1
|
Ye L, Gao Y, Li X, Liang X, Yang Y, Zhang R. Celastrol attenuates HFD-induced obesity and improves metabolic function independent of adiponectin signaling. Arch Physiol Biochem 2024; 130:642-648. [PMID: 37642392 DOI: 10.1080/13813455.2023.2250929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
BACKGOUND Celastrol, a leptin sensitiser, has been shown to inhibit food intake and reduce body weight in diet-induced obese mice, making it a potential treatment for obesity and metabolic diseases. Adiponectin signalling has been reported to play an important role in the treatment of obesity, inflammation, and non-alcoholic fatty liver disease. MATERIALS AND METHODS Wild-type (WT) and AdipoR1 knockout (AdipoR1-/-) mice were placed on a chow diet or a high-fat diet (HFD) and several metabolic parameters were measured. Celastrol was then administered to the HFD-induced mice and the response of WT and AdipoR1-/- mice to celastrol in terms of body weight, blood glucose, and food intake was also recorded. RESULTS AdipoR1 knockout caused elevated blood glucose and lipids, impaired glucose tolerance and insulin resistance in mice, as well as increased susceptibility to HFD-induced obesity. After 14 days of treatment, WT and AdipoR1-/- mice showed significant reductions in body weight and blood glucose and improvements in glucose tolerance. CONCLUSION The present study demonstrated that AdipoR1 plays a critical role in metabolic regulation and that the improvement of weight and metabolic function by celastrol is independent of the AdipoR1-mediated signalling pathway.
Collapse
Affiliation(s)
- Ling Ye
- Department of Postgraduate, Anhui University of Traditional Chinese Medicine, Hefei, People's Republic of China
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
| | - Yan Gao
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Xuecheng Li
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| | - Xiaoshuang Liang
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| | - Yi Yang
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Rufeng Zhang
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| |
Collapse
|
2
|
Aghajani T, Arefhosseini S, Ebrahimi‐Mameghani M, Safaralizadeh R. The effect of myo-inositol supplementation on AMPK/PI3K/AKT pathway and insulin resistance in patients with NAFLD. Food Sci Nutr 2024; 12:7177-7185. [PMID: 39479697 PMCID: PMC11521746 DOI: 10.1002/fsn3.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 11/02/2024] Open
Abstract
Insulin resistance (IR) is the pivotal pathological hit in non-alcoholic fatty liver disease (NAFLD). There is specific attention to combination/conjugated therapies for NAFLD management. As myo-inositol (MI) has been shown to improve IR in animal and human trials, this study aimed to investigate the influence of MI supplementation on glycemic response and IR through AMPK/PI3K/AKT signaling pathway in obese patients with NAFLD. This double-blinded placebo-controlled randomized clinical trial was conducted on 48 obese (BMI = 30-40 kg/m2) patients with NAFLD who were randomly assigned to receiving either MI (4 g/day) or placebo (maltodextrin 4 g/day) group for 8 weeks. Before and after the trial, weight, height, serum glycemic parameters (inc. fasting glucose and insulin) as well as IR indices were assessed. Moreover, the mRNA expression levels of AMPK, AKT, and PDK-1 in peripheral blood mononuclear cells (PBMCs) were determined. MI supplementation resulted in significant increases in the fold changes of AMPK, AKT, and PDK-1 genes (p = .019, p = .049, and p = .029, respectively). Indeed, IR improved in terms of all IR indices in MI group (p < .05) after adjusting for the confounders, apart from quantitative insulin sensitivity check index (QUICKI). The results showed that MI supplementation not only upregulated AMPK, AKT, and PDK-1 mRNA in PBMCs but also improved IR in obese patients with NAFLD.
Collapse
Affiliation(s)
- Taha Aghajani
- Department of Animal Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
| | - Sara Arefhosseini
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Mehrangiz Ebrahimi‐Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
| |
Collapse
|
3
|
Gao Q, Zhang K, Fan M, Qian H, Li Y, Wang L. Effects of short-term carbohydrate deprivation on glycolipid metabolism and hepatic lipid accumulation in mice. Food Funct 2024; 15:7400-7415. [PMID: 38288875 DOI: 10.1039/d3fo05024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
To investigate the effect of dietary carbohydrate levels on liver glycolipid metabolism, this study used C57BL/6J male mice receiving standard diet (CON), no-carbohydrate high-fat diet (NCD), and high-carbohydrate no-fat diet (HCD). One week after intervention, mice in the NCD group showed lower blood glucose, HbA1c and LDL-C as well as liver weight and liver index compared with the CON group. Further research found that the liver fat synthesis genes of mice in the NCD group were significantly down-regulated at the gene level, and histopathological sections showed that the livers of mice in the NCD group had less lipid accumulation. Furthermore, liver metabolomic analysis showed that primary bile acid levels and acylcarnitine levels in the liver of mice in the NCD group were significantly increased, and conversely, lysophosphatidylcholine and fatty acyl metabolites were significantly decreased. KEGG metabolic pathway analysis showed that metabolic pathways such as biosynthesis of unsaturated fatty acids and starch and sucrose metabolism were significantly inhibited in mice in the NCD group, while metabolic pathways such as primary bile acid biosynthesis, linoleic acid metabolism and glycerophospholipid metabolism were enhanced. Taken together, these results indicate that short-term carbohydrate deprivation improves blood glucose and lipid metabolism levels in mice; the molecular mechanism of action may involve inhibition of de novo lipogenesis and enhancement of bile acid metabolism.
Collapse
Affiliation(s)
- Qiang Gao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
4
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
5
|
Zhao X, Kong X, Cui Z, Zhang Z, Wang M, Liu G, Gao H, Zhang J, Qin W. Communication between nonalcoholic fatty liver disease and atherosclerosis: Focusing on exosomes. Eur J Pharm Sci 2024; 193:106690. [PMID: 38181871 DOI: 10.1016/j.ejps.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder on a global scale. Atherosclerosis (AS), a leading cause of cardiovascular diseases, stands as the primary contributor to mortality among patients diagnosed with NAFLD. However, the precise etiology by which NAFLD causes AS remains unclear. Exosomes are nanoscale extracellular vesicles secreted by cells, and are considered to participate in complex biological processes by promoting cell-to-cell and organ-to-organ communications. As vesicles containing protein, mRNA, non-coding RNA and other bioactive molecules, exosomes can participate in the development of NAFLD and AS respectively. Recently, studies have shown that NAFLD can also promote the development of AS via secreting exosomes. Herein, we summarized the recent advantages of exosomes in the pathogenesis of NAFLD and AS, and highlighted the role of exosomes in mediating the information exchange between NAFLD and AS. Further, we discussed how exosomes play a prominent role in enabling information exchange among diverse organs, delving into a novel avenue for investigating the link between diseases and their associated complications. The future directions and emerging challenges are also listed regarding the exosome-based therapeutic strategies for AS under NAFLD conditions.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xinxin Kong
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, China.
| |
Collapse
|
6
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|