1
|
Hu M, Li Y, Cha S, Zhao L, Liu C, Sui M, Xue C, Dong N. Development of targeted antimicrobial peptides for Escherichia coli: Combining phage display and rational design for food safety application. Food Chem 2025; 470:142685. [PMID: 39756081 DOI: 10.1016/j.foodchem.2024.142685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
The growing demand for minimally processed foods has heightened the risk of pathogenic contamination. Balancing antimicrobial efficacy with the preservation of probiotic activity remains a significant challenge. In this study, we employed phage display peptide library screening, combined with next-generation sequencing to identify the HIMPIQA domain, which selectively targets pathogenic Escherichia coli (E. coli) in just one screening round. Using the yXy(PX)4yXy template, we designed antimicrobial peptides (AMPs) where 'y' represents hydrophobic amino acids, and 'X' represents positively charged residues. The peptide WK, combining HIMPIQA with a Trp/Lys-based antimicrobial domain, demonstrated high specificity and antibacterial activity. Molecular docking revealed WK's binding to FaeG and mechanistic studies showed its ability to disrupt E. coli membranes while maintaining probiotic viability. WK's application as a preservative enhanced the shelf life of yogurt and tomatoes. This innovative approach showcases the potential of phage display in developing targeted AMPs for food preservation and safety.
Collapse
Affiliation(s)
- Mingyang Hu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yuwen Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Sina Cha
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Lu Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Can Liu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Mingrui Sui
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
2
|
Gmedhin H, Schaefer S, Corrigan N, Wu P, Gu Z, Lenardon MD, Boyer C. Effect of Defined Block Sequence Terpolymers on Antifungal Activity and Biocompatibility. Macromol Biosci 2025; 25:e2400429. [PMID: 39764700 DOI: 10.1002/mabi.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/16/2024] [Indexed: 04/15/2025]
Abstract
Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells. Toward addressing this, synthetic polymers designed to mimic host defense peptides are promising new candidates for combating fungal infections. This study investigates well-defined multiblock terpolymers with specific arrangements of cationic, hydrophobic, and hydrophilic groups, as potential antifungal agents. The block sequence in these copolymers significantly impacts their minimum inhibition concentration (MIC) against Candida albicans and biocompatibility. Furthermore, compared to their statistical counterparts, these block polymers exhibit lower MIC values in certain instances. Notably, triblock terpolymers containing a central hydrophobic block present an enhanced antifungal efficacy and biocompatibility. These findings highlight the potential of block sequence-controlled polymers as a versatile platform for developing customized and targeted antifungal therapies.
Collapse
Affiliation(s)
- Hatu Gmedhin
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Sebastian Schaefer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Peifeng Wu
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Zi Gu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Li G, Chen W, Guan H, Lai Z, Shao C, AnshanShan. Dendritic Antifungal Peptides as Potent Agents against Drug-Resistant Candida albicans and Biofilm. J Med Chem 2025; 68:3373-3385. [PMID: 39868500 DOI: 10.1021/acs.jmedchem.4c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Candida albicans infection is a major public health problem, exacerbated by the emergence of drug-resistant fungi with the widespread use of antifungal drugs. Therefore, the development of novel antifungal drugs for drug-resistant C. albicans infections is crucial. We constructed a series of dendritic antifungal peptides (AFPs) with different chain lengths of fatty acids as hydrophobic ends and 2 or 3 protease-stable repeats (Arg-Pro) as dendritic peptide branches. Among them, C4-3RP exhibited excellent antidrug-resistant fungal and biofilm activity (GMall = 5.04 μM) and was nontoxic. Furthermore, C4-3RP demonstrated high protease stability and salt ion tolerance, making it highly effective in murine skin infection mediated by C. albicans. In addition, C4-3RP uses multiple mechanisms of action to achieve excellent antifungal effects. In conclusion, the construction of dendritic peptides holds substantial potential in the treatment of fungal infections and provides a broader perspective on the design of peptide-based antifungal drugs.
Collapse
Affiliation(s)
- Guoyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenwen Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongrui Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhenheng Lai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Changxuan Shao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - AnshanShan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
4
|
Sharma A, Singh G, Bhatti JS, Gill SK, Arya SK. Antifungal peptides: Therapeutic potential and challenges before their commercial success. Int J Biol Macromol 2025; 284:137957. [PMID: 39603306 DOI: 10.1016/j.ijbiomac.2024.137957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Antifungal peptides (AFPs) are small cationic peptides that are found in a diverse range of taxa including bacteria, plants, mammals and insects. AFPs exhibit the strong antifungal activities against several pathogenic fungi, making them potential candidates for developing novel antifungal agents. AFP cause fungal cell death by rupturing the membranes of the fungal cell wall and inhibits the vital enzymes. Since AFPs are isolated from a range of natural sources, efforts are being made to create synthetic versions of these peptides with improved pharmacological properties. One of their key advantages is that they are less likely to develop resistance as compared to conventional antifungal medications. Although AFPs display immense potential as antifungal agents, challenges still exist in their stability, solubility, absorption, and time-consuming extraction process. Still, the possibility for AFPs to evolve into a novel class of antifungal medicine gives hope for improved treatments for fungal infections. This article offers the comprehensive information on AFPs origin, mode of action, prospective use in antifungal treatments. It also discusses about the application of antifungal peptides beyond the therapeutic field, such as in agriculture for crop protection, in food industry and in aquaculture field. It further elaborates on the challenges and potential paths associated with the progression of AFPs as advanced antifungal agents.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | | | | |
Collapse
|
5
|
Zhang D, Bie S, Anas Tomeh M, Zhang X, Zhao X. Synergistic bactericidal effect of antimicrobial peptides and copper sulfide-loaded zeolitic imidazolate framework-8 nanoparticles with photothermal therapy. Eur J Pharm Biopharm 2024; 204:114516. [PMID: 39349074 DOI: 10.1016/j.ejpb.2024.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a significant threat to human health. Antimicrobial peptides (AMPs) have proven to be an effective strategy against antibiotic-resistant bacteria, given their capacity to swiftly disrupt microorganism membranes and alter cell morphology. A common limitation, however, lies in the inherent toxicity of many AMPs and their vulnerability to protease degradation within the body. Photothermal therapy (PTT) stands out as a widely utilized approach in combating antibiotic-resistant bacterial infections, boasting high efficiency and non-invasive benefits. To enhance the stability and antibacterial efficacy of AMPs, a novel approach involving the combination of AMPs and PTT has been proposed. This study focuses on the encapsulation of At10 (an AMP designed by our group), and copper sulfide nanoparticles (CuS NPs) within zeolitic imidazolate framework-8 (ZIF-8) to form nanocomposites (At10/CuS@ZIF-8). The encapsulated CuS NPs exhibit notable photothermal properties upon exposure to near-infrared radiation. This induces the cleavage of ZIF-8, facilitating the release of At10, which effectively targets bacterial membranes to exert its antibacterial effects. Bacteria treated with At10/CuS@ZIF-8 under light radiation exhibited not only membrane folding and intracellular matrix outflow but also bacterial fracture. This synergistic antibacterial strategy, integrating the unique properties of AMPs, CuS NPs, and pH responsiveness of ZIF-8, holds promising potential for widespread application in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Duoduo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shiyue Bie
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Xinyu Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
Giraldo-Lorza JM, Leidy C, Manrique-Moreno M. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. MEMBRANES 2024; 14:220. [PMID: 39452832 PMCID: PMC11509253 DOI: 10.3390/membranes14100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Cholesterol is a biological molecule that is essential for cellular life. It has unique features in terms of molecular structure and function, and plays an important role in determining the structure and properties of cell membranes. One of the most recognized functions of cholesterol is its ability to increase the level of lipid packing and rigidity of biological membranes while maintaining high levels of lateral mobility of the bulk lipids, which is necessary to sustain biochemical signaling events. There is increased interest in designing bioactive peptides that can act as effective antimicrobial agents without causing harm to human cells. For this reason, it becomes relevant to understand how cholesterol can affect the interaction between bioactive peptides and lipid membranes, in particular by modulating the peptides' ability to penetrate and disrupt the membranes through these changes in membrane rigidity. Here we discuss cholesterol and its role in modulating lipid bilayer properties and discuss recent evidence showing how cholesterol modulates bioactive peptides to different degrees.
Collapse
Affiliation(s)
- Juan M. Giraldo-Lorza
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
7
|
Cheng C, Wu H, Zhang Y. Characterization and functional analysis of gerbera plant defensin ( PDF) genes reveal the role of GhPDF2.4 in defense against the root rot pathogen Phytophthora cryptogea. ABIOTECH 2024; 5:325-338. [PMID: 39279851 PMCID: PMC11399501 DOI: 10.1007/s42994-024-00146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/24/2024] [Indexed: 09/18/2024]
Abstract
Gerbera (Gerbera hybrida), a major fresh cut flower crop, is very susceptible to root rot disease. Although plant defensins (PDFs), a major group of plant antimicrobial peptides, display broad-spectrum antifungal and antibacterial activities, PDF genes in gerbera have not been systematically characterized. Here, we identified and cloned nine PDF genes from gerbera and divided them into two classes based on phylogenetic analysis. Most Class I GhPDF genes were highly expressed in petioles, whereas all Class II GhPDF genes were highly expressed in roots. Phytophthora cryptogea inoculation strongly upregulated all Class II GhPDF genes in roots and upregulated all Class I GhPDF genes in petioles. Transient overexpression of GhPDF1.5 and GhPDF2.4 inhibited P. cryptogea infection in tobacco (Nicotiana benthamiana) leaves. Transient overexpression of GhPDF2.4, but not GhPDF1.5, significantly upregulated ACO and LOX gene expression in tobacco leaves, indicating that overexpressing GhPDF2.4 activated the jasmonic acid/ethylene defense pathway and that the two types of GhPDFs have different modes of action. Prokaryotically expressed recombinant GhPDF2.4 inhibited mycelial growth and delayed the hyphal swelling of P. cryptogea, in vitro, indicating that GhPDF2.4 is a morphogenetic defensin. Moreover, the addition of GhPDF2.4 to plant culture medium alleviated the root rot symptoms of in vitro-grown gerbera seedlings and greatly reduced pathogen titer in P. cryptogea-inoculated gerbera roots in the early stages of treatment. Our study provides a basis for the use of GhPDFs, especially GhPDF2.4, for controlling root rot disease in gerbera. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00146-8.
Collapse
Affiliation(s)
- Chunzhen Cheng
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetables and Flowers, College of Horticulture, Shanxi Agricultural University, Jinzhong, 030801 China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huan Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yongyan Zhang
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetables and Flowers, College of Horticulture, Shanxi Agricultural University, Jinzhong, 030801 China
| |
Collapse
|
8
|
Cirillo S, Zhang B, Brown S, Zhao X. Antimicrobial peptide A 9K as a gene delivery vector in cancer cells. Eur J Pharm Biopharm 2024; 198:114244. [PMID: 38467336 DOI: 10.1016/j.ejpb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
9
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
10
|
Shang L, Chen C, Sun R, Guo J, Liu J, Wang M, Zhang L, Fei C, Xue F, Liu Y, Gu F. Engineered Peptides Harboring Cation Motifs Against Multidrug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5522-5535. [PMID: 38266749 DOI: 10.1021/acsami.3c15913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Multidrug-resistant (MDR) pathogens pose a serious threat to the health and life of humans, necessitating the development of new antimicrobial agents. Herein, we develop and characterize a panel of nine amino acid peptides with a cation end motif. Bioactivity analysis revealed that the short peptide containing "RWWWR" as a central motif harboring mirror structure "KXR" unit displayed not only high activity against MDR planktonic bacteria but also a clearance rate of 92.33% ± 0.58% against mature biofilm. Mechanically, the target peptide (KLR) killed pathogens by excessively accumulating reactive oxygen species and physically disrupting membranes, thereby enhancing its robustness for controlling drug resistance. In the animal model of sepsis infection by MDR bacteria, the peptide KLR exhibited strong therapeutic effects. Collectively, this study provided the dominant structure of short antimicrobial peptides (AMPs) to replenish our arsenals for combating bacterial infections and illustrated what could be harnessed as a new agent for fighting MDR bacteria.
Collapse
Affiliation(s)
- Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Rui Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Juan Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feiqun Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| |
Collapse
|
11
|
Ul Haq I, Maryam S, Shyntum DY, Khan TA, Li F. Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs. J Ind Microbiol Biotechnol 2024; 51:kuae018. [PMID: 38710584 PMCID: PMC11119867 DOI: 10.1093/jimb/kuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research. ONE-SENTENCE SUMMARY This comprehensive review of AFPs will be helpful for further research in antifungal research.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Divine Y Shyntum
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Taj A Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Fan Li
- School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|