington, MA, 02421, US
| | - Chuanfei Yu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Daxing District, Beijing, 102629, China.
| |
Collapse
|
6
|
Zhang X, Wu G, Du M, Bo T, Chen T, Huang T. Imaged Capillary Isoelectric Focusing Coupled to High-Resolution Mass Spectrometry (icIEF-MS) for Cysteine-Linked Antibody-Drug Conjugate (ADC) Heterogeneity Characterization Under Native Condition. Electrophoresis 2024; 45:1915-1926. [PMID: 39347563 DOI: 10.1002/elps.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.
Collapse
Affiliation(s)
| | - Gang Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Min Du
- Thermo Fisher Scientific, Lexington, Massachusetts, USA
| | - Tao Bo
- Advanced Electrophoresis Solutions LTD, Cambridge, Ontario, Canada
| | - Tong Chen
- Advanced Electrophoresis Solutions LTD, Cambridge, Ontario, Canada
| | - Tiemin Huang
- Advanced Electrophoresis Solutions LTD, Cambridge, Ontario, Canada
| |
Collapse
|
7
|
Cageling R, Carillo S, Boumeester AJ, Lubbers-Geuijen K, Bones J, Jooß K, Somsen GW. Microfluidic capillary electrophoresis - mass spectrometry for rapid charge-variant and glycoform assessment of monoclonal antibody biosimilar candidates. J Pharm Biomed Anal 2024; 248:116301. [PMID: 38901155 DOI: 10.1016/j.jpba.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Early-stage cell line screening is a vital step in developing biosimilars of therapeutic monoclonal antibodies (mAbs). While the quality of the manufactured antibodies is commonly assessed by charge-based separation methods employing UV absorbance detection, these methods lack the ability to identify resolved mAb variants. We evaluated the performance of microfluidic capillary electrophoresis coupled to mass spectrometry (MCE-MS) as a rapid tool for profiling mAb biosimilar candidates from clonal cell lines. A representative originator sample was used to develop the MCE-MS method. The addition of dimethylsulfoxide (DMSO) to the background electrolyte yielded up to 60-fold enhancement of the protein MS signal. The resulting electropherograms consistently provided resolution of mAb charge variants within 10 min. Deconvoluted mass spectra facilitated the identification of basic variants such as C-terminal lysine and proline amidation, while the acidic variants could be assigned to deamidated forms. The MCE-MS method also allowed the identification of 18 different glycoforms in biosimilar samples. To mimic early-stage cell line selection, samples from five clonal cell lines that all expressed the same biosimilar candidate mAb were compared to their originator mAb. Based on the similarity observed in charge variants and glycoform profiles acquired by MCE-MS, the most promising candidate could be selected. The MCE-MS method demonstrated good overall reproducibility, as confirmed by a transferability study involving two separate laboratories. This study highlights the efficacy of the MCE-MS method for rapid proteoform screening of clonal cell line samples, underscoring its potential significance as an analytical tool in biosimilar process development.
Collapse
Affiliation(s)
- Ruben Cageling
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands; Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Anja J Boumeester
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands
| | - Karin Lubbers-Geuijen
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Kevin Jooß
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands.
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| |
Collapse
|
8
|
Tang L, Geng H, Zhang L, Wang X, Fei M, Yang B, Sun H, Zhang Z. In-Depth Characterization for Methionine Oxidization in Complementary Domain Region by Hydrophobic Interaction Chromatography. ACS Pharmacol Transl Sci 2024; 7:2476-2483. [PMID: 39144558 PMCID: PMC11320724 DOI: 10.1021/acsptsci.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
The oxidation of the complementarity-determining region (CDR) in monoclonal antibodies (mAbs) is a critical quality attribute that can affect the clinical efficacy and safety of recombinant mAb therapeutics. In this study, a robust hydrophobic interaction chromatography (HIC) method was developed to quantify and characterize CDR oxidation variants in mAb-A by using a Proteomix Butyl-NP5 column. The HIC analysis revealed oxidation variants that eluted earlier than the main species with weaker hydrophobicity. It was found that Met105 in the CDR was more susceptible to oxidation. Additionally, it was noted that the oxidation of Met105 on a single heavy chain resulted in elution at a distinct position compared to the oxidation on two heavy chains. This observation led to the fractionation and enrichment of the oxidized variants for further evaluation of their biofunction. The study also demonstrated that the oxidation of Met105 did not impact the antigen-binding capacity but significantly reduced the PD-1/PD-L1 blockade activity of mAb-A. The HIC method, which was employed to quantify CDR oxidation, underwent validation and was subsequently utilized for stability studies as well as for assessing the similarity between mAb-A and its reference product.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Xinyi Wang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Mengdan Fei
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Boyuan Yang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Haijie Sun
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Zhongli Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| |
Collapse
|
9
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Wu G, Du J, Yu C, Fu Z, Zhang X, Wang L, Wang J. Mass spectrometry study on SARS-CoV-2 recombinant vaccine with comprehensive separation techniques to characterize complex heterogeneity. Anal Chim Acta 2024; 1297:342349. [PMID: 38438233 DOI: 10.1016/j.aca.2024.342349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/06/2024]
Abstract
SARS-CoV-2, the causative agent of COVID-19, has imposed a major public health threat, which needs effective therapeutics and vaccination strategies. Several potential candidate vaccines being rapidly developed are in clinical evaluation and recombinant vaccine has gained much attention thanks to its potential for greater response predictability, improved efficacy, rapid development and reduced side effects. Recombinant vaccines are designed and manufactured using bacterial, yeast cells or mammalian cells. A small piece of DNA is taken from the virus or bacterium against which we want to protect and inserted into the manufacturing cells. Due to the extremely complex heterogeneity of SARS-CoV-2 recombinant vaccine, single technology platform cannot achieve thorough and accurate characterization of such difficult proteins so integrating comprehensive technologies is essential. This study illustrates an innovative workflow employing multiple separation techniques tandem high-resolution mass spectrometry for comprehensive and in-depth characterization of SARS-CoV-2 recombinant vaccine, including ultra-high performance liquid chromatography (UHPLC), ion exchange chromatography (IEX) and imaged capillary isoelectric focusing (icIEF). The integrated methodology focuses on the importance of cutting-edge icIEF-MS online coupling and icIEF fractionation applied to revealing the heterogeneity secret of SARS-CoV-2 recombinant vaccine.
Collapse
Affiliation(s)
- Gang Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jialiang Du
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing, 102629, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing, 102629, China
| | - Zhihao Fu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing, 102629, China
| | - Xiaoxi Zhang
- Thermo Fisher Scientific, A Building, Henggu1976, No.1976 Middle Gaoke Road, Pudong District, 201203, Shanghai, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing, 102629, China
| | - Junzhi Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
11
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Kwok T, Chan SL, Courtney M, Zhou M, Huang T, Bo T, Li V, Chen T. Imaged capillary isoelectric focusing tandem high-resolution mass spectrometry using nano electrospray ionization (ESI) for protein heterogeneity characterization. Anal Biochem 2023; 680:115312. [PMID: 37683714 DOI: 10.1016/j.ab.2023.115312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Recombinant monoclonal antibodies (mAbs) have been spurring the rapid growth of commercial biotherapeutics. During production their charge heterogeneity must be assessed as a critical quality attribute to ensure safety, efficacy, and potency. Although imaged capillary isoelectric focusing (icIEF) is a powerful tool for this process, it could be improved further with tandem high-resolution mass spectrometry (HRMS). In this work, a nano-electrospray ionization (nano-ESI) apparatus was constructed to directly couple icIEF to HRMS. The system was evaluated with the standard NISTmAb, as well as more complex mAb, bi-specific antibody, and fusion protein samples. NISTmAb concentrations as low as 0.25 mg/ml demonstrated excellent sensitivity. There were good repeatabilities at 1 mg/ml with 7.58% and 8.01% RSDs for intention time and MS intensity, respectively, and the HRMS signal showed a strong linearity (R = 0.9983) across different concentrations. Meanwhile, the fingerprinting of the complex samples illustrated the versatility and potential of icIEF-HRMS. icIEF-HRMS developed can provide a comprehensive understanding of the underlying structural modifications that impact protein charge heterogeneity. Compared to the traditional ESI, nano-ESI can significantly improve sensitivity while maintaining a reasonable repeatability and throughput. Furthermore, the interface is much easier to connect, and is compatible with many commercial HRMS instruments.
Collapse
Affiliation(s)
- Teresa Kwok
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - She Lin Chan
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | | | - Mike Zhou
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - Tiemin Huang
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - Tao Bo
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - Victor Li
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada
| | - Tong Chen
- Advanced Electrophoresis Solutions Ltd., Cambridge, Canada.
| |
Collapse
|
13
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|