1
|
Wang X, Fang X, Zhou J, Pu H, Shang Q, Li J, Qin X, Zhao Q, Gu W. Hepatoprotective effects of wine-steamed Schisandra sphenanthera fruit in alleviating APAP-induced liver injury via the gut-liver axis. Food Funct 2025; 16:3643-3657. [PMID: 40243619 DOI: 10.1039/d5fo00656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Drug-induced liver injury (DILI) is a common adverse drug reaction that can result in liver injury, particularly in cases of paracetamol (APAP) abuse. Schisandra sphenanthera Rehd. et Wils. has attracted attention due to its hepatoprotective properties, and the underlying mechanism is unclear. In this study, a mouse model of APAP-induced liver injury was employed to evaluate network pharmacology analysis, histopathological analysis, the gut microbiota, and fecal metabolome to investigate the mechanism by which S. sphenanthera fruit extract (SFE) alleviates DILI. Network pharmacology indicated that the SFE can attenuate APAP-induced liver injury via key targets, including MAPK3 and CASP3. Furthermore, SFE effectively alleviated APAP-induced oxidative stress (MDA, SOD, and GSH) and inflammation (IL-6, TNF-α, and IL-1β). Further analysis of gut microbiota and fecal metabolites revealed that SFE promoted the growth of Bacteroidales and Erysipelotrichales, and decreased the growth of Lactobacillales, leading to increased production of tryptophan metabolites. Correlation analysis showed that the increase in gut microbiota by SFE was positively correlated with improved antioxidant ability and improved liver and gut function. In conclusion, SFE pretreatment can alleviate APAP-induced liver injury by targeting the gut-liver axis, and provides a valuable reference for the clinical use of SFE in the prevention or treatment of DILI.
Collapse
Affiliation(s)
- Xiaorui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Xilin Fang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Jia Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Han Pu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Qianqian Shang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Jianhua Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Xiaolu Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Qiaozhu Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Wei Gu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| |
Collapse
|
2
|
Wu H, Liu J, Zhang XH, Jin S, Li P, Liu H, Zhao L, Wang J, Zhao S, Tian HD, Lai JR, Hao Y, Liu GR, Hou K, Yan M, Liu SL, Pang D. The combination of flaxseed lignans and PD-1/ PD-L1 inhibitor inhibits breast cancer growth via modulating gut microbiome and host immunity. Drug Resist Updat 2025; 80:101222. [PMID: 40048957 DOI: 10.1016/j.drup.2025.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Patients with breast cancer (BC) who benefit from the PD-1/PD-L1 inhibitor (PDi) is limited, necessitating novel strategies to improve immunotherapy efficacy of BC. Here we aimed to investigate the inhibitory effects of flaxseed lignans (FL) on the biological behaviors of BC and evaluate the roles of FL in enhancing the anticancer effects of PDi. METHODS HPLC was used to detect the content of enterolactone (ENL), the bacterial transformation product of FL. Transcript sequencing was performed and identified CD38 as a downstream target gene of ENL. CD38-overexpressing cells were constructed and cell proliferation, colony formation, wound healing and transwell assays were used to assess the function of ENL/CD38 axis on BC cells in vitro. Multiplexed immunohistochemistry (mIHC) and CyTOF were used to detect the changes of the tumor immune microenvironment (TIM). 16S rDNA sequencing was used to explore the changes of gut microbiota in mice. A series of in vivo experiments were conducted to investigate the anticancer effects and mechanisms of FL and PDi. RESULTS FL was converted to ENL by gut microbiota and FL administration inhibited the progression of BC. ENL inhibited the malignant behaviors of BC by downregulating CD38, a key gene associated with immunosuppression and PD-1/PD-L1 blockade resistance. The mIHC assay revealed that FL administration enhanced CD3+, CD4+ and CD8+ cells and reduced F4/80+ cells in TIM. CyTOF confirmed the regulatory effects of FL and FL in combination with PDi (FLcPDi) on TIM. In addition, 16S rDNA analysis demonstrated that FLcPDi treatment significantly elevated the abundance of Akkermansia and, importantly, Akkermansia administration enhanced the response to PDi in mice treated with antibiotics. CONCLUSIONS The FL/ENL/CD38 axis inhibited BC progression. FL enhanced the anticancer effects of PDi by modulating gut microbiota and host immunity.
Collapse
Affiliation(s)
- Hao Wu
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jiena Liu
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xing-Hua Zhang
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Shengye Jin
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Li
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Huidi Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Liuying Zhao
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianyu Wang
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shilu Zhao
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Da Tian
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Jin-Ru Lai
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Gui-Rong Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, China; Longhu People's Hospital, Shantou, China.
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Da Pang
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
3
|
Stepień AE, Trojniak J, Tabarkiewicz J. Anti-Oxidant and Anti-Cancer Properties of Flaxseed. Int J Mol Sci 2025; 26:1226. [PMID: 39940995 PMCID: PMC11818310 DOI: 10.3390/ijms26031226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Bioactive molecules present in plant products determine their very valuable health-promoting properties. Among the plants, due to these properties, particular attention is paid to the seeds of common flax (Linum usitatissimum L.), which have been used for over 6000 years and are known for their benefits. A review of 117 scientific articles indexed in PubMed/MEDLINE, ScienceDirect, and Wiley Online Library, published between 1997 and 2024, was conducted. These seeds are characterized by a high content of valuable nutrients, such as essential omega-3 fatty acids, including α-linolenic acid (ALA), lignans, isoflavones, phytoestrogens, flavonoids, vitamins, and minerals that influence the digestive system function and have anti-cancer properties. The presence of these bioactive compounds in flaxseeds provide anti-cancer properties.
Collapse
Affiliation(s)
- Agnieszka Ewa Stepień
- Institute of Health Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland;
| | - Julia Trojniak
- Student’s Scientific Club of Immunology, Institute of Medical Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland;
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland
| |
Collapse
|
4
|
Ran Y, Li F, Xu Z, Zeng K, Ming J. Recent advances in dietary polyphenols (DPs): antioxidant activities, nutrient interactions, delivery systems, and potential applications. Food Funct 2024; 15:10213-10232. [PMID: 39283683 DOI: 10.1039/d4fo02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Dietary polyphenols (DPs) have garnered growing interest because of their potent functional properties and health benefits. Nevertheless, the antioxidant capabilities of these substances are compromised by their multifarious structural compositions. Furthermore, most DPs are hydrophobic and unstable when subjected to light, heat, and varying pH conditions, restricting their practical application. Delivery systems based on the interactions of DPs with food constituents such as proteins, polypeptides, polysaccharides, and metal ions are being created as a viable option to improve the functional activities and bioavailability of DPs. In this review, the latest discoveries on the dietary sources, structure-antioxidant activity relationships, and interactions with nutrients of DPs are discussed. It also innovatively highlights the application progress of polyphenols and their green nutraceutical delivery systems. The conclusion drawn is that the various action sites and structures of DPs are beneficial for predicting and designing polyphenols with enhanced antioxidant attributes. The metal complexation of polyphenols and green encapsulation systems display promising outcomes for stabilizing DPs during food processing and in vivo digestion. In the future, more novel targeted delivery systems of DPs for nutrient fortification and intervention should be developed. To expand their usage in customized food products, they should meet the requirements of specific populations for personalized food and nutrition.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, People's Republic of China
| | - Kaihong Zeng
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Liu D, Mueed A, Ma H, Wang T, Su L, Wang Q. Pleurocinus ostreatus Polysaccharide Alleviates Cyclophosphamide-Induced Immunosuppression through the Gut Microbiome, Metabolome, and JAK/STAT1 Signaling Pathway. Foods 2024; 13:2679. [PMID: 39272445 PMCID: PMC11394083 DOI: 10.3390/foods13172679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it also contained galactose (2.97%), mannose (5.02%), fucose (0.3%), arabinose (0.21%), ribose (0.04%), galactose acid (0.17%), and glucose acid (1.45%). After POP-1 was administered to immunosuppressed mice, results showed that POP-1 increased the body weight, spleen, and thymus index and enhanced T lymphocyte proliferation in mice. POP-1 up-regulated the expression of CD3+, CD4+, and CD8+ lymphocytes and the ratio of CD4+/CD8+ in the mouse spleen to increase immunoglobulin (IgM, IgG, and IgA) and secrete cytokines (IL-2, IL-6, TNF-α, and IFN-γ) through activation of the JAK/STAT1 signaling pathway. Moreover, POP-1 remarkably reversed the gut-microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Muribaculaceae, Lactobacillaceae, Blautia, and Ligilactobacillus and altered the fecal metabolites by increasing hexahomomethionine, DG(8:0/20:4(5Z, 8Z, 11Z, 14Z)-OH(20)/0:0, 2-((3-aminopyridin-2-yl)methylene)hydrazinecarbothioamide, Ginkgoic acid, and carboxy-ethyl-hydroxychroman, which is closely related to the immunity function. This study indicates that P. ostreatus polysaccharide effectively restores immunosuppressive activity and can be a functional ingredient in food and pharmaceutical products.
Collapse
Affiliation(s)
- Daiyao Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - He Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Tianci Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ling Su
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
She J, Li Q, Cui M, Zheng Q, Yang J, Chen T, Shen D, Peng S, Li C, Liu Y. Profiling of phenolic composition in camellia oil and its correlative antioxidant properties analysis. Front Nutr 2024; 11:1440279. [PMID: 39246396 PMCID: PMC11378838 DOI: 10.3389/fnut.2024.1440279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Less research has been conducted on the association between camellia oil's (CO) phenolic composition and antioxidant capability. In this study, the phenolic profile of CO and its connection to antioxidant capacity were examined utilizing a combination of widely-targeted phenolic metabolomics and multivariate statistical analysis. A total of 751 phenolics were discovered. The WGCNA was used to link phenols to antioxidants, yielding 161 antioxidant-related phenols from the blue module. In response to several antioxidant assays, 59 (FRAP), 59 (DPPH), and 53 (ABTS) phenolics were identified as differential phenolic markers (DPMs). Further stepwise multiple linear regression revealed six DPMs that substantially influenced the antioxidant capacities. Nine metabolic pathways and their associated network mechanisms for the most significant phenolics were developed. This study sheds light on the phenolic content of CO, elucidates their role in antioxidant activity, and lays the groundwork for improving extraction techniques and generating improved product.
Collapse
Affiliation(s)
| | - Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | | | - Jie Yang
- Hunan Academy of Forestry, Changsha, China
| | | | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | | | - Chi Li
- Hunan Shennongguo Oil Eco-Agriculture Development Co., Ltd., Leiyang, China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| |
Collapse
|
7
|
Feng C, Wu Y, Cai Z, Song Z, Shim YY, Reaney MJT, Wang Y, Zhang N. A comparative study on flaxseed lignan biotransformation through resting cell catalysis and microbial fermentation by β-glucosidase production Lactiplantibacillus plantarum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5869-5881. [PMID: 38407005 DOI: 10.1002/jsfa.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Flax lignan has attracted much attention because of its potential bioactivities. However, the bioavailability of secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, depends on the bioconversion by the colon bacteria. Lactic acid bacteria (LAB) with β-glucosidase activity has found wide application in preparing bioactive aglycone. RESULTS LAB strains with good β-glucosidase activity were isolated from fermented tofu. Their bioconversion of flax lignan extract was investigated by resting cell catalysis and microbial fermentation, and the metabolism of SDG by Lactiplantibacillus plantarum C5 following fermentation was characterized by widely targeted metabolomics. Five L. plantarum strains producing β-glucosidase with broad substrate specificity were isolated and identified, and they all can transform SDG into secoisolariciresinol (SECO). L. plantarum C5 resting cell reached a maximum SDG conversion of 49.19 ± 3.75%, and SECO generation of 21.49 ± 1.32% (0.215 ± 0.013 mm) at an SDG substrate concentration of 1 mM and 0.477 ± 0.003 mm SECO was produced at 4 mm within 24 h. Although sixteen flax lignan metabolites were identified following the fermentation of SDG extract by L. plantarum C5, among them, four were produced following the fermentation: SECO, demethyl-SECO, demethyl-dehydroxy-SECO and isolariciresinol. Moreover, seven lignans increased significantly. CONCLUSION Fermentation significantly increased the profile and level of flax lignan metabolites, and the resting cell catalysis benefits from higher bioconversion efficiency and more straightforward product separation. Resting cell catalysis and microbial fermentation of flax lignan extract by the isolated β-glucosidase production L. plantarum could be potentially applied in preparing flax lignan ingredients and fermented flaxseed. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengcheng Feng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - You Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Ziliang Song
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Youn Young Shim
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Martin J T Reaney
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Ning Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Chen J, Chen H, Feng C, Chen Q, Fang X, Wang Y, Zhang N. Anti-inflammatory effect of lignans from flaxseed after fermentation by lactiplantibacillus plantarum SCB0151 in vitro. World J Microbiol Biotechnol 2024; 40:134. [PMID: 38480613 DOI: 10.1007/s11274-024-03945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of β-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1β decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.
Collapse
Affiliation(s)
- Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - Hui Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Chengcheng Feng
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Qiong Chen
- National Center of Quality Inspection and Testing on Air Purification Products, Guangzhou Institute of Microbiology Group Co., Ltd, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China.
| | - Ning Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Kynkäänniemi E, Lindén J, Ngambundit S, Saarimäki LA, Greco D, Slaba H, Lahtinen MH, Mikkonen KS, Pajari AM. Polyphenol- and Glucuronoxylan-Rich Fiber Extract from Birch ( Betula sp.) Wood Regulates Colonic Barrier Function and Cell Proliferation in Healthy Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3495-3505. [PMID: 38343302 PMCID: PMC11398711 DOI: 10.1021/acs.jafc.3c07757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Birch wood-derived fiber extracts containing glucuronoxylans (GX) and polyphenols show potential for various food technological applications. This study investigated the effect of two extracts, GXpoly and pureGX, differing in lignin content on colonic barrier function. Healthy rats were fed diets containing 10% GXpoly, pureGX, or cellulose for 4 weeks. Colon crypt depth was lower in the GX groups than in the control group, but in the proximal colon, the result was significant only in GXpoly. An artificial intelligence approach was established to measure the mucus content and goblet cells. In the distal colon, their amounts were higher in the control group than in the GX groups. All diets had a similar effect on the expression of the tight junction proteins occludin, claudin-1, and claudin-7. GXpoly enhanced the fecal IgA production. Our results suggest that GX-rich extracts could support the colonic barrier and work as functional food ingredients in the future.
Collapse
Affiliation(s)
- Emma Kynkäänniemi
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Jere Lindén
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Suchaya Ngambundit
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Laura A Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Hana Slaba
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit H Lahtinen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Chen J, Wu G, Zhu L, Karrar E, Zhang H. A review of the functional activities of chia seed and the mechanisms of action related to molecular targets. Food Funct 2024; 15:1158-1169. [PMID: 38239106 DOI: 10.1039/d3fo02197a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In recent years, as a functional potential pseudocereal, chia seed (Salvia hispanica L.) has been of great interest for its comprehensive nutritional profile and attractive qualities after ingestion. It is reported that a reasonable dietary supplementation of chia seed (CS) contributes to the prevention and treatment of acute and chronic diseases (inflammation, diabetes, hypertension, obesity, kidney stone, etc.). CS contains a variety of bioactive macromolecular substances, such as oil, protein and gum, which manifest distinguished health-promoting activities in both in vivo and in vitro research studies. This article provides a comprehensive compendium on the functional importance of CS, in the context of biological activities and mechanism of actions of CS. Specifically, CS and its components alleviate inflammation and regulate glucose and fatty acid metabolism by regulating key influencing factors in the adenosine 5'-monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB), peroxisome-activated receptor gamma (PPAR-γ) and transforming growth factor-beta (TGF-β) pathways and the insulin receptor substrate (IRS)-mediated insulin signaling pathway. In the meantime, predictions of metabolic pathways of CS peptides based on the known tracks of newly researched active peptides were proposed, with the aim of emphasizing the enormous research space of CS peptides compared to other functional active peptides.
Collapse
Affiliation(s)
- Jinghui Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Ling Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| |
Collapse
|
11
|
Abtahi M, Mirlohi A. Quality assessment of flax advanced breeding lines varying in seed coat color and their potential use in the food and industrial applications. BMC PLANT BIOLOGY 2024; 24:60. [PMID: 38254037 PMCID: PMC10804595 DOI: 10.1186/s12870-024-04733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND With the increasing consumer awareness of the strong relationship between food and health, flax became a promising functional food due to its bioactive nutraceutical composition. Intra-specific crosses of eight contrasting flax genotypes were performed previously, and within segregating F6 progeny families, we investigated a close-up composition of phytochemicals derived from whole seeds. RESULTS The considerable genetic variation among the flax F6 families suggested that intra-specific hybridization is essential in flax breeding to obtain and broaden genetic variability and largely affirmed the opportunity for selecting promising lines. Also, significant variations in the targeted metabolite contents and antioxidant properties were observed among brown and yellow-seeded families. Notably, brown-seeded families expressed the highest average values of saturated fatty acids, protein, fiber, tocopherol, phenolics, SDG, and SECO lignans. Yellow-seeded families represented the highest average content of unsaturated fatty acids and mucilage. The cultivation year significantly affects flaxseed's composition and functional properties, presumably due to temperature, humidity, and sunshine time differences. Interestingly, the seeds obtained in warmer conditions were more potent and had more chemical constituents. The favorable genetic correlations among all evaluated traits suggest the possibility of joint genetic selection for several nutritional and phytochemical characteristics in flax. The current study highlights the importance and utilization of 19 top families as their seeds and oil play imperative roles in the pharmaceuticals and food industries. The antioxidant capacity of the seeds showed that families 84B, 23B, 35Y, 95Y, 30B, 88B, and 78B serve as a natural source of dietary antioxidants beneficial to human health. To increase the oxidative stability of the flaxseed oil, the quality evaluation identified some families with low levels of linolenic acid. CONCLUSIONS These findings are essential to improving flaxseed's nutritional quality and therapeutic properties through a bulk breeding program.
Collapse
Affiliation(s)
- Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Isfahan, 84156-83111, Iran.
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Isfahan, 84156-83111, Iran
| |
Collapse
|