1
|
Moayedi M, Yousefi N. Highly selective bio-functionalized graphene-based sponges for adsorption and degradation of polycyclic aromatic hydrocarbon mixtures. CHEMOSPHERE 2025; 377:144321. [PMID: 40132348 DOI: 10.1016/j.chemosphere.2025.144321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Xenobiotic pollutants such as polycyclic aromatic hydrocarbons (PAHs), originating from the incomplete combustion of organic substances, yield harmful effects on both the environment and public health. Existing research highlights that ligninolytic enzymes, including laccase, exhibit the capability to degrade different PAHs to varying degrees. Enzyme immobilization on a support enhances their suitability for industrial uses, typically leading to improved storage and operational stability. This study aims to enhance the elimination of PAHs such as naphthalene, anthracene, phenanthrene and pyrene and their mixture from water by merging the biocatalytic activity of laccase with the high adsorption capacity of a reduced graphene oxide (rGO) sponge. Our findings revealed that as the molecular weight and hydrophobic properties of PAHs increased, their affinity towards the rGO sponges became more pronounced. Conversely, it was noted that the elimination of naphthalene exhibited remarkable enhancement (achieving 75 % removal after 48 h individually, and 82 % removal in PAH mixtures), demonstrating faster removal kinetics in contrast to other PAHs. This improvement was attributed to the utilization of a bio-functionalized rGO sponge, indicating the notable role of immobilized laccase in the degradation of naphthalene. As observed, certain PAHs in the mixture were more susceptible to oxidation and enzymatic degradation, while those with a higher affinity for adsorption onto the rGO surface demonstrated reduced degradability. This selective mechanism effectively treated specific PAHs based on their structural characteristics, thus enhancing the overall efficiency in removing diverse PAH contaminants in mixtures. The results regarding PAH degradation by-products indicated that laccase primarily converted anthracene into 9,10-anthraquinone, most of which were adsorbed and subsequently eliminated by the rGO sponge acting as the enzyme's support.
Collapse
Affiliation(s)
- Mahsa Moayedi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Nariman Yousefi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
2
|
Sánchez Vergara ME, Díaz Morales FI, Molina B, Alvarez-Zauco E, Bazán-Díaz L, Salcedo R. Optimization of Zinc and Aluminum Hydroxyquinolines for Applications as Semiconductors in Molecular Electronics. Molecules 2025; 30:1896. [PMID: 40363703 PMCID: PMC12074348 DOI: 10.3390/molecules30091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
This work explores the dispersed heterojunction of tris-(8-hydroxyquinoline) aluminum (AlQ3) and 8-hydroxyquinoline zinc (ZnQ2) with tetracyanoquinodimethane (TCNQ) and 2,6-diaminoanthraquinone (DAAq). Thin films of these organic semiconductors were deposited and analyzed, with their structures calculated with the B3PW91/6-31G** method. The optimized structure for AlQ3-TCNQ, AlQ3-DAAq, is achieved by means of three hydrogen bonds, whereas for ZnQ2-DAAq, two hydrogen interactions are predicted. These structures were recalculated including the GD3 dispersion term. A stable ordering was also achieved for AlQ3-TCNQ-GD3, AlQ3-DAAq-GD3, and ZnQ2-DAAq-GD3 with four and two hydrogen contacts for the former and the two latter, respectively. Infrared (IR) and UV-visible spectroscopy confirmed these theoretical predictions, in addition to obtaining the optical band gap for the films. The optical band gap values ranged between 1.62 and 2.97 eV (theoretical) and between 2.46 and 2.87 eV (experimental). Additional optical parameters and electrical behavior were obtained, which indicates the potential of the films to be used as organic semiconductors. All three films showed transmittance above 76%, which also broadens the range of applications in electrodes, transparent transistors, or photovoltaic cells. Devices fabricated using these materials displayed ohmic electrical behavior, with peak current values between 2 × 10-3 and 6 × 10-3 A.
Collapse
Affiliation(s)
- María Elena Sánchez Vergara
- Facultad de Ingeniería, Universidad Anáhuac, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico;
- Universidad Politécnica de Cuautitlán Izcalli, Av. Lago de Guadalupe, Colonia Lomas de San Francisco Tepojaco, Cuautitlán Izcalli 54720, Estado de México, Mexico
| | - Francisco Iñaki Díaz Morales
- Facultad de Ingeniería, Universidad Anáhuac, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico;
| | - Bertha Molina
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (B.M.); (E.A.-Z.)
| | - Edgar Alvarez-Zauco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (B.M.); (E.A.-Z.)
| | - Lourdes Bazán-Díaz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (L.B.-D.); (R.S.)
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (L.B.-D.); (R.S.)
| |
Collapse
|
3
|
Qu Y, Sakoda K, Wakabayashi Y, Nakajima M, Asami T, Terashima I, Yamori W. Identification and characterization of compounds that improve plant photosynthesis and growth under light stress conditions. Commun Biol 2025; 8:300. [PMID: 40016402 PMCID: PMC11868627 DOI: 10.1038/s42003-025-07582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
To meet the escalating food and fuel demands of a growing global population and industry, food production requires a 50% increase by 2050. However, various environmental stresses, such as excessive light, significantly inhibit plant growth and lead to substantial reductions in crop yields. A major contributing factor to such declines is the reduction in photosynthetic capacity. In this study, a chemical-screening system based on standard 96-well plate and tobacco leaf tissue was developed. With this system, several anthraquinone derivatives that could alleviate high light stress from plants were identified. Application of these chemicals induced greater photosynthetic capacities and better plant growth during and after exposure to light stress for 20-96 hours in tobacco, lettuce, tomato and Arabidopsis. Mechanistic investigations unveiled that these chemicals exhibited electron-accepting abilities at PSI in vitro and improve PSI efficiency in vivo, indicating that the photoprotective effect could be a result of PSI acceptor side oxidation induced by these chemicals. Meanwhile, no adverse effects on plant growth were observed in chemical treated plants under non-stressful cultivation conditions. This study implies that anthraquinone derivatives can confer high light stress tolerance in plants, resulting in improved plant photosynthesis and growth in light stress environments.
Collapse
Affiliation(s)
- Yuchen Qu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
- Space Environment and Energy Laboratories, NTT Corporation, Musashino, Tokyo, Japan
| | - Yu Wakabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Masatoshi Nakajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ichiro Terashima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
- Institute of Molecular Biology, National Chung Hsing University, South Dist, Taichung, 40227, Taiwan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan.
| |
Collapse
|
4
|
Listyarini R, Kriesche BM, Hofer TS. Characterization of the Coordination and Solvation Dynamics of Solvated Systems─Implications for the Analysis of Molecular Interactions in Solutions and Pure H 2O. J Chem Theory Comput 2024; 20:3028-3045. [PMID: 38595064 PMCID: PMC11044269 DOI: 10.1021/acs.jctc.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
The characterization of solvation shells of atoms, ions, and molecules in solution is essential to relate solvation properties to chemical phenomena such as complex formation and reactivity. Different definitions of the first-shell coordination sphere from simulation data can lead to potentially conflicting data on the structural properties and associated ligand exchange dynamics. The definition of a solvation shell is typically based on a given threshold distance determined from the respective solute-solvent pair distribution function g(r) (i.e., GC). Alternatively, a nearest neighbor (NN) assignment based on geometric properties of the coordination complex without the need for a predetermined cutoff criterion, such as the relative angular distance (RAD) or the modified Voronoi (MV) tessellation, can be applied. In this study, the effect of different NN algorithms on the coordination number and ligand exchange dynamics evaluated for a series of monatomic ions in aqueous solution, carbon dioxide in aqueous and dichloromethane solutions, and pure liquid water has been investigated. In the case of the monatomic ions, the RAD approach is superior in achieving a well separated definition of the first solvation layer. In contrast, the MV algorithm provides a better separation of the NNs from a molecular point of view, leading to better results in the case of solvated CO2. When analyzing the coordination environment in pure water, the cutoff-based GC framework was found to be the most reliable approach. By comparison of the number of ligand exchange reactions and the associated mean ligand residence times (MRTs) with the properties of the coordination number autocorrelation functions, it is shown that although the average coordination numbers are sensitive to the different definitions of the first solvation shell, highly consistent estimates for the associated MRT of the solvated system are obtained in the majority of cases.
Collapse
Affiliation(s)
- Risnita
Vicky Listyarini
- Institute
of General, Inorganic and Theoretical Chemistry Center for Chemistry
and Biomedicine, University of Innsbruck Innrain 80-82, A-6020 Innsbruck, Austria
- Chemistry
Education Study Program Sanata Dharma University, Yogyakarta 55282, Indonesia
| | - Bernhard M. Kriesche
- Institute
of General, Inorganic and Theoretical Chemistry Center for Chemistry
and Biomedicine, University of Innsbruck Innrain 80-82, A-6020 Innsbruck, Austria
| | - Thomas S. Hofer
- Institute
of General, Inorganic and Theoretical Chemistry Center for Chemistry
and Biomedicine, University of Innsbruck Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Liebl S, Gallmetzer JM, Werner D, Apaydin DH, Hofer TS, Portenkirchner E. Perylenetetracarboxylic Diimide Composite Electrodes as Organic Cathode Materials for Rechargeable Sodium-Ion Batteries: A Joint Experimental and Theoretical Study. ACS OMEGA 2024; 9:6642-6657. [PMID: 38371750 PMCID: PMC10870290 DOI: 10.1021/acsomega.3c07621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024]
Abstract
The organic semiconductor 3,4,9,10-perylenetetracarboxylic diimide (PTCDI), a widely used industrial pigment, has been identified as a diffusion-less Na-ion storage material, allowing for exceptionally fast charging/discharging rates. The elimination of diffusion effects in electrochemical measurements enables the assessment of interaction energies from simple cyclic voltammetry experiments through the theoretical work of Laviron and Tokuda. In this work, the two N-substituted perylenes, N,N'-dimethyl-3,4,9,10-perylenetetracarboxylic diimide (Me2PTCDI) and N,N'-diphenyl-3,4,9,10-perylenetetracarboxylic diimide (Ph2PTCDI), as well as the parent molecule 3,4,9,10-perylenetetracarboxylic diimide (H2PTCDI) are investigated as thin-film composite electrodes on carbon fibers for sodium-ion batteries. The composite electrodes are analyzed with Raman spectroscopy. Interaction parameters are extracted from cyclic voltammetry measurements. The stability and rate capability of the three PTCDI derivatives are examined through galvanostatic measurements in sodium-ion half-cell batteries and the influence of the interactions on those parameters is evaluated. In addition, self-consistent charge density function tight binding calculations of the different PTCDI systems interacting with graphite have been carried out. The results show that the binding motif displays notable deviations from an ideal ABA stacking, especially for the neutral state. In addition, data obtained for the electron-transfer integrals show that the difference in performance between different PTCDI thin-film batteries cannot be solely explained by the electron-transfer properties and other factors such as H-bonding have to be considered.
Collapse
Affiliation(s)
- Sebastian Liebl
- Institute
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Josef M. Gallmetzer
- Institute
of General, Inorganic and Theoretical, Chemistry
University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Werner
- Institute
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Dogukan H. Apaydin
- Institute
of Materials Chemistry, Vienna University
of Technology, 1060 Vienna, Austria
| | - Thomas S. Hofer
- Institute
of General, Inorganic and Theoretical, Chemistry
University of Innsbruck, 6020 Innsbruck, Austria
| | | |
Collapse
|
6
|
Bhat V, Callaway CP, Risko C. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chem Rev 2023. [PMID: 37141497 DOI: 10.1021/acs.chemrev.2c00704] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While a complete understanding of organic semiconductor (OSC) design principles remains elusive, computational methods─ranging from techniques based in classical and quantum mechanics to more recent data-enabled models─can complement experimental observations and provide deep physicochemical insights into OSC structure-processing-property relationships, offering new capabilities for in silico OSC discovery and design. In this Review, we trace the evolution of these computational methods and their application to OSCs, beginning with early quantum-chemical methods to investigate resonance in benzene and building to recent machine-learning (ML) techniques and their application to ever more sophisticated OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and how sophisticated physical and mathematical frameworks have been created to overcome those limitations. We illustrate applications of these methods to a range of specific challenges in OSCs derived from π-conjugated polymers and molecules, including predicting charge-carrier transport, modeling chain conformations and bulk morphology, estimating thermomechanical properties, and describing phonons and thermal transport, to name a few. Through these examples, we demonstrate how advances in computational methods accelerate the deployment of OSCsin wide-ranging technologies, such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic thermoelectrics, organic batteries, and organic (bio)sensors. We conclude by providing an outlook for the future development of computational techniques to discover and assess the properties of high-performing OSCs with greater accuracy.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Connor P Callaway
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
7
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Kerschbaumer A, Wielend D, Leeb E, Schimanofsky C, Kleinbruckner N, Neugebauer H, Irimia-Vladu M, Sariciftci NS. How to use a rotating ring-disc electrode (RRDE) subtraction method to investigate the electrocatalytic oxygen reduction reaction? Catal Sci Technol 2023; 13:834-843. [PMID: 36760341 PMCID: PMC9900597 DOI: 10.1039/d2cy01744j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
When studying electrochemical oxygen reduction reactions in homogeneous media, special attention must be given to the significant background activity present with conventional electrode materials. The intrinsic electrocatalytic activity of different materials can be investigated using complementary methods, such as the rotating ring-disc electrode (RRDE) technique and chronoamperometric electrolysis with product quantification. This report presents a detailed investigation of the electrocatalytic ability of hydroxy anthraquinone derivatives and riboflavin towards hydrogen peroxide (H2O2) production via a novel RRDE subtraction method together with chronoamperometric electrolysis. Qualitative trends linking the two methods were obtained, such as a higher excess current correlating with both higher productivity and selectivity. As such, a valuable tool is provided to increase the understanding of the electrocatalytic ability of homogeneous solutions toward improving the oxygen reduction reaction.
Collapse
Affiliation(s)
- Angelina Kerschbaumer
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Dominik Wielend
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Elisabeth Leeb
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Corina Schimanofsky
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Nadine Kleinbruckner
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Helmut Neugebauer
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Mihai Irimia-Vladu
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| |
Collapse
|
9
|
Schimanofsky C, Wielend D, Kröll S, Lerch S, Werner D, Gallmetzer JM, Mayr F, Neugebauer H, Irimia-Vladu M, Portenkirchner E, Hofer TS, Sariciftci NS. Direct Electrochemical CO 2 Capture Using Substituted Anthraquinones in Homogeneous Solutions: A Joint Experimental and Theoretical Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14138-14154. [PMID: 36051252 PMCID: PMC9421899 DOI: 10.1021/acs.jpcc.2c03129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical capture of carbon dioxide (CO2) using organic quinones is a promising and intensively studied alternative to the industrially established scrubbing processes. While recent studies focused only on the influence of substituents having a simple mesomeric or nucleophilicity effect, we have systematically selected six anthraquinone (AQ) derivatives (X-AQ) with amino and hydroxy substituents in order to thoroughly study the influence thereof on the properties of electrochemical CO2 capture. Experimental data from cyclic voltammetry (CV) and UV-Vis spectroelectrochemistry of solutions in acetonitrile were analyzed and compared with innovative density functional tight binding computational results. Our experimental and theoretical results provide a coherent explanation of the influence of CO2 on the CV data in terms of weak and strong binding nomenclature of the dianions. In addition to this terminology, we have identified the dihydroxy substituted AQ as a new class of molecules forming rather unstable [X-AQ-(CO2) n ]2- adducts. In contrast to the commonly used dianion consideration, the results presented herein reveal opposite trends in stability for the X-AQ-CO2 •- radical species for the first time. To the best of our knowledge, this study presents theoretically calculated UV-Vis spectra for the various CO2-AQ reduction products for the first time, enabling a detailed decomposition of the spectroelectrochemical data. Thus, this work provides an extension of the existing classification with proof of the existence of X-AQ-CO2 species, which will be the basis of future studies focusing on improved materials for electrochemical CO2 capture.
Collapse
Affiliation(s)
- Corina Schimanofsky
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Dominik Wielend
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Stefanie Kröll
- Theoretical
Chemistry Division, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Sabine Lerch
- Theoretical
Chemistry Division, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniel Werner
- Institute
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Josef M. Gallmetzer
- Theoretical
Chemistry Division, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Felix Mayr
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
- Institute
of Applied Physics, Johannes Kepler University
Linz, Altenberger Straße
69, 4040 Linz, Austria
| | - Helmut Neugebauer
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Mihai Irimia-Vladu
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | | | - Thomas S. Hofer
- Theoretical
Chemistry Division, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Niyazi Serdar Sariciftci
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|