1
|
Xu J, Xu H, Li J, Huang W, Li Y, Guo X, Zhu M, Peng Y, Zhou Y, Nie Y. Clostridium butyricum-induced balance in colonic retinol metabolism and short-chain fatty acid levels inhibit IgA-related mucosal immunity and relieve colitis developments. Microbiol Res 2025; 298:128203. [PMID: 40319662 DOI: 10.1016/j.micres.2025.128203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/08/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Gut microbiota and their metabolites play a significant role in inflammatory bowel disease. Here, we attempted to determine the anti-inflammatory role of the probiotic Clostridium. butyricum (CB) in inflammatory bowel disease and identify the exact immune mechanism. The clinical significance of Clostridiales and CB was explored in patients with ulcerative colitis. The inflammation-suppressive role of CB was evaluated in mice with DSS-induced colitis. 16S rRNA sequencing was performed to assess changes in the gut microbiota. Altered transcription levels were detected by RNA sequencing. Flow cytometry was performed to assess the frequency of IgA responses to gut microbiota. Clostridiales and CB were depleted in ulcerative colitis. Oral gavage with CB significantly suppressed weight loss and colon shortening in the dextran sulfate sodium-induced colitis mouse model. Intestinal barrier injury was reversed and the gut microbiota was restored upon treatment with CB administration. The mucosal immune response to gut microbiota was reversed upon treatment with CB. CB conditional medium was more effective than heat-killed CB in alleviating inflammation. Mechanistically, retinol metabolism and retinoic acid levels were higher in groups treated with CB and butyrate. CB and the metabolite butyrate exerted a suppressive role on the abundance of Immunoglobulin A-coated gut microbiota by inhibiting retinoic acid synthesis. In summary, CB protects against inflammation and intestinal barrier injury by producing anti-inflammatory metabolites that can regulate the mucosal immune response to gut microbiota by increasing retinoic acid levels in the colon.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, China; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jianhong Li
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, China; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Wenqi Huang
- Division of Rheumatology, Department of Medicine/Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, China; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Minzheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, China; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Jamali F, Mousavi S, Homayouni-Rad A, Meshkini A, Alikhah H, Houshyar J, Kamalledin Moghadam S, Yaghoubi SM, Motlagh Asghari K, Torbati Ilkhchi M, Naseri Alavi SA. Exploring Innovative Approaches for Managing Spinal Cord Injury: A Comprehensive Review of Promising Probiotics and Postbiotics. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10513-6. [PMID: 40232596 DOI: 10.1007/s12602-025-10513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/16/2025]
Abstract
Spinal cord injury (SCI) affects millions of people worldwide annually, presenting significant challenges in functional recovery despite therapeutic advancements. Current treatment strategies predominantly focus on stabilizing the spinal cord and facilitating neural repair, yet their effectiveness remains uncertain and controversial. Recent scientific investigations have explored the potential of probiotics and postbiotics to modulate inflammation, influence neurotransmitters, and aid in tissue repair, marking a potential paradigm shift in SCI management. This review critically evaluates these innovative approaches, emphasizing their ability to harness the natural properties of microorganisms within the body to potentially enhance outcomes in SCI treatment. By analyzing the latest research findings, this review provides valuable insights into how probiotics and postbiotics can revolutionize inflammation management and neurological recovery following SCI, underscoring their promising role in future therapeutic strategies aimed at improving the quality of life of SCI patients globally.
Collapse
Affiliation(s)
- Fereshteh Jamali
- Neurosurgery Department, Children'S Hospital at Montefiore, New York City, USA
| | - Safa Mousavi
- Department of Public Health, College of Health and Human Services, California State University, Fresno, CA, USA
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Meshkini
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalil Houshyar
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
3
|
Fernández-Veledo S, Grau-Bové C, Notararigo S, Huber-Ruano I. The role of microbial succinate in the pathophysiology of inflammatory bowel disease: mechanisms and therapeutic potential. Curr Opin Microbiol 2025; 85:102599. [PMID: 40132355 DOI: 10.1016/j.mib.2025.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition linked to gut microbiota dysbiosis and altered production of bacterial metabolites, including succinate, which is also a key intermediate in human mitochondrial energy metabolism in human cells. Succinate levels in the gut are influenced by microbial community dynamics and cross-feeding interactions, highlighting its dual metabolic and ecological importance. Extracellular succinate acts as a key signaling metabolite linking microbial metabolism to host physiology, with transient rises supporting metabolic regulation but chronic elevations contributing to metabolic disorders and disease progression. Succinate signals through its cognate receptor SUCNR1, which mediates adaptive metabolic responses under normal conditions but drives inflammation and fibrosis when dysregulated. IBD patients display a dysbiotic gut microbiota characterized by an increased prevalence of succinate-producing bacteria, contributing to elevated succinate levels in the gut and circulation. This imbalance drives inflammation, worsens IBD severity, and contributes to complications like Clostridioides difficile infection and fibrosis. Emerging evidence highlights the potential of intestinal and systemic succinate levels as indicators of microbial dysbiosis, with a bidirectional relationship between microbial composition and succinate metabolism. Understanding the factors influencing succinate levels and their interaction with dysbiosis shows promise in the development of therapeutic strategies to restore microbial balance. Approaches such as dietary fiber enrichment, prebiotics, and probiotics to enhance succinate-consuming bacteria, combined with targeted modulation of succinate pathways (e.g. SDH inhibitors, SUCNR1 antagonists), hold promise for mitigating inflammation and improving gut health in IBD.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department de Ciències Mèdiques Bàsiques, University Rovira i Virgili, Tarragona, Spain.
| | - Carme Grau-Bové
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; SucciPro, S.L, Barcelona, Spain
| | - Sara Notararigo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; SucciPro, S.L, Barcelona, Spain
| | - Isabel Huber-Ruano
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; SucciPro, S.L, Barcelona, Spain.
| |
Collapse
|
4
|
Du S, Sun R, Wang M, Fang Y, Wu Y, Yuan B, Jin Y. Synergistic effect of inulin hydrogels on multi-strain probiotics for prevention of ionizing radiation-induced injury. Int J Biol Macromol 2025; 287:138497. [PMID: 39647719 DOI: 10.1016/j.ijbiomac.2024.138497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Prebiotics and probiotics are applied against multiple diseases including ionizing radiation-induced injury but their functions are not revealed enough. Here, we used a prebiotic, inulin hydrogels (IGs) to load multi-strain probiotics (MSPs) for protecting them from the gastrointestinal environment and improving their colonization in the gut; more importantly, they showed the synergistic effect against ionizing radiation-induced injury. Probiotics were embedded in a great number of channels of the IGs and used IGs as food. The MSP was composed of Clostridium butyricum (Cb), Bifidobacterium adolescentis (Ba), and Akkermansia muciniphila (Akk), which separately mainly produced butyl acid, acetic acid and lactic acid, and stimulated mucin proteins. Although the MSP showed higher effect against mouse radiation enteritis than the single probiotics and the similar effect to IGs, the IG/MSP-based synbiotic had the highest protection and improved many factors close to the normal levels, including animal physical activity, enteric barrier function, occludin and ZO-1 expressions, injury extension, the levels of pro-inflammatory factors (IL-6, TNF-α), gut microbiota, and short-chained fatty acids. Moreover, the synbiotic had strong protection against whole-body irradiation with high blood cell numbers, hemopoietic system recovery, and high levels of IL-3 and IL-10. IGs greatly synergized probiotics against ionizing radiation-induced injury.
Collapse
Affiliation(s)
- Shumin Du
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Rui Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Minting Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yubao Fang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanping Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
5
|
Huang Y, Peng S, Zeng R, Yao H, Feng G, Fang J. From probiotic chassis to modification strategies, control and improvement of genetically engineered probiotics for inflammatory bowel disease. Microbiol Res 2024; 289:127928. [PMID: 39405668 DOI: 10.1016/j.micres.2024.127928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024]
Abstract
With the rising morbidity of inflammatory bowel disease (IBD) year by year, conventional therapeutic drugs with systemic side effects are no longer able to meet the requirements of patients. Probiotics can improve gut microbiota, enhance intestinal barrier function, and regulate mucosal immunity, making them a potential complementary or alternative therapy for IBD. To compensate for the low potency of probiotics, genetic engineering technology has been widely used to improve their therapeutic function. In this review, we systematically summarize the genetically engineered probiotics used for IBD treatment, including probiotic chassis, genetic modification strategies, methods for controlling probiotics, and means of improving efficacy. Finally, we provide prospects on how genetically engineered probiotics can be extended to clinical applications.
Collapse
Affiliation(s)
- Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha 410081, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Sivri D, Şeref B, Şare Bulut M, Gezmen Karadağ M. Evaluation of the Effect of Probiotic Supplementation on Intestinal Barrier Integrity and Epithelial Damage in Colitis Disease: A Systematic Review. Nutr Rev 2024:nuae180. [PMID: 39602817 DOI: 10.1093/nutrit/nuae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
CONTEXT Previous reviews have focused on the effects of probiotics on colitis, but there is a need to understand their impact on barrier integrity and tight junction protein improvement in colitis. OBJECTIVE This study aimed to systematically examine the effects of probiotic use on barrier integrity in colitis disease. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. DATA SOURCES A systematic search in PubMed, Web of Science, Scopus, and Cochrane databases identified 2537 articles. DATA EXTRACTION As a result of the search, 2537 articles were accessed. Study results were summarized descriptively through discussions by intervention conditions, study population, measurement methods, and key findings. The included studies were independently reviewed and all authors reached consensus on the quality and major findings from the included articles. Forty-six studies that met the inclusion criteria were analyzed within the scope of the systematic review. RESULTS Although the study primarily utilized probiotics from the Lactobacillaceae family (notably, L casei, L reuteri, L rhamnosus, L plantarum, and L pentosus) and the Bifidobacteriaceae family (notably, B breve, B animalis, and B dentium), other probiotics also demonstrated positive effects on tight junction proteins. These effects are attributed to the production of bioactive and metabolic compounds, as well as short-chain fatty acids, which combat pathogens and reduce anti-inflammatory agents. However, it was observed that the effects of these probiotics on tight junction proteins varied depending on the strain and dose. CONCLUSION The beneficial effects of probiotics on remission in inflammatory bowel disease are well documented. Studies show that probiotics generally improve intestinal barrier function, but factors such as dose, duration, and bacterial species combinations need further clarification. Additionally, comprehensive studies are needed to understand how improved barrier function affects absorption in individuals. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023452774.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetics, Anadolu University, Eskişehir, Türkiye
| | - Betül Şeref
- Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Melike Şare Bulut
- Department of Nutrition and Dietetics, Biruni University, Istanbul, Türkiye
| | | |
Collapse
|
7
|
Liu T, Fan S, Meng P, Ma M, Wang Y, Han J, Wu Y, Li X, Su X, Lu C. Dietary Dihydroquercetin Alleviated Colitis via the Short-Chain Fatty Acids/miR-10a-5p/PI3K-Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23211-23223. [PMID: 39393822 DOI: 10.1021/acs.jafc.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Gut microbiota provides an important insight into clarifying the mechanism of active substances with low bioavailability, but its specific action mechanism varied case by case and remained unclear. Dihydroquercetin (DHQ) is a bioactive flavonoid with low bioavailability, which showed beneficial effects on colitis alleviation and gut microbiota modulation. Herein, we aimed to explore the microbiota-dependent anticolitis mechanism of DHQ in sight of gut microbiota metabolites and their interactions with microRNAs (miRNAs). Dietary supplementation of DHQ alleviated dextran sulfate sodium-induced colitis phenotypes and improved gut microbiota dysbiosis. Fecal microbiota transplantation further revealed that the anticolitis activity of DHQ was mediated by gut microbiota. To clarify how the modulated gut microbiota alleviated colitis in mice, the tandem analyses of the microbiome and targeted metabolome were performed, and altered profiles of metabolite short-chain fatty acids (SCFAs) and bile acids and their producers were observed in DHQ-treated mice. In addition, SCFA treatment showed anticolitis activity compared to that of bile acids, along with the specific inhibition on the phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) pathway. Subsequently, the colonic miRNA profile of mice receiving SCFA treatment was sequenced, and a differentially expressed miR-10a-5p was identified. Both prediction analysis and dual-luciferase reporter assay indicated that miR-10a-5p directly bind to the 3'-untranslated regions of gene pik3ca, inhibit the PI3K-Akt pathway activation, and lead to colitis alleviation. Together, we proposed that gut microbiota mediated the anticolitis activity of DHQ through the SCFAs/miR-10a-5p/PI3K-Akt axis, and it provided a novel insight into clarifying the microbiota-dependent mechanism via the interaction between metabolites and miRNAs.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Siqing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Pengfei Meng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yufei Wu
- The Affiliated People's Hospital of Ningbo University, Ningbo 315040, China
| | - Xiao Li
- Xiangshan First People's Hospital Medical and Health Group, Ningbo 315700, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
8
|
Tan X, Cui J, Liu N, Wang X, Li H, Liu Y, Zhang W, Ma W, Lu D, Fan Y. Study on the immune-enhancing and inhabiting transmissible gastroenteritis virus effects of polysaccharides from Cimicifuga rhizoma. Microb Pathog 2024; 192:106719. [PMID: 38810768 DOI: 10.1016/j.micpath.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 μg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1β content compared with control group. 250 μg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.
Collapse
Affiliation(s)
- Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Jing Cui
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Nishang Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Xingchen Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
9
|
Zhang M, Zhao X, Li Y, Ye Q, Wu Y, Niu Q, Zhang Y, Fan G, Chen T, Xia J, Wu Q. Advances in serum-free media for CHO cells: From traditional serum substitutes to microbial-derived substances. Biotechnol J 2024; 19:e2400251. [PMID: 39031790 DOI: 10.1002/biot.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
The Chinese hamster ovary (CHO) cell is an epithelial-like cell that produces proteins with post-translational modifications similar to human glycosylation. It is widely used in the production of recombinant therapeutic proteins and monoclonal antibodies. Culturing CHO cells typically requires the addition of a certain proportion of fetal bovine serum (FBS) to maintain cell proliferation and passaging. However, serum is characterized by its complex composition, batch-to-batch variability, high cost, and potential risk of exogenous contaminants such as mycoplasma and viruses, which impact the purity and safety of the synthesized proteins. Therefore, search for serum alternatives and development of serum-free media for CHO-based protein biomanufacturing are of great significance. This review systematically summarizes the application advantages of CHO cells and strategies for high-density expression. It highlights the developmental trends of serum substitutes from human platelet lysates to animal-free extracts and microbial-derived substances and elucidates the mechanisms by which these substitutes enhance CHO cell culture performance and recombinant protein production, aiming to provide theoretical guidance for exploring novel serum alternatives and developing serum-free media for CHO cells.
Collapse
Affiliation(s)
- Mingcan Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiarui Xia
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Jahani-Sherafat S, Azimirad M, Raeisi H, Azizmohammad Looha M, Tavakkoli S, Ahmadi Amoli H, Moghim S, Rostami-Nejad M, Yadegar A, Zali MR. Alterations in the gut microbiota and their metabolites in human intestinal epithelial cells of patients with colorectal cancer. Mol Biol Rep 2024; 51:265. [PMID: 38302841 DOI: 10.1007/s11033-024-09273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The gut microbiota has become one of the main risk factors for the formation and development of colorectal cancer (CRC). CRC intensification may be due to the microbial pathogens' colonization and their released metabolites. Here, we analyzed Bacteroidetes and Clostridia bacteria in CRC patients and studied bacterial metabolome in cancerous tissues compared to their adjacent normal tissues. METHODS AND RESULTS The population of selected bacteria in biopsy specimens of 30 patients with CRC was studied by RT-qPCR. The mutagenicity and cytotoxicity effects of microbiota metabolites were evaluated by Ames test and MTT Assay, respectively. Moreover, gene expression in carcinogenic pathways was studied by RT-qPCR, and genes with different expressions in tumor and non-tumor tissues were diagnosed. Based on microbiota analysis, the relative abundance of Clostridia and C. difficile was significantly higher in CRC tissue, whereas C. perfringens showed higher relative abundance in normal tissue. AIMES test confirmed the proliferation and mutagenicity effects of the bacterial metabolites in CRC patients. Significant upregulation of C-Myc, GRB2, IL-8, EGFR, PI3K, and AKT and downregulation of ATM were observed in CRC samples compared to the control. CONCLUSIONS The influence of bacterial metabolites on inflammation and altered expression of genes in the cell signaling pathways was observed. The findings confirm the role gut microbiota composition and bacterial metabolites as key players in CRC onset and development.
Collapse
Affiliation(s)
- Somayeh Jahani-Sherafat
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Microbiology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
| | - Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Tavakkoli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sharareh Moghim
- Microbiology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rostami-Nejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Celiac Disease and Gluten Related Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran.
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ragavan ML, Hemalatha S. The functional roles of short chain fatty acids as postbiotics in human gut: future perspectives. Food Sci Biotechnol 2024; 33:275-285. [PMID: 38222911 PMCID: PMC10786766 DOI: 10.1007/s10068-023-01414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 01/16/2024] Open
Abstract
The significance of gut microbiome and their metabolites (postbiotics) on human health could be a promising approach to treat various diseases that includes inflammatory bowel diseases, colon cancer, and many neurological disorders. Probiotics with potential mental health benefits (psychobiotics) can alter the gut-brain axis via immunological, humoral, neuronal, and metabolic pathways. Recently, probiotic bacteria like Lactobacillus and Bifidobacterium have been demonstrated for SCFAs production, which play a crucial role in a variety of diseases. These acids could enhance the production of mucins, antimicrobial proteins (bacteriocins and peptides), cytokines (Interleukin 10 and 18) and neurotransmitters (serotonin) in the intestine to main the gut microbiota, intestinal barrier system and other immune functions. In this review, we discuss about two mechanisms such as (i) SCFAs mediated intestinal barrier system, and (ii) SCFAs mediated gut-brain axis to elucidate the therapeutic options for the treatment/prevention of various diseases.
Collapse
Affiliation(s)
| | - S. Hemalatha
- School of Life Sciences, BSACIST, Vandalur, Chennai, Tamil Nadu India
| |
Collapse
|
12
|
Zhao M, Xie X, Xu B, Chen Y, Cai Y, Chen K, Guan X, Ni C, Luo X, Zhou L. Paeonol alleviates ulcerative colitis in mice by increasing short-chain fatty acids derived from Clostridium butyricum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155056. [PMID: 37703619 DOI: 10.1016/j.phymed.2023.155056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Increasing evidence suggests that repairing the damaged intestinal epithelial barrier and restoring its function is the key to solving the problem of prolonged ulcerative colitis. Previous studies have shown that paeonol (pae) can alleviate colitis by down-regulating inflammatory pathways. In addition, pae also has a certain effect on regulating intestinal flora. However, it remains unclear whether pae can play a role in repairing the intestinal barrier and whether there is a relationship between the therapeutic effect and the gut microbiota. PURPOSES The aim of this study is to investigate the effect of pae on intestinal barrier repair in UC mice and how the gut microbiota plays a part in it. STUDY DESIGN AND METHODS The therapeutic effect of pae was evaluated in a 3% DSS-induced UC mouse model. The role of pae in repairing the intestinal barrier was evaluated by detecting colonic cupped cells by Alcian blue staining, the expression of colonic epithelial tight junction protein by immunofluorescence and western blot, and the proportion of IL-22+ILC3 cells in the lamina propria lymphocytes by flow cytometry. Subsequently, 16S rRNA sequencing was used to observe the changes in intestinal flora, GC-MS was used to detect the level of SCFAs, and qPCR was used to identify the abundance of Clostridium butyricum in the intestine to evaluate the effect of pae on the gut microbiota. The antibiotic-mediated depletion of the gut flora was then used to verify that pae depends on C. butyricum to play a healing role. Finally, non-targeted metabolomics was employed to investigate the potential pathways of pae regulating C. butyricum. RESULTS Pae could improve intestinal microecological imbalance and promote the production of short-chain fatty acids (SCFAs). Most importantly, we identified C. butyricum as a key bacterium responsible for the intestinal barrier repair effect of pae in UC mice. Eradication of intestinal flora by antibiotics abolished the repair of the intestinal barrier and the promotion of SCFAs production by pae, while C. butyricum colonization could restore the therapeutic effects of pae in UC mice, which further confirmed that C. butyricum was indeed the "driver bacterium" of pae in UC treatment. Untargeted metabolomics showed that pae regulated some amino acid metabolism and 2-Oxocarboxylic acid metabolism in C. butyricum. CONCLUSIONS Our study showed that the restoration of the impaired intestinal barrier by pae to alleviate colitis is associated with increased C. butyricum and SCFAs production, which may be a promising strategy for the treatment of UC.
Collapse
Affiliation(s)
- Meng Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueqian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunliang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kehan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinling Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Ni
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Yang K, Du G, Liu J, Zhao S, Dong W. Gut microbiota and neonatal acute kidney injury biomarkers. Pediatr Nephrol 2023; 38:3529-3547. [PMID: 36997773 DOI: 10.1007/s00467-023-05931-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
One of the most frequent issues in newborns is acute kidney injury (AKI), which can lengthen their hospital stay or potentially raise their chance of dying. The gut-kidney axis establishes a bidirectional interplay between gut microbiota and kidney illness, particularly AKI, and demonstrates the importance of gut microbiota to host health. Since the ability to predict neonatal AKI using blood creatinine and urine output as evaluation parameters is somewhat constrained, a number of interesting biomarkers have been developed. There are few in-depth studies on the relationships between these neonatal AKI indicators and gut microbiota. In order to gain fresh insights into the gut-kidney axis of neonatal AKI, this review is based on the gut-kidney axis and describes relationships between gut microbiota and neonatal AKI biomarkers.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Guoxia Du
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
14
|
Yan D, Ye S, He Y, Wang S, Xiao Y, Xiang X, Deng M, Luo W, Chen X, Wang X. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front Immunol 2023; 14:1286667. [PMID: 37868958 PMCID: PMC10585177 DOI: 10.3389/fimmu.2023.1286667] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is increasingly recognized as a pivotal factor influencing its onset and progression. Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging from anti-inflammatory and immune-regulatory functions to gut-microbiota modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of indigestible dietary fiber fermentation by gut microbiota, have strong anti-inflammatory properties and are seen as key protective factors against IBD. Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and ω-6 polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and ω-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators derived from polyunsaturated fatty acids serve as bioactive molecules, influencing immune cell functions and offering both pro-inflammatory and anti-inflammatory benefits. Recent research has also highlighted the potential of medium- and very long-chain fatty acids in modulating inflammation, mucosal barriers, and gut microbiota in IBD. Given these insights, dietary intervention and supplementation with short-chain fatty acids are emerging as potential therapeutic strategies for IBD. This review elucidates the impact of various fatty acids and lipid mediators on IBD and delves into potential therapeutic avenues stemming from these compounds.
Collapse
Affiliation(s)
- Dong Yan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yi Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xin Xiang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
15
|
Ikeda Y, Matsuda S. Gut Protective Effect from D-Methionine or Butyric Acid against DSS and Carrageenan-Induced Ulcerative Colitis. Molecules 2023; 28:4392. [PMID: 37298868 PMCID: PMC10254188 DOI: 10.3390/molecules28114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Microbiome dysbiosis resulting in altered metabolite profiles may be associated with certain diseases, including inflammatory bowel diseases (IBD), which are characterized by active intestinal inflammation. Several studies have indicated the beneficial anti-inflammatory effect of metabolites from gut microbiota, such as short-chain fatty acids (SCFAs) and/or D-amino acids in IBD therapy, through orally administered dietary supplements. In the present study, the potential gut protective effects of d-methionine (D-Met) and/or butyric acid (BA) have been investigated in an IBD mouse model. We have also built an IBD mouse model, which was cost-effectively induced with low molecular weight DSS and kappa-carrageenan. Our findings revealed that D-Met and/or BA supplementation resulted in the attenuation of the disease condition as well as the suppression of several inflammation-related gene expressions in the IBD mouse model. The data shown here may suggest a promising therapeutic potential for improving symptoms of gut inflammation with an impact on IBD therapy. However, molecular metabolisms need to be further explored.
Collapse
Affiliation(s)
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan;
| |
Collapse
|
16
|
Zhang K, Dong Y, Li M, Zhang W, Ding Y, Wang X, Chen D, Liu T, Wang B, Cao H, Zhong W. Clostridium butyricum inhibits epithelial-mesenchymal transition of intestinal carcinogenesis through downregulating METTL3. Cancer Sci 2023. [PMID: 37243376 PMCID: PMC10394142 DOI: 10.1111/cas.15839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 05/28/2023] Open
Abstract
Colorectal cancer (CRC) is related to gut microbiota dysbiosis, especially butyrate-producing bacteria reduction. Our previous study suggested that administration of Clostridium butyricum, a butyrate-producing bacterium, exerts a crucial effect against CRC, however the potential mechanism is not clear. We first found that methyltransferase-like 3 (METTL3) showed a positive correlation with proliferation, epithelial-mesenchymal transition (EMT), DNA repair, metastasis, and invasion in a database analysis. The expression of METTL3 gradually increased from human normal colon tissue, to adenoma, and carcinoma, and was positively correlated with E-cadherin and CD34 levels. Overexpression of METTL3 promoted the proliferation, migration, and invasion of CRC cells and induced vasculogenic mimicry (VM) formation. Clostridium butyricum could downregulate METTL3 expression in CRC cells and decrease the expression of vimentin and vascular endothelial growth factor receptor 2 to reduce EMT and VM formation. Clostridium butyricum alleviated the pro-oncogenic effect of METTL3 overexpressing plasmid in CRC cells. The anti-EMT effect on METTL3 reduction of C. butyricum could be blunted by knocking down G-protein coupled receptor 43. Moreover, C. butyricum prevented EMT and VM and inhibited tumor metastasis in nude mice. Accordingly, C. butyricum could inhibit EMT and VM formation of intestinal carcinogenesis through downregulating METTL3. These findings broaden our understanding of probiotics supplement in CRC prevention and treatment.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yue Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
17
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Liu X, Qiu X, Yang Y, Wang J, Wang Q, Liu J, Yang F, Liu Z, Qi R. Alteration of gut microbiome and metabolome by Clostridium butyricum can repair the intestinal dysbiosis caused by antibiotics in mice. iScience 2023; 26:106190. [PMID: 36895644 PMCID: PMC9988658 DOI: 10.1016/j.isci.2023.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the repair effects of Clostridium butyricum (CBX 2021) on the antibiotic (ABX)-induced intestinal dysbiosis in mice by the multi-omics method. Results showed that ABX eliminated more than 90% of cecal bacteria and also exerted adverse effects on the intestinal structure and overall health in mice after 10 days of the treatment. Of interest, supplementing CBX 2021 in the mice for the next 10 days colonized more butyrate-producing bacteria and accelerated butyrate production compared with the mice by natural recovery. The reconstruction of intestinal microbiota efficiently promoted the improvement of the damaged gut morphology and physical barrier in the mice. In addition, CBX 2021 significantly reduced the content of disease-related metabolites and meanwhile promoted carbohydrate digestion and absorption in mice followed the microbiome alternation. In conclusion, CBX 2021 can repair the intestinal ecology of mice damaged by the antibiotics through reconstructing gut microbiota and optimizing metabolic functions.
Collapse
Affiliation(s)
- Xin Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Yong Yang
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jingbo Liu
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
19
|
Tian J, Yang F, Bao X, Jiang Q, Li Y, Yao K, Yin Y. Dietary Alpha-Ketoglutarate Supplementation Improves Bone Growth, Phosphorus Digestion, and Growth Performance in Piglets. Animals (Basel) 2023; 13:569. [PMID: 36830356 PMCID: PMC9951703 DOI: 10.3390/ani13040569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Phosphorus (P) pollution from modern swine production is a major environmental problem. Dietary interventions to promote bone growth can improve the utilization of dietary P, and thereby reduce its emission. Recent in vitro studies have shown that alpha-ketoglutarate (AKG) exerts a pro-osteogenic effect on osteoblast cells. This study aimed to evaluate the effects of AKG supplementation on bone growth, P and Ca digestion, and the gut microbial profile in piglets. Thirty-two piglets were randomly assigned into two dietary groups. The piglets were fed a basic diet containing 10 g/kg AKG or 10 g/kg maize starch (control) for 28 days. On days 21-28, titanium dioxide was used as an indicator to determine the apparent digestibility of P. AKG supplementation improved the bone mineral density, length, weight, and geometrical and strength properties of the femur and tibia. Furthermore, AKG supplementation increased apparent ileal and total tract digestibility of P. Colonic microbiota analysis results showed that AKG supplementation increased α-diversity and beneficial bacteria, including Lactobacillus and Clostridium butyricum, and decreased nitrogen fixation and chemoheterotrophy. Together, AKG supplementation improves bone growth, the utilization of dietary P, and the colonic microbial profile, which may provide a nutritional strategy for diminishing P pollution originating from the pig industry.
Collapse
Affiliation(s)
- Junquan Tian
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Fan Yang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xuetai Bao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Qian Jiang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kang Yao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
| |
Collapse
|
20
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023; 13:1103836. [PMID: 36713166 PMCID: PMC9877435 DOI: 10.3389/fmicb.2022.1103836] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
21
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|