1
|
Huang X, Lu X, Wu Y, Wu Z, Li M, Miao Y, Xie Z, Gong Z, Cao Y. L-theanine prevents myocardial injury in sleep‑deprived mice by suppressing ferroptosis through SIRT1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04206-8. [PMID: 40328913 DOI: 10.1007/s00210-025-04206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
Green tea is obtained from Camellia sinensis, and its role in promoting heart health has been widely recognized in traditional Chinese medicine. L-theanine, one of the main bioactive components of green tea, has antioxidant and cardiovascular protective effects. However, the effects of L-theanine on myocardial cells in sleep-deprived mice and its potential mechanisms have not been clearly elucidated. This study utilized a modified multiple-platform water environment method to establish an SD model and induce a ferroptosis model in H9c2 cells pretreated with erastin. The cardiac function parameters of mice were assessed using a small animal super-resolution ultrasound imaging system. H&E staining was used to evaluate pathological changes in tissue structure and cell morphology, while transmission electron microscopy (TEM) was employed to observe the extent of mitochondrial damage. Biochemical assays were employed to quantify myocardial damage markers, oxidative stress indicators, and Fe2⁺ concentrations, while immunofluorescence imaging assessed reactive oxygen species (ROS) levels. Western blot was used to analyze the expression of SIRT1 and proteins related to ferroptosis. The results demonstrate that L-theanine alleviates SD-induced tachycardia in mice, restores myocardial and mitochondrial integrity, and reduces oxidative damage markers, including ROS and Fe2⁺ in H9c2 cells. Furthermore, L-theanine reversed the abnormal expression of SIRT1 and ferroptosis-related proteins in cardiac tissue and H9c2 cells induced by SD and erastin. Notably, the SIRT1 inhibitor EX-527 can counteract the protective effect of L-theanine against ferroptosis in cardiomyocytes. These findings highlight that L-theanine mitigates SD-induced cardiac injury primarily by suppressing ferroptosis through SIRT1 in cardiomyocytes.
Collapse
Affiliation(s)
- Xuanxuan Huang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China
| | - Xinglong Lu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China
| | - Yi Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China
| | - Zhenghua Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China
| | - Mingrui Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China
| | - Yuping Miao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
| | - Zipeng Gong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guian New Area 561113, 0851-86908468, 4 Beijing Road, Guiyang City, 550004, Guizhou Province, China.
| | - Yin Cao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guian New Area 561113, 0851-86908468, 4 Beijing Road, Guiyang City, 550004, Guizhou Province, China.
| |
Collapse
|
2
|
Zayas GA, Santos Rojas C, Rodriguez EE, Hernandez AS, Beard AM, Rafiq F, Sarlo Davila KM, Mateescu RG. Genetic architecture of thermotolerance traits in beef cattle: a novel integration of SNP and breed-of-origin effects. Front Genet 2025; 16:1576966. [PMID: 40370695 PMCID: PMC12075150 DOI: 10.3389/fgene.2025.1576966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Background Rising temperatures increasingly expose beef cattle to heat stress, reducing productivity and welfare, especially in tropical climates. Crossbreeding Bos t. taurus and Bos t. indicus has emerged as a critical strategy to balance the production efficiency of taurine breeds with the superior thermotolerance of indicine breeds. Understanding the genetic architecture of thermotolerance traits is essential for improving heat resilience in beef cattle populations. Methods Phenotypes for short hair length (SHL, undercoat) and long hair length (LHL, topcoat), sweat gland area (SGA), and thermal stress slope (TSS), a measure of body temperature fluctuations under heat stress, were collected from 3,962 crossbred Angus-Brahman heifers. Heifers were genotyped, and breed-of-origin (BOA) for each marker was determined using LAMP-LD. Genome-wide association studies were conducted using SNP-only, BOA-only, and integrated SNP + BOA models to identify quantitative trait loci (QTLs) associated with thermotolerance traits. Genes in QTL regions were used for functional enrichment analysis using Gene Ontology (GO) and KEGG pathways. Results Significant QTLs for SHL and LHL were identified on BTA20, overlapping the PRLR gene. A QTL on BTA19 for SHL and LHL was driven solely by BOA effects, with Brahman BOA associated with shorter hair lengths. For SGA, six suggestive QTLs were detected, predominantly linked to Angus-derived alleles associated with reduced sweat gland area. For TSS, a significant QTL on BTA1 exhibited a strong BOA effect, with Angus BOA associated with higher TSS values, indicative of reduced thermoregulatory efficiency. Integrated SNP + BOA models provided greater resolution and revealed novel QTLs compared to single-effect models. Functional enrichment using GO and KEGG identified MAPK and estrogen signaling pathways in both LHL and TSS, indicating potential overlap in the biological processes influencing hair length and thermoregulation. Conclusion This study demonstrates the value of integrating BOA with SNP-based models to uncover the genetic architecture of thermotolerance traits in beef cattle. By better capturing breed-specific contributions, these findings enhance our understanding of thermoregulation and provide actionable insights for improving heat resilience in cattle.
Collapse
Affiliation(s)
- Gabriel A. Zayas
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Camila Santos Rojas
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Eduardo E. Rodriguez
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Aakilah S. Hernandez
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Ashley M. Beard
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Fahad Rafiq
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Kaitlyn M. Sarlo Davila
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Wang S, Wang X, Gao Y, Fu Y, Han Z, Xu P, Tang J. Protocatechuic acid attenuates intestinal inflammation through TLR4/p38 and NF-κB pathways in heat-stressed broilers. Poult Sci 2024; 103:104424. [PMID: 39427417 PMCID: PMC11536018 DOI: 10.1016/j.psj.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Protocatechuic acid (PCA), a major active component found in Eucommia ulmoides Oliver, is involved in regulating oxidative stress and inflammation. Heat stress poses a significant threat to the poultry industry. In this study, we investigated the protective effect of PCA on intestinal homeostasis under heat stress. Our results indicated that PCA improved the growth performance of broilers during heat stress. Furthermore, PCA mitigated jejunal damage and attenuated the upregulation of inflammatory mediators, including TNF-α, IL-6, and IL-1β, triggered by heat stress. Concurrently, it restored the activity of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC). Furthermore, PCA maintained the jejunum function by increasing the levels of ZO-1, Claudin-1, and Occludin. Mechanistically, PCA inhibited the activation of TLR4/p38 MAPK and NF-κB pathways, thereby regulating the imbalance in oxidative stress and inflammatory responses caused by heat stress.
Collapse
Affiliation(s)
- Shuaiyong Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Yu Gao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Yuchen Fu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Zhaoqing Han
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Ping Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Jianli Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Yang D, Xu K, Wang W, Chen P, Liu C, Liu S, Xu W, Xiao W. Protective effects of L-theanine and dihydromyricetin on reproductive function in male mice under heat stress. Food Funct 2024; 15:7093-7107. [PMID: 38873879 DOI: 10.1039/d4fo00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat stress can impair the male reproductive function. L-Theanine and dihydromyricetin have biological activities against heat stress; however, their effects on reproductive function in heat-stressed males are unclear. In this study, male mice were given L-theanine, dihydromyricetin, or a combination of both for 28 days, followed by 2 h of heat stress daily for 7 days. All interventions alleviated heat stress-induced testicular damage, improving the testicular organ index, sperm density, acrosome integrity, sperm deformity rate, and hormone levels. Treatment increased the antioxidant enzyme activity and decreased the markers of oxidative and inflammatory stress in the testes. A combination dose of 200 + 200 mg kg-1 d-1 showed the best protective effect. The potential mechanism involves the regulation of HSP27 and HSP70, which regulate the levels of reproductive hormones through the StAR/Cyp11a1/Hsd3b1/Cyp17a1/Hsd17b3 pathway, alleviate inflammation and oxidative stress through the P38/NF-κB/Nrf2/HO-1 pathway, and regulate the Bcl-2/Fas/Caspase3 apoptotic pathway. Overall, L-theanine and dihydromyricetin may play a protective role against heat stress-induced reproductive dysfunction, suggesting their potential use in heat stress-resistant foods.
Collapse
Affiliation(s)
- Difei Yang
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Kaihang Xu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenmao Wang
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Peijian Chen
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Chao Liu
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Sha Liu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Mol N, Priya A, Singh AK, Mago P, Shalimar, Ray AK. "Unravelling the impacts of climatic heat events on cardiovascular health in animal models". ENVIRONMENTAL RESEARCH 2024; 248:118315. [PMID: 38301760 DOI: 10.1016/j.envres.2024.118315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Climate change has led to an increase in high ambient temperatures, causing extreme heat events worldwide. According to the World Meteorological Organization (WMO), July 2023 marked a historic milestone as the Earth reached its hottest recorded temperature, precisely hitting the critical threshold of 1.5 °C set by the Paris Agreement. This distressing development led to a stark warning from the United Nations, signaling the dawn of what they call "an era of global boiling". The increasing global temperatures can result in high heat stress which leads to various physiological and biochemical alterations in the human body. Given that cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality globally, heat events exacerbate this public health issue. While clinical and in-vitro studies have suggested a range of pathophysiological and biochemical mechanisms underlying the body's response to heat stress, the complex nature of organ-system level interactions makes precise investigation challenging. To address this knowledge gap effectively, the use of animal models exposed to acute or chronic heat stress can be invaluable. These models can closely replicate the multifaceted effects observed in humans during heat stress conditions. Despite extensive independent reviews, limited focus has been shed on the high heat-induced cardiovascular complications and their mechanisms, particularly utilizing animal models. Therefore, in this comprehensive review, we highlight the crucial biomarkers altered during heat stress, contributing significantly to various CVDs. We explore potential mechanisms underlying heat-induced cardiovascular dysfunction and damage, delving into various animal models. While traditional rodent models are commonly employed, we also examine less conventional models, including ruminants, broilers, canines, and primates. Furthermore, we delve into various potential therapeutic approaches and preventive measures. These insights hold significant promise for the development of more effective clinical interventions against the effects of heat stress on the human cardiovascular system.
Collapse
Affiliation(s)
- Nidhi Mol
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
6
|
Yamaura S, Sadamori K, Konishi R, Majima T, Mukai A, Uno K, Kinjo T, Komori K, Kuramoto N, Kawada K. Pharmacokinetics of L-theanine and the effect on amino acid composition in mice administered with L-theanine. Amino Acids 2024; 56:29. [PMID: 38583116 PMCID: PMC10999383 DOI: 10.1007/s00726-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
L-theanine, an amino acid component of the tea leaves of Camellia sinensis, is sold in Japan as a supplement for good sleep. Although several studies in humans and mice have reported the effects of L-theanine on brain function, only a few reports have comprehensively clarified the disposition of theanine administered to mice and its effects on concentrations of other blood amino acids. In this study, we aimed to determine the changes in the blood levels of L-theanine administered to mice and amino acid composition of the serum. L-theanine were administered to four-week-old Std-ddY male mice orally or via tail vein injection. L-theanine and other amino acids in serum prepared from blood collected at different time points post-dose were labeled with phenylisothiocyanate and quantified. The serum concentration of orally administered L-theanine peaked 15 min after administration. The area under the curve for tail vein injection revealed the bioavailability of L- theanine to be approximately 70%. L-theanine administration did not affect any amino acid levels in the serum, but a significant increase in the peak area overlapping the Glycine (Gly) peak was observed 30 min after administration. L-theanine administered to mice was rapidly absorbed and eliminated, suggesting that taking L-theanine as a supplement is safe without affecting its own levels or serum levels of other amino acids. However, considering that Gly, similar to L-theanine, is used as a dietary supplement for its anxiolytic effects and to improve sleep, determining the effects of L-theanine administration on Gly is important and needs further research.
Collapse
Affiliation(s)
- Shinnosuke Yamaura
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Koki Sadamori
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Reiko Konishi
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Takashi Majima
- Department of Nursing, Faculty of Allied Health Sciences, Yamato University, Suita, Osaka, Japan
| | - Akira Mukai
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kyosuke Uno
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Toshihiko Kinjo
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Koji Komori
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.
| | - Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kou Kawada
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
7
|
Wang B, Liu S, Lin L, Xu W, Gong Z, Xiao W. The protective effect of L-theanine on the intestinal barrier in heat-stressed organisms. Food Funct 2024; 15:3036-3049. [PMID: 38414417 DOI: 10.1039/d3fo04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heat stress caused by heatwaves, extreme temperatures, and other weather can damage the intestinal barrier of organisms. L-Theanine (LTA) attenuates heat stress-induced oxidative stress, inflammatory responses, and impaired immune function, but its protective effect on the intestinal barrier of heat-stressed organisms is unclear. In this study, low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1) dosages of LTA were used in the gavage of C57BL/6J male mice that were experimented on for 50 d. These mice were subjected to heat stress for 2 h d-1 at 40 ± 1 °C and 60 ± 5% RH in the last 7 d. LTA attenuated the heat stress-induced decreases in body mass and feed intake, and the destruction of intestinal villi and crypt depth; reduced the serum levels of FITC-dextran and D-LA, as well as the DAO activity; and upregulated the colonic tissues of Occludin, Claudin-1, and ZO-1 mRNA and occludin protein expression. The number of goblet cells in the colon tissue of heat-stressed organisms increased in the presence of LTA, and the expression levels of Muc2, Muc4 mRNA, and Muc2 protein were upregulated. LTA increased the abundance of Bifidobacterium and Turicibacter, and decreased the abundance of Enterorhabdus and Desulfovibrio in the intestinal tract of heat-stressed organisms and restored gut microbiota homeostasis. LTA promoted the secretion of IL-4, IL-10, and sIgA and inhibited the secretion of TNF-α and IFN-γ in the colon of heat-stressed organisms. The expressions of Hsf1, Hsp70, Hsph1, TLR4, P38 MAPK, p-P65 NF-κB, MLCK mRNA, and proteins were downregulated by LTA in the colon of heat-stressed organisms. These results suggest that LTA protects the intestinal barrier in heat-stressed organisms by modulating multiple molecular pathways. Therefore, this study provides evidence on how tea-containing LTA treatments could be used to prevent and relieve intestinal problems related to heat stress.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Sha Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Liu S, Wang B, Lin L, Xu W, Gong ZH, Xiao WJ. L-Theanine alleviates heat stress through modulation of gut microbiota and immunity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2059-2072. [PMID: 37917744 DOI: 10.1002/jsfa.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Heat stress (HS) damages the intestines, disrupting gut microbiota and immune balance. l-Theanine (LTA), found in tea, alleviates oxidative stress and cell apoptosis under HS; however, its effects on gut microbiota and immunity under HS remain unclear. To investigate this, we administered LTA doses of 100, 200, and 400 mg·kg-1 ·d-1 to C57BL/6J mice. On day 44, the model group and LTA intervention group were subjected to continuous 7-day HS treatment for 2 h per day. RESULTS The results demonstrated that LTA intervention improved food intake, body weight, and intestinal epithelium, and reduced the water intake of heat-stressed mice. It increased the abundance of Turicibacter, Faecalibaculum, Bifidobacterium, and norank_f_Muribaculaceae, while reducing that of Lachnoclostridium and Desulfovibrio. LTA intervention also increased the concentrations of amino acid and lipid metabolites, regulated macrophage differentiation stimulated by gut microbiota and metabolites, reduced the antigen presentation by macrophages to the specific immune system, promoted B-cell differentiation and sIgA secretion, inhibited pro-inflammatory factors, and enhanced intestinal defense. Mechanistically, LTA downregulated heat shock protein 70 expression and the TLR4/NF-κB/p38 MAPK signaling pathway, restoring gut microbiota and immune balance. CONCLUSION We suggest that LTA can alleviate HS by modulating gut microbiota, metabolites, and immunity, indicating its potential as a natural active ingredient for anti-HS food products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Bin Wang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Zhi-Hua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Wu T, Sheng Y, Tian Y, Wang C. Vitexin Regulates Heat Shock Protein Expression by Modulating ROS Levels Thereby Protecting against Heat-Stress-Induced Apoptosis. Molecules 2023; 28:7639. [PMID: 38005362 PMCID: PMC10675196 DOI: 10.3390/molecules28227639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Heat stress due to high temperatures can cause heat stroke, pyrexia, heat cramps, heart disease, and respiratory diseases, which seriously affect human health. Vitexin has been shown to alleviate heat stress; however, its mechanism of action remains unclear. Therefore, in this study, we used Caco-2 cells to establish a heat stress model and vitamin C as a positive control to investigate the regulatory effects of vitexin on heat-stress-induced apoptosis and the related mechanisms using Cell Counting Kit-8, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot. The results showed that the mRNA expressions of Hsp27, Hsp70, and Hsp90 induced by heat stress could be effectively inhibited at vitexin concentrations as low as 30 μM. After heat stress prevention and heat stress amelioration in model cells based on this concentration, intracellular reactive oxygen species (ROS) levels and the mRNA level and the protein expression of heat shock proteins (Hsp70 and Hsp90) and apoptotic proteins were reduced. In addition, compared with the heat stress amelioration group, the expression of BCL2 mRNA and its protein (anti-apoptotic protein Bcl-2) increased in the heat stress prevention group, while the expression of BAX, CYCS, CASP3, and PARP1 mRNAs and their proteins (apoptotic proteins Bax, Cytochrome C, cle-Caspase-3, and cle-PARP1) were decreased. In summary, the heat-stress-preventive effect of vitexin was slightly better than its heat-stress-ameliorating effect, and its mechanism may be through the inhibition of intracellular ROS levels and thus the modulation of the expressions of Hsp70 and Hsp90, which in turn protects against heat-stress-induced apoptosis. This study provides a theoretical basis for the prevention and amelioration of heat stress using vitexin.
Collapse
Affiliation(s)
- Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
10
|
Chen X, Luo D, Jia G, Zhao H, Liu G, Huang Z. L-theanine attenuates porcine intestinal tight junction damage induced by LPS via p38 MAPK/NLRP3 signaling in IPEC-J2 cells. Food Chem Toxicol 2023:113870. [PMID: 37271275 DOI: 10.1016/j.fct.2023.113870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
L-theanine is a natural bioactive component in tea leaves and has anti-inflammatory effects. The study aimed to investigated the effects and underlying mechanisms of L-theanine on lipopolysaccharide (LPS)-induced intestinal tight junction damage in IPEC-J2 cells. Results showed that LPS induced tight junction damage by increasing reactive oxygen species production and lactate dehydrogenase (LDH) release and decreasing the mRNA expression of tight junction proteins related genes zonula occludens-1 (ZO-1, also known as Tjp1), Occludin and Claudin-1, while L-theanine reversed such an effect and attenuated the increase of p38 mitogen-activated protein kinase (p38 MAPK) mRNA expression. The p38 MAPK inhibitor (SB203580) attenuated the mRNA expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome and interleukin-1β (Il-1β), and increased the mRNA expression of Tjp1, Occludin and Claudin-1, which showed a similar effect with L-theanine. In addition, NLRP3 inhibitor MCC950 attenuated the Il-1β expression and LDH release, while increased the expression of tight-junction protein-related genes. In conclusion, L-theanine could protect LPS-induced intestinal tight junction damage by inhibiting the activation of p38 MAPK-mediated NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Diaoyun Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
11
|
Effect of Glutamine on the Growth Performance, Oxidative Stress, and Nrf2/p38 MAPK Expression in the Livers of Heat-Stressed Broilers. Animals (Basel) 2023; 13:ani13040652. [PMID: 36830439 PMCID: PMC9951748 DOI: 10.3390/ani13040652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The purpose of this work was to study the effects of glutamine (Gln) on the growth performance, oxidative stress, Nrf2, and p38 MAPK pathway in the livers of heat-stressed broilers. In total, 300 broilers were divided into five groups, including a normal temperature (NT, without dietary Gln) group and four cyclic high temperature groups (HT, GHT1, GHT2, and GHT3) fed with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. High temperature conditions increased (p < 0.05) liver malonaldehyde (MDA) concentration, but decreased (p < 0.05), body weight gain (BWG), feed intake (FI), liver superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione (GSH) levels in broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were lower (p < 0.05) in the NT group than that in the HT group. However, dietary 1.5% Gln decreased (p < 0.05) liver MDA concentration, but increased (p < 0.05) BWG, FI, liver SOD, T-AOC, GSH-Px, GST, and GSH levels in heat-stressed broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were higher (p < 0.05) in the GHT3 group than that in the HT group. In summary, Gln improved oxidative damage through the activation of Nrf2 and p38 MAPK expression in the livers of heat-stressed broilers.
Collapse
|