1
|
Chang XQ, Yue RS. Therapeutic Potential of Luteolin for Diabetes Mellitus and Its Complications. Chin J Integr Med 2025; 31:566-576. [PMID: 39302570 DOI: 10.1007/s11655-024-3917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2024]
Abstract
The global prevalence of diabetes mellitus (DM) and its complications has been showing an upward trend in the past few decades, posing an increased economic burden to society and a serious threat to human life and health. Therefore, it is urgent to investigate the effectiveness of complementary and alternative therapies for DM and its complications. Luteolin is a kind of polyphenol flavonoid with widely existence in some natural resources, as a safe dietary supplement, it has been widely studied and reported in the treatment of DM and its complications. This review demonstrates the therapeutic potential of luteolin in DM and its complications, and elucidates the action mode of luteolin at the molecular level. It is characterized by anti-inflammatory, antioxidant, and neuroprotective effects. In detail, luteolin can not only improve endothelial function, insulin resistance and β-cell dysfunction, but also inhibit the activities of dipeptidyl peptidase-4 and α-glucosidase. However, due to the low water solubility and oral bioavailability of luteolin, its application in the medical field is limited. Therefore, great importance should be attached to the joint application of luteolin with current advanced science and technology. And more high-quality human clinical studies are needed to clarify the effects of luteolin on DM patients.
Collapse
Affiliation(s)
- Xiao-Qin Chang
- Endocrinology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ren-Song Yue
- Endocrinology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
2
|
Liang Q, Liu X, Xu X, Chen Z, Luo T, Su Y, Xie C. Molecular mechanisms and therapeutic perspectives of luteolin on diabetes and its complications. Eur J Pharmacol 2025; 1000:177691. [PMID: 40311831 DOI: 10.1016/j.ejphar.2025.177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Extensive preclinical studies have established luteolin, a flavonoid with potent antidiabetic activity, as a therapeutic candidate for preventing and managing various diabetic complications including cardiomyopathy, nephropathy, and osteopathy. This systematic review evaluates current evidence regarding luteolin's antidiabetic potential. AIM OF THE STUDY This study evaluates luteolin's efficacy in diabetes management through evidence synthesis, while critically assessing current research challenges and translational opportunities. METHODS A comprehensive literature search was conducted across Pubmed, Embase, Web of Science, and Google Scholar databases, encompassing articles published between 2000 and 2024. RESULTS Luteolin is a naturally occurring flavonoid that has strong antidiabetic properties. It regulates intestinal microenvironmental homeostasis, lipogenesis and catabolism, and the absorption of carbohydrates. It also modulates nine diabetic complications by reducing inflammation, oxidative stress, apoptosis, and autophagy. Luteolin's potential nutritional and physiological benefits notwithstanding, attention must be directed immediately to its bioavailability, innovative formulations, safety assessment, synergistic effects, and optimal dosage and time for supplementation. In particular, clinical studies are needed to validate efficacy and safety and provide a reliable scientific basis. CONCLUSION Luteolin may act as a pleiotropic molecule targeting multiple signaling cascades to exert antidiabetic bioactivity.
Collapse
Affiliation(s)
- Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xin Xu
- Department of Emergency, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Ting Luo
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yi Su
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072, China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
3
|
Ponce-Mora A, Salazar NA, Domenech-Bendaña A, Locascio A, Bejarano E, Gimeno-Mallench L. Interplay Between Polyphenols and Autophagy: Insights From an Aging Perspective. FRONT BIOSCI-LANDMRK 2025; 30:25728. [PMID: 40152368 DOI: 10.31083/fbl25728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 03/29/2025]
Abstract
The relationship between polyphenols and autophagy, particularly in the context of aging, presents a promising avenue for therapeutic interventions in age-related diseases. A decline in autophagy is associated with aging-related affections, and an increasing number of studies suggest that this enhancement is linked to cellular resilience and longevity. This review delves into the multifaceted roles of autophagy in cellular homeostasis and the potential of polyphenols to modulate autophagic pathways. We revised the most updated literature regarding the modulatory effects of polyphenols on autophagy in cardiovascular, liver, and kidney diseases, highlighting their therapeutic potential. We highlight the role of polyphenols as modulators of autophagy to combat age-related diseases, thus contributing to improving the quality of life in aging populations. A better understanding of the interplay of autophagy between autophagy and polyphenols will help pave the way for future research and clinical applications in the field of longevity medicine.
Collapse
Affiliation(s)
- Alejandro Ponce-Mora
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Nicolle Andrea Salazar
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Alicia Domenech-Bendaña
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Antonella Locascio
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Eloy Bejarano
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Lucia Gimeno-Mallench
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| |
Collapse
|
4
|
Pan J, Chen MY, Jiang CY, Zhang ZY, Yan JL, Meng XF, Han YP, Lou YY, Yang JT, Qian LB. Luteolin alleviates diabetic cardiac injury related to inhibiting SHP2/STAT3 pathway. Eur J Pharmacol 2025; 989:177259. [PMID: 39788407 DOI: 10.1016/j.ejphar.2025.177259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Diabetic cardiomyopathy, a heart disease resulting from diabetes mellitus, inflicts structural and functional damage to the heart. Recent studies have highlighted the potential role of luteolin, a flavonoid, in mitigating diabetic cardiovascular injuries. The Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is implicated in exacerbating diabetes- and obesity-related complications. Interestingly, luteolin has been shown to inhibit protein tyrosine phosphatases, but it's unclear how SHP2 relates to luteolin's protective effects against diabetic heart disease. Here, we hypothesized that the inhibition of SHP2 signaling could play a role in luteolin's protective action against diabetic heart injury. Diabetes was induced in male Sprague-Dawley rats through a high-fat diet followed by a single intraperitoneal dose of streptozotocin (30 mg/kg). Five weeks post-diabetes induction, these rats were intraperitoneally injected with luteolin at varying doses (5, 10, 20 mg/kg) every other day for an additional 5 weeks. Then cardiac function was assessed, and hearts were isolated for further analysis. We found that luteolin notably improved cardiac function, inhibited cardiac hypertrophy and fibrosis, reduced levels of inflammatory factors and reactive oxygen species, and activated superoxide dismutase. Importantly, luteolin treatment also reduced the expression of SHP2 and phosphorylated signal transducer and activator of transcription 3 (STAT3) in a dose-dependent manner. These findings suggest that luteolin protects the diabetic heart against inflammation, oxidative stress, hypertrophy, and fibrosis, which may relate to down-regulating cardiac SHP2/STAT3 signaling.
Collapse
Affiliation(s)
- Jie Pan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Meng-Yuan Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China; Department of Clinical Laboratory Medicine, First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Chun-Yan Jiang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zi-Yan Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jia-Lin Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xiang-Fei Meng
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yu-Peng Han
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jin-Ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
6
|
Bender M, Santos JM, Dufour JM, Deshmukh H, Trasti S, Elmassry MM, Shen CL. Peanut Shell Extract Improves Markers of Glucose Homeostasis in Diabetic Mice by Modulating Gut Dysbiosis and Suppressing Inflammatory Immune Response. Nutrients 2024; 16:4158. [PMID: 39683552 DOI: 10.3390/nu16234158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVE There is strong evidence that the tripartite interaction between glucose homeostasis, gut microbiota, and the host immune system plays a critical role in the pathophysiology of type 2 diabetes mellitus (T2DM). We reported previously that peanut shell extract (PSE) improves mitochondrial function in db/db mice by suppressing oxidative stress and inflammation in the liver, brain, and white adipose tissue. This study evaluated the impacts of PSE supplementation on glucose homeostasis, liver histology, intestinal microbiome composition, and the innate immune response in diabetic mice. METHODS Fourteen db/db mice were randomly assigned to a diabetic group (DM, AIN-93G diet) and a PSE group (1% wt/wt PSE in the AIN-93G diet) for 5 weeks. Six C57BL/6J mice received the AIN-93G diet for 5 weeks (control group). Parameters of glucose homeostasis included serum insulin, HOMA-IR, HOMA-B, and the analysis of pancreatic tissues for insulin and glucagon. We assessed the innate immune response in the colon and liver using a microarray. Gut microbiome composition of cecal contents was analyzed using 16S rRNA gene amplicon sequencing. RESULTS PSE supplementation improved glucose homeostasis (decreased serum insulin concentration, HOMA-IR, and HOMA-B) and reduced hepatic lipidosis in diabetic mice. PSE supplementation reversed DM-induced shifts in the relative abundance of amplicon sequence variants of Enterorhabdus, Staphylococcus, Anaerotruncus, and Akkermansia. Relative to the DM mice, the PSE group had suppressed gene expression levels of Cd8α, Csf2, and Irf23 and increased expression levels of Tyk2, Myd88, and Gusb in the liver. CONCLUSIONS This study demonstrates that PSE supplementation improves T2DM-associated disorders of diabetic mice, in part due to the suppression of innate immune inflammation.
Collapse
Affiliation(s)
- Matthew Bender
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Julianna M Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Microanatomy and Cellular Biology, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| | - Hemalata Deshmukh
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Scott Trasti
- Laboratory Animal Resource Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
8
|
Brdar I, Racetin A, Jeličić I, Vukojević K, Vučković L, Ljutić D, Saraga-Babić M, Filipović N. Expression of Autophagy Markers LC3B, LAMP2A, and GRP78 in the Human Kidney during Embryonic, Early Fetal, and Postnatal Development and Their Significance in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:9152. [PMID: 39273100 PMCID: PMC11394701 DOI: 10.3390/ijms25179152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Autophagy is the primary intracellular degradation system, and it plays an important role in many biological and pathological processes. Studies of autophagy involvement in developmental processes are important for understanding various processes. Among them are fibrosis, degenerative diseases, cancer development, and metastasis formation. Diabetic kidney disease is one of the main causes of chronic kidney disease and end-stage renal failure. The aim of this study was to investigate the immunohistochemical expression patterns of LC3B, LAMP2A, and GRP78 during different developmental stages of early-developing human kidneys and in samples from patients with type II diabetes mellitus. During the 7/8th DW, moderate expression of LC3B and LAMP2A and strong expression of GRP78 were found in the mesonephric glomeruli and tubules. In the 9/10th DW, the expression of LC3B and LAMP2A was even more pronounced in the mesonephric tubules. LC3B, LAMP2A, and GRP78 immunoreactivity was also found in the paramesonephric and mesonephric ducts and was stronger in the 9/10th DW compared with the 7/8th DW. In addition, the expression of LC3B, LAMP2A, and GRP78 also appeared in the mesenchyme surrounding the paramesonephric duct in the 9/10th DW. In the 15/16th DW, the expression of LC3B in the glomeruli was weak, that of LAMP2A was moderate, and that of GRP78 was strong. In the tubuli, the expression of LC3B was moderate, while the expression of LAMP2A and GRP78 was strong. The strongest expression of LC3B, LAMP2A, and GRP78 was observed in the renal medullary structures, including developing blood vessels. In postnatal human kidneys, the most extensive LC3B, LAMP2A, and GRP78 expression in the cortex was found in the epithelium of the proximal convoluted tubules, with weak to moderate expression in the glomeruli. The medullary expression of LC3B was weak, but the expression of LAMP2A and GRP78 was the strongest in the medullary tubular structures. Significantly lower expression of LC3B was found in the glomeruli of the diabetic patients in comparison with the nondiabetic patients, but there was no difference in the expression of LC3B in the tubule-interstitial compartment. The expression of LAMP2A was significantly higher in the tubule-interstitial compartments of the diabetic patients in comparison with the nondiabetic patients, while its expression did not differ in the glomeruli. Extensive expression of GRP78 was found in the glomeruli and the tubule-interstitial compartments, but there was no difference in the expression between the two groups of patients. These data give us new information about the expression of LC3B, LAMP2A, and GRP78 during embryonic, fetal, and early postnatal development. The spatiotemporal expression of LC3B, LAMP2A, and GRP78 indicates the important role of autophagy during the early stages of renal development. In addition, our data suggest a disturbance in autophagy processes in the glomeruli and tubuli of diabetic kidneys as an important factor in the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Ivan Brdar
- Emergency Department, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Ivo Jeličić
- Internal Medicine Department, Nephrology and Haemodialysis Division, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
- Department of Anatomy, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ljiljana Vučković
- Clinic for Pathology and Citology, Clinical Center of Montenegro, 81101 Podgorica, Montenegro
- Department of Histology and Embryology, Medical Faculty, University of Montenegro, 81101 Podgorica, Montenegro
| | - Dragan Ljutić
- Internal Medicine Department, Nephrology and Haemodialysis Division, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
9
|
L’Abbate S, Kusmic C. The Protective Effect of Flavonoids in the Diet on Autophagy-Related Cardiac Impairment. Nutrients 2024; 16:2207. [PMID: 39064651 PMCID: PMC11279826 DOI: 10.3390/nu16142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The compounds known as flavonoids, commonly found in fruits, vegetables, legumes, medicinal herbs, chocolate, and coffee and tea beverages, have been extensively researched for their impact on cardiovascular health. Flavonoids, with their demonstrated potential, have shown promising effects in regulating blood vessel function and apoptotic processes, as well as in improving lipid profiles. While their powerful antioxidant properties were initially thought to be the main reason behind these effects, recent studies have uncovered new insights into the positive effects of flavonoids on cardiovascular health, and researchers have now identified several signaling pathways and mechanisms that also play a role. Of particular interest are the studies that have highlighted the role of autophagy in maintaining the physiological functions of cardiomyocytes and protecting them from harm. Recent publications have linked the dysregulation of autophagic processes with the development of cardiomyopathies, heart failure, and other cardiovascular diseases. This review aims to present the latest, novel findings from preclinical research regarding the potential beneficial effects of flavonoids on various heart conditions associated with altered autophagy processes.
Collapse
Affiliation(s)
| | - Claudia Kusmic
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| |
Collapse
|
10
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
11
|
Li J, Xie Y, Zheng S, He H, Wang Z, Li X, Jiao S, Liu D, Yang F, Zhao H, Li P, Sun Y. Targeting autophagy in diabetic cardiomyopathy: From molecular mechanisms to pharmacotherapy. Biomed Pharmacother 2024; 175:116790. [PMID: 38776677 DOI: 10.1016/j.biopha.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.
Collapse
Affiliation(s)
- Jie Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, China
| | - Yingying Xie
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuwen Zheng
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Haoming He
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuexi Li
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Jiao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dong Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Furong Yang
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Yihong Sun
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| |
Collapse
|
12
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Li R, Zhou J, Zhang X, Wang Y, Wang J, Zhang M, He C, Zhuang P, Chen H. Construction of the Gal-NH 2/mulberry leaf polysaccharides-lysozyme/luteolin nanoparticles and the amelioration effects on lipid accumulation. Int J Biol Macromol 2023; 253:126780. [PMID: 37699459 DOI: 10.1016/j.ijbiomac.2023.126780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Luteolin is a kind of natural flavonoid with great potential for lipid accumulation intervention. However, the poor water solubility and non-targeted release greatly diminish its efficiency. In this study, 4-aminophenyl β-D-galactopyranoside (Gal-NH2)/mulberry leaf polysaccharides- lysozyme/luteolin nanoparticles (Gal-MPL/Lut) were fabricated via amide reaction, self-assembly process and electrostatic interaction. The nanoparticles could hepatic-target of Lut and enhance action on liver tissue by specific recognition of asialoglycoprotein receptor (ASGPR). Physicochemical characterization of the nanoparticles showed a spherical shape with a uniform particle size distribution (77.8 ± 2.6 nm) with a polydispersity index (PDI) of 0.22 ± 0.06. Subsequently, in HepG2 cells model, administration with hepatic-targeted Gal-MPL/Lut nanoparticles promoted the cellular uptake of Lut, and regulated lipid metabolism manifested by remarkably inhibiting total cholesterol (TC) and triglyceride (TG) expression levels through the modulation of PI3K/SIRT-1/FAS/CEBP-α signaling pathway. This study provides a promising strategy for a highly hepatic-targeted therapy to ameliorate lipid accumulation using natural medicines facilitated by nano-technology.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
15
|
Yan L, Jiang MY, Fan XS. Research into the anti-pulmonary fibrosis mechanism of Renshen Pingfei formula based on network pharmacology, metabolomics, and verification of AMPK/PPAR-γ pathway of active ingredients. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116773. [PMID: 37308028 DOI: 10.1016/j.jep.2023.116773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with limited therapy. Renshen Pingfei Formula (RPFF), a classic Chinese medicine derivative formula, has been shown to exert therapeutic effects on IPF. AIM OF THE STUDY The study aimed to explore the anti-pulmonary fibrosis mechanism of RPFF through network pharmacology, clinical plasma metabolomics, and in vitro experiment. METHODS Network pharmacology was used to study the holistic pharmacological mechanism of RPFF in the treatment of IPF. The differential plasma metabolites for RPFF in the treatment of IPF were identified by untargeted metabolomics analysis. By integrated analysis of metabolomics and network pharmacology, the therapeutic target of RPFF for IPF and the corresponding herbal ingredients were identified. In addition, the effects of the main components of the formula, kaempferol and luteolin, which regulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ (PPAR-γ) pathway were observed in vitro according to the orthogonal design. RESULTS A total of 92 potential targets for RPFF in the treatment of IPF were obtained. The Drug-Ingredients-Disease Target network showed that PTGS2, ESR1, SCN5A, PPAR-γ, and PRSS1 were associated with more herbal ingredients. The protein-protein interaction (PPI) network identified the key targets of RPFF in IPF treatment, including IL6, VEGFA, PTGS2, PPAR-γ, and STAT3. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis acquired the main enriched pathways, and PPAR-γ involved in multiple signaling pathways, including the AMPK signaling pathway. Untargeted clinical metabolomics analysis revealed plasma metabolite variations in patients with IPF versus controls and before versus after RPFF treatment for patients with IPF. Six differential metabolites were explored as differential plasma metabolites for RPFF in IPF treatment. Combined with network pharmacology, a therapeutic target PPAR-γ of RPFF in IPF treatment and the corresponding herbal components were identified. Based on the orthogonal experimental design, the experiments showed that kaempferol and luteolin can decrease the mRNA and protein expression of α-smooth muscle actin (α-SMA), and the combination of lower dose can inhibit α-SMA mRNA and protein expression by promoting the AMPK/PPAR-γ pathway in transforming growth factor beta 1 (TGF-β1)-treated MRC-5 cells. CONCLUSIONS This study revealed that the therapeutic effects of RPFF are due to multiple ingredients and have multiple targets and pathways, and PPAR-γ is one of therapeutic targets for RPPF in IPF and involved in the AMPK signaling pathway. Two ingredients of RPFF, kaempferol and luteolin, can inhibit fibroblast proliferation and the myofibroblast differentiation of TGF-β1, and exert a synergistic effect through AMPK/PPAR-γ pathway activation.
Collapse
Affiliation(s)
- Lu Yan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Naning University of Chinese Medicine, Nanjing, 210023, China; Department of Respiratory and Critical Care Medicine, Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nangjing, 210017, China.
| | - Min-Yue Jiang
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Naning University of Chinese Medicine, Nanjing, 210023, China.
| | - Xin-Sheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Naning University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Han M, Lu Y, Tao Y, Zhang X, Dai C, Zhang B, Xu H, Li J. Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals (Basel) 2023; 16:975. [PMID: 37513887 PMCID: PMC10385282 DOI: 10.3390/ph16070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes, which is mainly characterized by increased apoptosis and dysfunction of beta (β) cells, is a metabolic disease caused by impairment of pancreatic islet function. Previous studies have demonstrated that death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2) is involved in regulating β cell survival. Since natural products have multiple targets and often are multifunctional, making them promising compounds for the treatment of diabetes, we identified Drak2 inhibitors from a natural product library. Among the identified products, luteolin, a flavonoid, was found to be the most effective compound. In vitro, luteolin effectively alleviated palmitate (PA)-induced apoptosis of β cells and PA-induced impairment of primary islet function. In vivo, luteolin showed a tendency to lower blood glucose levels. It also alleviated STZ-induced apoptosis of β cells and metabolic disruption in mice. This function of luteolin partially relied on Drak2 inhibition. Furthermore, luteolin was also found to effectively relieve oxidative stress and promote autophagy in β cells, possibly improving β cell function and slowing the progression of diabetes. In conclusion, our findings show the promising effect of Drak2 inhibitors in relieving diabetes and offer a potential therapeutic target for the protection of β cells. We also reveal some of the underlying mechanisms of luteolin's cytoprotective function.
Collapse
Affiliation(s)
- Ming Han
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunhua Tao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chengqiu Dai
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bingqian Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Xu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
17
|
Han YP, Liu LJ, Yan JL, Chen MY, Meng XF, Zhou XR, Qian LB. Autophagy and its therapeutic potential in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1139444. [PMID: 37020591 PMCID: PMC10067862 DOI: 10.3389/fendo.2023.1139444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, is the most significant microvascular complication of diabetes and poses a severe public health concern due to a lack of effective clinical treatments. Autophagy is a lysosomal process that degrades damaged proteins and organelles to preserve cellular homeostasis. Emerging studies have shown that disorder in autophagy results in the accumulation of damaged proteins and organelles in diabetic renal cells and promotes the development of DN. Autophagy is regulated by nutrient-sensing pathways including AMPK, mTOR, and Sirt1, and several intracellular stress signaling pathways such as oxidative stress and endoplasmic reticulum stress. An abnormal nutritional status and excess cellular stresses caused by diabetes-related metabolic disorders disturb the autophagic flux, leading to cellular dysfunction and DN. Here, we summarized the role of autophagy in DN focusing on signaling pathways to modulate autophagy and therapeutic interferences of autophagy in DN.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|