1
|
Guo C, Cheng X, Yang Y, Wang L, Wang W, Shao L. Aptamer-modified GSH-degradable honokiol polyprodrug nanoparticles for ovarian cancer-specific targeting therapy. Bioorg Med Chem Lett 2025; 123:130215. [PMID: 40180253 DOI: 10.1016/j.bmcl.2025.130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/16/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Honokiol (HK) is a polyphenol isolated from the Magnolia genus, a component of traditional Chinese herbal medicine, which can effectively suppress the growth of various tumors, including ovarian cancer. However, its low water solubility and lack of tumor-targeting ability have greatly hindered the clinical application of HK. Herein, a glutathione (GSH)-sensitive HK polyprodrug was prepared using HK as the backbone. An EpCAM-specific aptamer and poly(ethylene glycol) (PEG) were then conjugated to the HK polyprodrug, and the resulting polyprodrug was assembled into nanoparticles (NPs) in water. The HK polyprodrug-formed NPs achieved high drug loading and GSH-responsive drug release. Moreover, after optimization, HK polyprodrug NPs (A/P-PHK NP40), formed by aptamer-modified and PEG-modified prodrug at a feed molar ratio of 2: 3, exhibited the highest ability to target EpCAM-overexpressing ovarian cancer cells. A/P-PHK NP40 also demonstrated a greater cell growth inhibition effect in ovarian cancer cells compared to free HK and control HK NPs. All in all, this work reported a novel strategy for HK delivery based on microenvironment responsiveness polyprodrug, which provided a potential method for ovarian cancer targeting therapy.
Collapse
Affiliation(s)
- Chunhua Guo
- Department of Obstetrics and Gynecology, Changzhou Cancer Hospital, Changzhou Fourth People's Hospital, Changzhou, Jiangsu, China
| | - Xiaowei Cheng
- Department of Obstetrics and Gynecology, Changzhou Cancer Hospital, Changzhou Fourth People's Hospital, Changzhou, Jiangsu, China
| | - Yuxing Yang
- Department of Obstetrics and Gynecology, Changzhou Cancer Hospital, Changzhou Fourth People's Hospital, Changzhou, Jiangsu, China
| | - Lijuan Wang
- Department of Obstetrics and Gynecology, Changzhou Cancer Hospital, Changzhou Fourth People's Hospital, Changzhou, Jiangsu, China
| | - Wenfang Wang
- Department of Obstetrics and Gynecology, Changzhou Cancer Hospital, Changzhou Fourth People's Hospital, Changzhou, Jiangsu, China
| | - Liping Shao
- Department of Obstetrics and Gynecology, Changzhou Cancer Hospital, Changzhou Fourth People's Hospital, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Yan L, Zhao Z, Liu Y, Hosseini SH, Li C, Huang Y, Saeb MR, Xiao H, Seidi F. The inverse electron demand diels-alder (IEDDA): A facile bioorthogonal click reaction for development of injectable polysaccharide-based hydrogels for biomedical applications. Carbohydr Polym 2025; 352:123142. [PMID: 39843051 DOI: 10.1016/j.carbpol.2024.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
The inverse electron demand Diels-Alder (IEDDA) cycloaddition between tetrazines and strained dienophiles is recognized as a fast and specific reaction. The integrating tetrazines and strained dienophiles onto the backbone of polysaccharides yield appropriate water-soluble precursors for IEDDA cycloaddition. Due to the high specificity of the IEDDA reaction and its outstanding cytocompatibility, a range of cargos (live cells, peptides and pharmaceuticals) can be effectively encapsulated in polysaccharide solutions throughout the hydrogel formation. Within a few minutes, the interaction of aqueous solutions of tetrazine-polysaccharides with polysaccharide derivatives of dienophiles can form the hydrogel. The gelation time can be regulated by the structure of tetrazine/dienophile, degree of substitution, concentration of polysaccharide solutions, and temperature. The hydrogels are utilized in the fields of tissue engineering, cancer treatment, and wound healing. The embedding of stimuli-responsive functionalities within the hydrogel's architecture enhances the precision of its application for designated targets. This review begins by elucidating the principles of IEDDA and identifying the primary factors that influence the rate of cycloaddition. Subsequently, we discuss various strategies for integrating the reactants of IEDDA onto polysaccharides. Finally, the approaches for the fabrication of the relevant injectable hydrogels, their specific characteristics, and their implementation in different biomedical applications are elaborated.
Collapse
Affiliation(s)
- Linying Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenzhen Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Preedanorawut P, Chatchawankanphanich O, Yiamsawas D, Crespy D. Controlled Release of Hydrophilic Drug from Hollow Nanodots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409112. [PMID: 39888222 DOI: 10.1002/smll.202409112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Here the challenge of limited encapsulation efficiency of ionizable hydrophilic molecules in silica materials is addressed. Two effective strategies are showcased that allow high encapsulation efficiency of salicylic acid, while simultaneously maintaining the morphology and particle size of silica nanocapsules. These promising approaches involve the formation and encapsulation of a prodrug or the complexation of the hydrophilic payload with a hydrophobic moiety to form a complex that is dissociated in acidic conditions. Well-defined core-shell silica nanocapsules with a diameter of 6 nm are obtained and exhibited an encapsulation efficiency of over 90%. High amounts of salicylic acid are released in acidic conditions from silica nanocapsules entrapping the prodrug or the complex, leading to pH-responsive characteristics. This work demonstrates promising strategies for the encapsulation and the controlled release of hydrophilic fertilizers, pesticides or drugs.
Collapse
Affiliation(s)
- Patitta Preedanorawut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Doungporn Yiamsawas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
4
|
Chen Y, Cen Y, Li XX, Ou XC, Chen XY, Yu BX, Yan MY, Shao ZC, Wang TX, Guo N, Yu R, Li SY. Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I. ACS NANO 2025; 19:837-851. [PMID: 39731541 DOI: 10.1021/acsnano.4c12197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC. Furthermore, programmed death ligand 1 (PD-L1) targeting peptide sequence (CVRARTR) is conjugated onto DSPE-PEG2000-Mal for encapsulation of PpIX-DAC, thereby enhancing breast cancer-targeted drug delivery. PDPP exerts its antitumor effects through photodynamic therapy (PDT), ablating breast cancer cells while concurrently inducing the release of damage-associated molecular patterns (DAMPs) to boost tumor immunogenicity. Additionally, PDPP can upregulate MHC-I expression via epigenetic modulation, synergistically augmenting the cytotoxic T cell response together with a PD-L1 blockade. In short, PDPP induces a robust antitumor T cell immunity, causing effective eradication of primary and metastatic breast cancer. This study may inspire the development of stoichiometric nanomedicine for clinical translation.
Collapse
Affiliation(s)
- Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin-Xuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiao-Cheng Ou
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xia-Yun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Bai-Xue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Meng-Yi Yan
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhou-Chuan Shao
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ting-Xin Wang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ning Guo
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Rui Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shi-Ying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
5
|
Ghorbani M, Prince E. Radical Ring-Opening Polymerization: Unlocking the Potential of Vinyl Polymers for Drug Delivery, Tissue Engineering, and More. Biomacromolecules 2025; 26:118-139. [PMID: 39733344 DOI: 10.1021/acs.biomac.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far. In recent years, radical ring-opening polymerization (rROP) has emerged as a promising strategy to render synthetic vinyl polymers biodegradable and bioresorbable. While rROP has long been touted as a strategy for preparing biodegradable vinyl polymers for biomedical applications, the translation of rROP into clinically approved treatments for disease has not yet been realized. This review highlights the opportunities for leveraging rROP to render vinyl polymers biodegradable and unlock their potential for use in biomedical applications.
Collapse
Affiliation(s)
- Mina Ghorbani
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| | - Elisabeth Prince
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| |
Collapse
|
6
|
Zhou H, Pang XY, Xie X, Phillips DL, Gong HY, Sessler JL, Jiang W. Amide-Based Naphthotubes as Biomimetic Receptors for Acetal Protection and Other Substrates in Water via Noncovalent Interactions. J Am Chem Soc 2024; 146:34842-34851. [PMID: 39637361 DOI: 10.1021/jacs.4c13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Active compound protection can allow inherently unstable molecules to be stabilized and latent reactivity to be masked. Synthetic receptors are attractive in terms of providing such protection. Nevertheless, preserving the activity and functionality of organic molecules in water poses a challenge. Here, we show that biomimetic receptors, specifically amide naphthotubes and an amide anthryltube, allow the efficient preservation of functional organic molecules in water. In particular, the amide naphthotubes were found to extend the half-lives of acetal-containing substrates ("acetals") against acid-catalyzed hydrolysis by up to 3000 times. This kinetic protection effect was ascribed to hydrogen bond-based recognition of the organic guests. A substrate dependence was seen that was further exploited to achieve the kinetic resolution of acetal isomers. To the best of our knowledge, the present study constitutes one of the most effective acetal protection strategies reported to date. The recognition-based protection approach reported here appears generalizable as evidenced by the protection of eight different substrates against six distinct chemical reactions. Based on the present findings, we propose that it is possible to design receptors that provide for the protection of specific substrates under a variety of reaction conditions including those carried out in water.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
Nosrati Z, Chen YA, Bergamo M, Rodríguez‐Rodríguez C, Chan J, Shojania K, Kherani RB, Chin C, Kelsall JT, Dehghan N, Colwill AM, Collins D, Saatchi K, Häfeli UO. Prodrug Nanomedicine for Synovium Targeted Therapy of Inflammatory Arthritis: Insights from Animal Model and Human Synovial Joint Fluid. Adv Healthc Mater 2024; 13:e2401936. [PMID: 39380387 PMCID: PMC11616258 DOI: 10.1002/adhm.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Many patients cannot tolerate low-dose weekly methotrexate (MTX) therapy for inflammatory arthritis treatment due to life-threatening toxicity. Although biologics offer a target-specific therapy, it raises the risk of serious infections and even cancer due to immune system suppression. We introduce an anti-inflammatory arthritis MTX ester prodrug using a long-circulating biocompatible polymeric macromolecule: folic acid (FA) functionalized hyperbranched polyglycerol (HPG). In vitro the drug MTX is incrementally released through pH and enzymatic degradation over 2 weeks. The role of matrix metalloproteinases (MMPs) in site-specific prodrug activation was verified using synovial fluid (SF) of 26 rheumatology patients and 4 healthy controls. Elevated levels of specific MMPs-markers of joint inflammation-positively correlated with enhanced prodrug release explained by acid-catalyzed hydrolysis of esters by proteases. Intravenously administered 111In-radiolabeled prodrug confirmed by SPECT/CT imaging that it accumulated preferentially in inflamed joints while reducing off-target side-effects in a mouse model of rheumatoid arthritis (RA). Added FA as a targeting vector prolonged prodrug action; prodrug with 4x less MTX applied every 2 weeks was as effective as weekly MTX therapy. The preclinical results suggest a prodrug-based strategy for the treatment of inflammatory joint diseases, with potential for other chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zeynab Nosrati
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Yun An Chen
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | | | - Jonathan Chan
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Kam Shojania
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Raheem B. Kherani
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Carson Chin
- Burnaby Medical and Surgical SpecialistsBurnabyBCV3J 1M2Canada
| | - John T. Kelsall
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | | | | | - David Collins
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2CopenhagenDenmark2100
| |
Collapse
|
8
|
Lin W, Yin L, Wang X, Li C, Zhang W, Pei Q, Qi H, Sun T, Xie Z, Gu J. Quantitatively analyzing the dissociation and release of disulfide-containing organic nanoparticles. J Mater Chem B 2024; 12:9289-9295. [PMID: 39192634 DOI: 10.1039/d4tb00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The disintegration of nanoparticles and drug release are important and imperative for nanoparticle formulations of therapeutic agents. However, quantitatively monitoring the drug release of nanomedicines is a major challenge. In this work, boron-dipyrromethene (BDP) was applied as a model drug to study the disassembly of nanoparticles and drug release. BDP dimers with disulfide and ester bonds were synthesized, and their nanoparticles were made. The accurate analysis of bond breaking in BDP nanoparticles could not be realized by using confocal laser scanning microscopy. Hence, the possible products after bond cleavage were quantified by using liquid chromatography tandem mass spectrometry (LC-MS/MS). BDP nanoparticles could be endocytosed into cancer cells, and the disulfide bonds and ester bonds were broken to promote the disassociation of nanoparticles and BDP release. Then, near-infrared BDP nanoparticles were investigated in live mice by near-infrared fluorescence imaging and LC-MS/MS. The release of BDP was low (<10%) and BDP maintained the original dimer structure in vivo, which showed that the bond breaking for BDP nanoparticles was difficult in vivo. These results could help us understand the breaking law of disulfide bonds and ester bonds in nanoparticles and are beneficial for developing practical new drug formulations.
Collapse
Affiliation(s)
- Wenhai Lin
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Lei Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Xin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
- Department of Thyroid, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P. R. China
| | - Chaonan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Wei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Huixuan Qi
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China.
- Clinical Pharmacology Center, Research Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu Street, Changchun, Jilin 130061, P. R. China
| |
Collapse
|
9
|
Hu Y, Liu P. Design of pH/Redox Co-Triggered Degradable Diselenide-Containing Polyprodrug via a Facile One-Pot Two-Step Approach for Tumor-Specific Chemotherapy. Molecules 2024; 29:3837. [PMID: 39202916 PMCID: PMC11357291 DOI: 10.3390/molecules29163837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
The diselenide bond has attracted intense interest for drug delivery systems (DDSs) for tumor chemotherapy, owing to it possessing higher redox sensitivity than the disulfide one. Various redox-responsive diselenide-containing carriers have been developed for chemotherapeutics delivery. However, the premature drug leakage from these DDSs was significant enough to cause toxic side effects on normal cells. Here, a pH/redox co-triggered degradable polyprodrug was designed as a drug self-delivery system (DSDS) by incorporating drug molecules as structural units in the polymer main chains, using a facile one-pot two-step approach. The proposed PDOX could only degrade and release drugs by breaking both the neighboring acid-labile acylhydrazone and the redox-cleavable diselenide conjugations in the drug's structural units, triggered by the higher acidity and glutathione (GSH) or reactive oxygen species (ROS) levels in the tumor cells. Therefore, a slow solubility-controlled drug release was achieved for tumor-specific chemotherapy, indicating promising potential as a safe and efficient long-acting DSDS for future tumor treatment.
Collapse
Affiliation(s)
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
10
|
Montà-González G, Bastante-Rodríguez D, García-Fernández A, Lusby PJ, Martínez-Máñez R, Martí-Centelles V. Comparing organic and metallo-organic hydrazone molecular cages as potential carriers for doxorubicin delivery. Chem Sci 2024; 15:10010-10017. [PMID: 38966373 PMCID: PMC11220577 DOI: 10.1039/d4sc02294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Molecular cages are three-dimensional supramolecular structures that completely wrap guest molecules by encapsulation. We describe a rare comparative study between a metallo-organic cage and a fully organic analogous system, obtained by hydrazone bond formation self-assembly. Both cages are able to encapsulate the anticancer drug doxorubicin, with the organic cage forming a 1 : 1 inclusion complex with μM affinity, whereas the metallo-organic host experiences disassembly by interaction with the drug. Stability experiments reveal that the ligands of the metallo-organic cage are displaced in buffer at neutral, acidic, and basic pH, while the organic cage only disassembles under acidic conditions. Notably, the organic cage also shows minimal cell toxicity, even at high doses, whilst the doxorubicin-cage complex shows in vitro anti-cancer activity. Collectively, these results show that the attributes of the pure organic molecular cage are suitable for the future challenges of in vivo drug delivery using molecular cages.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
- EaStCHEM, School of Chemistry Joseph Black Building, David Brewster Road EH93FJ Edinburgh UK
| | - David Bastante-Rodríguez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
| | - Paul J Lusby
- EaStCHEM, School of Chemistry Joseph Black Building, David Brewster Road EH93FJ Edinburgh UK
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE) Avenida Fernando Abril Martorell, 106 46026 Valencia Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
| |
Collapse
|
11
|
Yuan G, Li M, Zhang Y, Dong Q, Shao S, Zhou Z, Tang J, Xiang J, Shen Y. Modulating Intracellular Dynamics for Optimized Intracellular Release and Transcytosis Equilibrium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400425. [PMID: 38574376 DOI: 10.1002/adma.202400425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Active transcytosis-mediated nanomedicine transport presents considerable potential in overcoming diverse delivery barriers, thereby facilitating tumor accumulation and penetration. Nevertheless, the persistent challenge lies in achieving a nuanced equilibrium between intracellular interception for drug release and transcytosis for tumor penetration. In this study, a comprehensive exploration is conducted involving a series of polyglutamine-paclitaxel conjugates featuring distinct hydrophilic/hydrophobic ratios (HHR) and tertiary amine-oxide proportions (TP) (OPGA-PTX). The screening process, meticulously focused on delineating their subcellular distribution, transcytosis capability, and tumor penetration, unveils a particularly promising candidate denoted as OPPX, characterized by an HHR of 10:1 and a TP of 100%. OPPX, distinguished by its rapid cellular internalization through multiple endocytic pathways, selectively engages in trafficking to the Golgi apparatus for transcytosis to facilitate accumulation within and penetration throughout tumor tissues and simultaneously sorted to lysosomes for cathepsin B-activated drug release. This study not only identifies OPPX as an exemplary nanomedicine but also underscores the feasibility of modulating subcellular distribution to optimize the active transport capabilities and intracellular release mechanisms of nanomedicines, providing an alternative approach to designing efficient anticancer nanomedicines.
Collapse
Affiliation(s)
- Guiping Yuan
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Li
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiuyang Dong
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Lv W, Wang Y, Fu H, Liang Z, Huang B, Jiang R, Wu J, Zhao Y. Recent advances of multifunctional zwitterionic polymers for biomedical application. Acta Biomater 2024; 181:19-45. [PMID: 38729548 DOI: 10.1016/j.actbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Zwitterionic polymers possess equal total positive and negative charges in the repeating units, making them electrically neutral overall. This unique property results in superhydrophilicity, which makes the zwitterionic polymers highly effective in resisting protein adsorption, thus endowing the drug carriers with long blood circulation time, inhibiting thrombus formation on biomedical devices in contact with blood, and ensuring the good sensitivity of sensors in biomedical application. Moreover, zwitterionic polymers have tumor-targeting ability and pH-responsiveness, rendering them ideal candidates for antitumor drug delivery. Additionally, the high ionic conductivity of zwitterionic polymers makes them an important raw material for ionic skin. Zwitterionic polymers exhibit remarkable resistance to bacterial adsorption and growth, proving their suitability in a wide range of biomedical applications such as ophthalmic applications, and wound dressings. In this paper, we provide an in-depth analysis of the different structures and characteristics of zwitterionic polymers and highlight their unique qualities and suitability for biomedical applications. Furthermore, we discuss the limitations and challenges that must be overcome to realize the full potential of zwitterionic polymers and present an optimistic perspective for zwitterionic polymers in the biomedical fields. STATEMENT OF SIGNIFICANCE: Zwitterionic polymers have a series of excellent properties such as super hydrophilicity, anti-protein adsorption, antibacterial ability and good ionic conductivity. However, biomedical applications of multifunctional zwitterionic polymers are still a major field to be explored. This review focuses on the design and application of zwitterionic polymers-based nanosystems for targeted and responsive delivery of antitumor drugs and cancer diagnostic agents. Moreover, the use of zwitterionic polymers in various biomedical applications such as biomedical devices in contact with blood, biosensors, ionic skin, ophthalmic applications and wound dressings is comprehensively described. We discuss current results and future challenges for a better understanding of multifunctional zwitterionic polymers for biomedical applications.
Collapse
Affiliation(s)
- Wenfeng Lv
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanhui Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huayu Fu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyang Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bangqi Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ruiqin Jiang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
13
|
Zhang H, Wang J, Wu R, Zheng B, Sang Y, Wang B, Song L, Hu Y, Ma X. Self-Supplied Reactive Oxygen Species-Responsive Mitoxantrone Polyprodrug for Chemosensitization-Enhanced Chemotherapy under Moderate Hyperthermia. Adv Healthc Mater 2024; 13:e2303631. [PMID: 38278138 DOI: 10.1002/adhm.202303631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/11/2023] [Indexed: 01/28/2024]
Abstract
Currently, the secondary development and modification of clinical drugs has become one of the research priorities. Researchers have developed a variety of TME-responsive nanomedicine carriers to solve certain clinical problems. Unfortunately, endogenous stimuli such as reactive oxygen species (ROS), as an important prerequisite for effective therapeutic efficacy, are not enough to achieve the expected drug release process, therefore, it is difficult to achieve a continuous and efficient treatment process. Herein, a self-supply ROS-responsive cascade polyprodrug (PMTO) is designed. The encapsulation of the chemotherapy drug mitoxantrone (MTO) in a polymer backbone could effectively reduce systemic toxicity when transported in vivo. After PMTO is degraded by endogenous ROS of the TME, another part of the polyprodrug backbone becomes cinnamaldehyde (CA), which can further enhance intracellular ROS, thereby achieving a sustained drug release process. Meanwhile, due to the disruption of the intracellular redox environment, the efficacy of chemotherapy drugs is enhanced. Finally, the anticancer treatment efficacy is further enhanced due to the mild hyperthermia effect of PMTO. In conclusion, the designed PMTO demonstrates remarkable antitumor efficacy, effectively addressing the limitations associated with MTO.
Collapse
Affiliation(s)
- Hongjie Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Jing Wang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Ruiying Wu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Benyan Zheng
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Yanxiang Sang
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Bibo Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Lei Song
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Yuan Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Xiaopeng Ma
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
14
|
Chen X, Wang B, Zhou Y, Wu X, Du A, Al Mamun A, Xu Y, Wang S, Jiang C, Xie L, Zhou K, Hu S, Xiao J. Poly (Betulinic Acid) Nanoparticles Loaded with bFGF Improve Functional Recovery After Spinal Cord Injury. Adv Healthc Mater 2024; 13:e2303462. [PMID: 38243745 DOI: 10.1002/adhm.202303462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Indexed: 01/21/2024]
Abstract
Oxidative stress (OS) is one of the crucial molecular events of secondary spinal cord injury (SCI). Basic fibroblast growth factor (bFGF) is a multipotent cell growth factor with an anti-oxidant effect. However, bFGF has a short half-life in vivo, which limits its therapeutic application. Biodegradable polymers with excellent biocompatibility have been recently applied in SCI. The negative aspect is that polymers cannot provide a significant therapeutic effect. Betulinic acid (BA), a natural anti-inflammatory compound, has been polymerized into poly (betulinic acid) (PBA) to serve as a drug carrier for bFGF. This study explores the therapeutic effects and underlying molecular mechanisms of PBA nanoparticles (NPs) loaded with bFGF (PBA-bFGF NPs) in SCI. Results show that PBA-bFGF NPs produce remarkable biocompatibility in vivo and in vitro. The results also demonstrate that local delivery of PBA-bFGF NPs enhances motor function recovery, inhibits OS, mitigates neuroinflammation, and alleviates neuronal apoptosis following SCI. Furthermore, the results indicate that local delivery of PBA-bFGF NPs activates the nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway following SCI. In summary, results suggest that local delivery of PBA-bFGF NPs delivers potential therapeutic advantages in the treatment and management of SCI.
Collapse
Affiliation(s)
- Xianghang Chen
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
- College of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Beini Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yongxiu Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xuejuan Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Anyu Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Abdullah Al Mamun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Central Research Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, China
| | - Yitie Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shuangshuang Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
| | - Chang Jiang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
| | - Ling Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Siwang Hu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
| | - Jian Xiao
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
15
|
Saady A, Malcolm GK, Fitzpatrick MP, Pairault N, Tizzard GJ, Mohammed S, Tavassoli A, Goldup SM. A Platform Approach to Cleavable Macrocycles for the Controlled Disassembly of Mechanically Caged Molecules. Angew Chem Int Ed Engl 2024; 63:e202400344. [PMID: 38276911 DOI: 10.1002/anie.202400344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inspired by interlocked oligonucleotides, peptides and knotted proteins, synthetic systems where a macrocycle cages a bioactive species that is "switched on" by breaking the mechanical bond have been reported. However, to date, each example uses a bespoke chemical design. Here we present a platform approach to mechanically caged structures wherein a single macrocycle precursor is diversified at a late stage to include a range of trigger units that control ring opening in response to enzymatic, chemical, or photochemical stimuli. We also demonstrate that our approach is applicable to other classes of macrocycles suitable for rotaxane and catenane formation.
Collapse
Affiliation(s)
- Abed Saady
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia K Malcolm
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Fitzpatrick
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Noel Pairault
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Graham J Tizzard
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Soran Mohammed
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
16
|
Zuo Z, Wang L, Wang S, Liu X, Wu D, Ouyang Z, Meng R, Shan Y, Zhang S, Peng T, Wang L, Li Z, Cong Y. Radioprotective effectiveness of a novel delta-tocotrienol prodrug on mouse hematopoietic system against 60Co gamma-ray irradiation through inducing granulocyte-colony stimulating factor production. Eur J Med Chem 2024; 269:116346. [PMID: 38518524 DOI: 10.1016/j.ejmech.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Considering the increasing risk of nuclear attacks worldwide, the development of develop potent and safe radioprotective agents for nuclear emergencies is urgently needed. γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have demonstrated a potent radioprotective effect by inducing the production of granulocyte-colony stimulating factor (G-CSF) in vivo. However, their application is limited because of their low bioavailability. The utilization of ester prodrugs can be an effective strategy for modifying the pharmacokinetic properties of drug molecules. In this study, we initially confirmed that DT3 exhibited the most significant potential for inducing G-CSF effects among eight natural vitamin E homologs. Consequently, we designed and synthesized a series of DT3 ester and ether derivatives, leading to improved radioprotective effects. The metabolic study conducted in vitro and in vivo has identified DT3 succinate 5b as a prodrug of DT3 with an approximately seven-fold higher bioavailability compared to DT3 alone. And DT3 ether derivative 8a were relatively stable and approximately 4 times more bioavailable than DT3 prototype. Furthermore, 5b exhibited superior ability to mitigate radiation-induced pancytopenia, enhance the recovery of bone marrow hematopoietic stem and progenitor cells, and promote splenic extramedullary hematopoiesis in sublethal irradiated mice. Similarly, 8a shown potential radiation protection, but its radiation protection is less than DT3. Based on these findings, we identified 5b as a DT3 prodrug, and providing an attractive candidate for further drug development.
Collapse
Affiliation(s)
- Zongchao Zuo
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Limei Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shaozheng Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xinyu Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dandan Wu
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key Lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing, 210046, China
| | - Zhangyi Ouyang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruoxi Meng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yajun Shan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shouguo Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tao Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lin Wang
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
| | - Yuwen Cong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
17
|
Yuan W, Hibi Y, Tamura R, Sumita M, Nakamura Y, Naito M, Tsuda K. Revealing factors influencing polymer degradation with rank-based machine learning. PATTERNS (NEW YORK, N.Y.) 2023; 4:100846. [PMID: 38106610 PMCID: PMC10724228 DOI: 10.1016/j.patter.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 12/19/2023]
Abstract
The efficient treatment of polymer waste is a major challenge for marine sustainability. It is useful to reveal the factors that dominate the degradability of polymer materials for developing polymer materials in the future. The small number of available datasets on degradability and the diversity of their experimental means and conditions hinder large-scale analysis. In this study, we have developed a platform for evaluating the degradability of polymers that is suitable for such data, using a rank-based machine learning technique based on RankSVM. We then made a ranking model to evaluate the degradability of polymers, integrating three datasets on the degradability of polymers that are measured by different means and conditions. Analysis of this ranking model with a decision tree revealed factors that dominate the degradability of polymers.
Collapse
Affiliation(s)
- Weilin Yuan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yusuke Hibi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ryo Tamura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masato Sumita
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Yasuyuki Nakamura
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Masanobu Naito
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
18
|
Zhang S, Jiang W, Wang S, Song K, Ge M, Zhang L, Yan X, Jiang B. Cancer cell membrane fused liposomal platinum(IV) prodrugs overcome cisplatin resistance in esophageal squamous cell carcinoma chemotherapy. J Mater Chem B 2023; 11:11384-11393. [PMID: 38014915 DOI: 10.1039/d3tb01997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a major health challenge, with cisplatin (CDDP) being the primary chemotherapy drug, albeit accompanied by resistance development over time. This study introduces a novel platinum drug delivery system, EMLipoPt(IV), tailored to enhance platinum uptake and diminish its inactivation, providing a solution to CDDP resistance in ESCC. By synthesizing a fusion of the ESCC cell membrane with liposomal Pt(IV) prodrugs, we integrated the tumor-targeting capacity of the ESCC membrane with the inactivation resistance of Pt(IV) prodrugs. In vivo and in vitro evaluations illustrated EMLipoPt(IV)'s robustness against inactivating agents, superior tumor-targeting capacity, and remarkable ability to suppress CDDP-resistant tumor progression. Importantly, the biosafety profile of EMLipoPt(IV) surpassed existing treatments, offering a prolonged survival rate in animal models. Collectively, this work not only presents a pioneering approach in ESCC chemotherapy but also provides a blueprint for combating drug resistance in other cancers, emphasizing the broader potential for tailored drug delivery systems.
Collapse
Affiliation(s)
- Shuaibing Zhang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shenghui Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Kexu Song
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Mengyue Ge
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment, Henan, 450001, China
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Yimyai T, Crespy D, Rohwerder M. Corrosion-Responsive Self-Healing Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300101. [PMID: 36939547 DOI: 10.1002/adma.202300101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.
Collapse
Affiliation(s)
- Tiwa Yimyai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| |
Collapse
|
20
|
Liu P. Polyprodrugs for tumor chemotherapy: from molecular structure to drug release performance. J Mater Chem B 2023; 11:9565-9571. [PMID: 37791422 DOI: 10.1039/d3tb01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Polyprodrugs have been recognized as promising carrier-free drug delivery systems (DDSs) for tumor chemotherapy in recent years, showing distinct superiority in comparison with the conventional polymer prodrugs. In the present work, the structure-property relationship of polyprodrugs was explored from the perspective of molecular structure, by discussing the effects of the conjugations and linkers on their drug content and drug releasing performance, including drug releasing rate and drug releasing selectivity, as well as the anti-tumor performance of the released drugs. Moreover, the future challenges in the design of polyprodrug-based DDSs with high anti-tumor efficacy were also highlighted.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
21
|
Liu C, Steppert AK, Liu Y, Weis P, Hu J, Nie C, Xu WC, Kuehne AJC, Wu S. A Photopatternable Conjugated Polymer with Thermal-Annealing-Promoted Interchain Stacking for Highly Stable Anti-Counterfeiting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303120. [PMID: 37257837 DOI: 10.1002/adma.202303120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Photoresponsive polymers can be conveniently used to fabricate anti-counterfeiting materials through photopatterning. However, an unsolved problem is that ambient light and heat can damage anti-counterfeiting patterns on photoresponsive polymers. Herein, photo- and thermostable anti-counterfeiting materials are developed by photopatterning and thermal annealing of a photoresponsive conjugated polymer (MC-Azo). MC-Azo contains alternating azobenzene and fluorene units in the polymer backbone. To prepare an anti-counterfeiting material, an MC-Azo film is irradiated with polarized blue light through a photomask, and then thermally annealed under the pressure of a photonic stamp. This strategy generates a highly secure anti-counterfeiting material with dual patterns, which is stable to sunlight and heat over 200 °C. A key for the stability is that thermal annealing promotes interchain stacking, which converts photoresponsive MC-Azo to a photostable material. Another key for the stability is that the conjugated structure endows MC-Azo with desirable thermal properties. This study shows that the design of photopatternable conjugated polymers with thermal-annealing-promoted interchain stacking provides a new strategy for the development of highly stable and secure anti-counterfeiting materials.
Collapse
Affiliation(s)
- Chengwei Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ann-Kathrin Steppert
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jianyu Hu
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Song C, Chen M, Tan J, Xu J, Zhang Y, Zhang G, Hu X, Liu S. Self-Amplified Cascade Degradation and Oxidative Stress Via Rational pH Regulation of Oxidation-Responsive Poly(ferrocene) Aggregates. J Am Chem Soc 2023; 145:17755-17766. [PMID: 37527404 DOI: 10.1021/jacs.3c04454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Precise activation of polymer nanoparticles at lesion sites is crucial to achieve favorable therapeutic efficacy. However, conventional endogenous stimuli-responsive polymer nanoparticles probably suffer from few triggers to stimulate the polymer degradation and subsequent functions. Here, we describe oxidation-responsive poly(ferrocene) amphiphiles containing phenylboronic acid ester and ferrocene as the repeating backbone units. Upon triggering by hydrogen peroxide inside the tumor cells, the phenylboronic acid ester bonds are broken and poly(ferrocene) units are degraded to afford free ferrocene and noticeable hydroxide ions. The released hydroxide ions can immediately improve the pH value within the poly(ferrocene) aggregates, and the degradation rate of the phenylboronic acid ester backbone is further promoted by the upregulated pH; thereupon, the accelerated degradation can release much more additional hydroxide ions to improve the pH, thus achieving a positive self-amplified cascade degradation of poly(ferrocene) aggregates accompanied by oxidative stress boosting and efficient cargo release. Specifically, the poly(ferrocene) aggregates can be degraded up to ∼90% within 12 h when triggered by H2O2, while ferrocene-free control nanoparticles are degraded by only 30% within 12 days. In addition, the maleimide moieties tethered in the hydrophilic corona can capture blood albumin to form an albumin-rich protein corona and significantly improve favorable tumor accumulation. The current oxidation-responsive poly(ferrocene) amphiphiles can efficiently inhibit tumors in vitro and in vivo. This work provides a proof-of-concept paradigm for self-amplified polymer degradation and concurrent oxidative stress, which is promising in actively regulated precision medicine.
Collapse
Affiliation(s)
- Chengzhou Song
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Minglong Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiajia Tan
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jie Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuben Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xianglong Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
23
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
24
|
Bruschi ML, de Souza Nunes GC. Magnetic Gels in Skin Cancer Treatment: A Review of Potential Applications in Diagnostics, Drug Delivery and Hyperthermia. Pharmaceutics 2023; 15:pharmaceutics15041244. [PMID: 37111728 PMCID: PMC10143045 DOI: 10.3390/pharmaceutics15041244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Skin cancer (SC) is affecting an increasing number of people worldwide. Its lesions affect mainly the most exposed regions of the skin. SC is classified into to main categories: non-melanoma (basal cell carcinoma of the epidermis and squamous cell carcinoma) and melanoma (the abnormal proliferation of melanocytes, which is rarer, more hazardous, and more deadly). Prevention and early diagnosis are important actions, and surgery is often considered. After the removal of cancerous lesions, the local administration of medicine can guarantee anticancer therapeutic action, rapid healing and the recovery of tissue, ensuring the absence of recurrence. Magnetic gels (MGs) have attracted increased attention regarding their pharmaceutical and biomedical applications. They are magnetic nanoparticles (e.g., iron oxide nanoparticles) dispersed in a polymeric matrix, which constitute adaptive systems under a magnetic field. MGs can combine magnetic susceptibility, high elasticity, and softness, and are thus useful platforms for diagnostics, drug delivery, and also for hyperthermia. This manuscript reviews MGs as a technological strategy for the treatment of SC. An overview of SC and the treatment, types, and methods of preparing MGs are discussed. Moreover, the applications of MGs in SC and their future perspectives are considered. The combination of polymeric gels and magnetic nanoparticles continues to be investigated, and new products must hit the market. Clinical trials and new products are expected, due to the important advantages of MGs.
Collapse
Affiliation(s)
- Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil
| | - Glécilla Colombelli de Souza Nunes
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil
| |
Collapse
|
25
|
Li X, Auepattana-Aumrung K, Butt HJ, Crespy D, Berger R. Fast-release kinetics of a pH-responsive polymer detected by dynamic contact angles. J Chem Phys 2023; 158:144901. [PMID: 37061469 DOI: 10.1063/5.0142928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Polymers conjugated with active agents have applications in biomedicine, anticorrosion, and smart agriculture. When the active agent is used as a drug, corrosion inhibitor, or pesticide, it can be released upon a specific stimulus. The efficiency and the sustainability of active agents are determined by the released kinetics. In this work, we study the fast-release kinetics of 8-hydroxyquinoline (8HQ) from a pH-responsive, random copolymer of methyl methacrylate and 8-quinolinyl-sulfide-ethyl acrylate [P(MMA-co-HQSEA)] by hydrolysis of the β-thiopropionate groups. We used contact angle measurements of sliding drops as an elegant way to characterize the release kinetics. Based on the results gained from 1H nuclear magnetic resonance measurement, fluorescent intensity measurement, and velocity-dependent contact angle measurement, we found that both the hydrolysis rate and polymer conformation affect the release kinetics of 8HQ from a P(MMA-co-HQSEA) film. Polymer chains collapse and further suppress the release from the inner layer in acidic conditions, while polymer chains in a stretched condition further facilitate the release from the inner layer. As a result, the cumulative release rate of 8HQ is higher in the basic condition than in the acidic condition.
Collapse
Affiliation(s)
- Xiaomei Li
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Krisada Auepattana-Aumrung
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
26
|
Yang Y, Du LQ, Huang Y, Liang CJ, Qin QP, Liang H. Platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds induces mitophagy-mediated apoptosis in A549/DDP cancer cells. J Inorg Biochem 2023; 241:112152. [PMID: 36736244 DOI: 10.1016/j.jinorgbio.2023.112152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
For the first time, two new mononuclear platinum(II) coordination compounds, [Pt(L1)(DMSO)Cl] (PtL1) and [Pt(L2)(DMSO)Cl] (PtL2) with the 5-(ethoxymethyl)-8-hydroxyquinoline hydrochloride (H-L1) and 5-bromo-8-hydroxyquinoline (H-L2) have been synthesized and characterized. The cytotoxic activity of PtL1 and PtL2 were screened in both healthy HL-7702 cell line and cancer cell lines, human lung adenocarcinoma A549 cancer cells and cisplatin-resistant lung adenocarcinoma A549/DDP cancer cells (A549R), and were compared to that of the H-L1, H-L2, H-L3 ligands and 8-hydroxyquinoline (H-L3) platinum(II) complex [Pt(L3)(DMSO)Cl] (PtL3). MTT results showed that PtL1 bearing one deprotonated L1 ligand against A549R was more potent by 8.8-48.6 fold than that of PtL2 and PtL3 complexes but was more selective toward healthy HL-7702 cells. In addition, PtL1 and PtL3 overcomes tumour drug resistance by significantly inducing mitophagy and causing the change of the related proteins expression, which leads to cell apoptosis. Moreover, the inhibitory effect of PtL1 on A549 xenograft tumour was 68.2%, which was much higher than that of cisplatin (cisPt, ca. 50.0%), without significantly changing nude mice weight in comparison with the untreated group. This study helps to explore the potential of the platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds for the new Pt-resistant cancer therapy.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
27
|
Channab BE, El Idrissi A, Zahouily M, Essamlali Y, White JC. Starch-based controlled release fertilizers: A review. Int J Biol Macromol 2023; 238:124075. [PMID: 36940767 DOI: 10.1016/j.ijbiomac.2023.124075] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Starch, as a widely available renewable resource, has the potential to be used in the production of controlled-release fertilizers (CRFs) that support sustainable agriculture. These CRFs can be formed by incorporating nutrients through coating or absorption, or by chemically modifying the starch to enhance its ability to carry and interact with nutrients. This review examines the various methods of creating starch-based CRFs, including coating, chemical modification, and grafting with other polymers. In addition, the mechanisms of controlled release in starch-based CRFs are discussed. Overall, the potential benefits of using starch-based CRFs in terms of resource efficiency and environmental protection are highlighted.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| |
Collapse
|
28
|
Charge-conversional click polyprodrug nanomedicine for targeted and synergistic cancer therapy. J Control Release 2023; 356:567-579. [PMID: 36924894 DOI: 10.1016/j.jconrel.2023.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Polyprodrug nanomedicines hold great potential for combating tumors. However, the functionalization of polyprodrug nanomedicines to improve therapeutic efficacy is restricted by conventional polymerization methods. Herein, we fabricated a charge-conversional click polyprodrug nanomedicine system by metal-free azide-alkyne cycloaddition click polymerization (AACCP) for targeted and synergistic cancer therapy. Specifically, Pt(IV) prodrug-backboned diazide monomer, DMC prodrug-pendent diazide monomer, dialkyne-terminated PEG monomer and azide-modified folate were click polymerized to obtain the target polyprodrug (P1). P1 could self-assemble into nano-micelles (1-NM), where PEG was the hydrophilic shell with folate on the surface, Pt(IV) and DMC prodrugs as the hydrophobic core. Taking advantage of PEGylation and folate-mediated tumor cell targeting, 1-NM achieved prolonged blood circulation time and high tumor accumulation efficiency. Tumor acidic microenvironment-responsive cleavage and cascade activation of pendant DMC prodrug induced surface charge conversion of 1-NM from negative to positive, which promoted tumor penetration and cellular internalization of the remaining 1-NM. After internalization into tumor cells, the reduction-responsive activation of Pt(IV) prodrug to Pt(II) further showed synergetic effect with DMC for enhanced apoptosis. This first designed charge-conversional click polyprodrug nanomedicine exhibited targeted and synergistic efficacy to suppress tumor proliferation in living mice bearing human ovarian tumor model.
Collapse
|
29
|
Li J, Zong Q, Zhao Z, Yuan Y. A dual-amplified ROS-responsive nanosystem with self-accelerating drug release for synergistic chemotherapy. Chem Commun (Camb) 2023; 59:3142-3145. [PMID: 36811610 DOI: 10.1039/d3cc00052d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In this work, we have developed a tumor-specific self-accelerating prodrug activation nanosystem consisting of self-amplifying degradable polyprodrug PEG-TA-CA-DOX and encapsulated fluorescent prodrug BCyNH2, equipped with a reactive oxygen species dual-cycle amplification effect. Furthermore, activated CyNH2 is a therapeutic agent with potential to synergistically improve chemotherapy.
Collapse
Affiliation(s)
- Jun Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Qingyu Zong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhongyi Zhao
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Youyong Yuan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China.,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
30
|
Zheng L, Seidi F, Wu W, Pan Y, Xiao H. Dual-functional lignin-based hydrogels for sustained release of agrochemicals and heavy metal ion complexation. Int J Biol Macromol 2023; 235:123701. [PMID: 36801277 DOI: 10.1016/j.ijbiomac.2023.123701] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
An effective way of improving the efficiency of agrochemicals and improving crop yield and quality is by slow or sustained release, which is conducive to environmental protection. Meanwhile, the excessive amount of heavy metal ions in soil can create toxicity in plants. Here, we prepared lignin-based dual-functional hydrogels containing conjugated agrochemical and heavy metal ligands through free-radical copolymerization. The content of the agrochemicals (including plant growth regulator 3-indoleacetic acid (IAC) and herbicide 2,4-dichlorophenoxyacetic acid (DCP)) in the hydrogels were tuned by changing the hydrogel composition. The conjugated agrochemicals could slowly release through the gradual cleavage of the ester bond. As a result of the release of the DCP herbicide, the growth of lettuce was effectively regulated, thus confirming the feasibility and effectiveness of this system in application. At the same time, due to the presence of metal chelating groups (such as COOH, phenolic OH, and tertiary amine) the hydrogels could act as adsorbents or stabilizers towards heavy metal ions for improving the soil remediation and preventing the adsorption of these toxic metals by plant roots. Specifically, Cu(II) and Pb(II) could be adsorbed >380 and 60 mg/g, respectively.
Collapse
Affiliation(s)
- Ling Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanfeng Pan
- Guangxi Colleges and Universities Key Laboratory of New Chemical Application Technology in Resources, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5 A3, Canada.
| |
Collapse
|
31
|
Chen R, Funnell JL, Quinones GB, Bentley M, Capadona JR, Gilbert RJ, Palermo EF. Poly(pro-curcumin) Materials Exhibit Dual Release Rates and Prolonged Antioxidant Activity as Thin Films and Self-Assembled Particles. Biomacromolecules 2023; 24:294-307. [PMID: 36512693 DOI: 10.1021/acs.biomac.2c01135] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Curcumin is a natural polyphenol that exhibits remarkable antioxidant and anti-inflammatory activities; however, its clinical application is limited in part by its physiological instability. Here, we report the synthesis of curcumin-derived polyesters that release curcumin upon hydrolytic degradation to improve curcumin stability and solubility in physiological conditions. Curcumin was incorporated in the polymer backbone by a one-pot condensation polymerization in the presence of sebacoyl chloride and polyethylene glycol (PEG, Mn = 1 kDa). The thermal and mechanical properties, surface wettability, self-assembly behavior, and drug-release kinetics all depend sensitively on the mole percentage of curcumin incorporated in these statistical copolymers. Curcumin release was triggered by the hydrolysis of phenolic esters on the polymer backbone, which was confirmed using a PEGylated curcumin model compound, which represented a putative repeating unit within the polymer. The release rate of curcumin was controlled by the hydrophilicity of the polymers. Burst release (2 days) and extended release (>8 weeks) can be achieved from the same polymer depending on curcumin content in the copolymer. The materials can quench free radicals for at least 8 weeks and protect primary neurons from oxidative stress in vitro. Further, these copolymer materials could be processed into both thin films and self-assembled particles, depending on the solvent-based casting conditions. Finally, we envision that these materials may have potential for neural tissue engineering application, where antioxidant release can mitigate oxidative stress and the inflammatory response following neural injury.
Collapse
Affiliation(s)
- Ruiwen Chen
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jessica L Funnell
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Geraldine B Quinones
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Marvin Bentley
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106, United States
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Albany Stratton Veteran Affairs Medical Center, Albany, New York 12208, United States
| | - Edmund F Palermo
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
32
|
Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|