1
|
Sikri N, Behera B, Kumar A, Kumar V, Pandey OP, Mehta J, Kumar S. Recent advancements on 2D nanomaterials as emerging paradigm for the adsorptive removal of microcontaminants. Adv Colloid Interface Sci 2025; 340:103441. [PMID: 40023124 DOI: 10.1016/j.cis.2025.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Water reservoirs are facing increasing prevalence of microcontaminants originating from agricultural runoff, industrial effluents, and domestic wastewater. The persistence of microcontaminants leads to disruptions in aquatic ecosystems and poses potential long-term health risks to humans, even at minimal concentrations. However, traditional wastewater treatment methods are inefficient to eliminate the microcontaminants because of their intricate chemical structures and low concentration. In this regard, nano-adsorption employing nanomaterials as adsorbents presents a viable alternative, offering enhanced efficiency and specificity towards the removal of microcontaminants. Amongst all, two-dimensional (2D) nanomaterials, including graphene oxide (GO), layered double hydroxides (LDHs), MXenes, and boron nitrides (BNs), exhibit distinctive characteristics such as a high surface area, remarkable chemical stability, and tendency of diverse surface functionalization, rendering them particularly effective in adsorbing pollutants from water. Therefore, the present review provides an exhaustive literature and comparative analysis of the aforementioned 2D nanomaterials-based adsorbents concerning their efficacy in adsorbing microcontaminants of pharmaceuticals and personal care products origin such as antibiotics, steroids, bisphenols, phthalates, parabens, and benzophenones. The different aspects of 2D adsorbents including adsorption capacity, mechanisms involved, kinetic and isotherm models followed for removal of a variety of microcontaminants have been congregated. Also, the information on recyclability, reusability, and stability of the adsorbents has been summarized to highlight their viability. Further, the limitations and future aspects related to the use of 2D nanomaterials-based adsorbents towards pollutant removal have been discussed. Overall, 2D nanomaterials holds great promise as efficient adsorbents for environmental remediation and can also be explored for industrial adsorption applications.
Collapse
Affiliation(s)
- Nidhi Sikri
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Bunushree Behera
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Akshay Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute, Mohali 140308, Punjab, India
| | - O P Pandey
- Department of Physics and Material Science, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Jyotsana Mehta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India.
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
2
|
Evangelista D, Nelson E, Skyner R, Tehan B, Bernetti M, Roberti M, Bolognesi ML, Bottegoni G. Application of Deep Learning to Predict the Persistence, Bioaccumulation, and Toxicity of Pharmaceuticals. J Chem Inf Model 2025; 65:3248-3261. [PMID: 40178174 PMCID: PMC12004513 DOI: 10.1021/acs.jcim.4c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
This study investigates the application of a deep learning (DL) model, specifically a message-passing neural network (MPNN) implemented through Chemprop, to predict the persistence, bioaccumulation, and toxicity (PBT) characteristics of compounds, with a focus on pharmaceuticals. We employed a clustering strategy to provide a fair assessment of the model performances. By applying the generated model to a set of pharmaceutically relevant molecules, we aim to highlight potential PBT chemicals and extract PBT-relevant substructures. These substructures can serve as structural flags, alerting drug designers to potential environmental issues from the earliest stages of the drug discovery process. Incorporating these findings into pharmaceutical development workflows is expected to drive significant advancements in creating more environmentally friendly drug candidates while preserving their therapeutic efficacy.
Collapse
Affiliation(s)
- Dominga Evangelista
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum—University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Elliot Nelson
- OMass
Therapeutics, Building 4000, Chancellor Court, John Smith Dr, Oxford Business Park,
ARC, Oxford OX4 2GX, United Kingdom
| | - Rachael Skyner
- OMass
Therapeutics, Building 4000, Chancellor Court, John Smith Dr, Oxford Business Park,
ARC, Oxford OX4 2GX, United Kingdom
| | - Ben Tehan
- OMass
Therapeutics, Building 4000, Chancellor Court, John Smith Dr, Oxford Business Park,
ARC, Oxford OX4 2GX, United Kingdom
| | - Mattia Bernetti
- Department
of Biomolecular Sciences, University of
Urbino, Urbino 60129, Italy
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Marinella Roberti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum—University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum—University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Giovanni Bottegoni
- Department
of Biomolecular Sciences, University of
Urbino, Urbino 60129, Italy
- Department
of Pharmacy, University of Birmingham, Edgbaston B15 2TT, Birmingham, United
Kingdom
| |
Collapse
|
3
|
Corcini CD, Varela Junior AS, Yeste M. Environmental contamination and male reproductive health: (ir) reversible effects in child- and adulthood. AN ACAD BRAS CIENC 2025; 97:e20240717. [PMID: 40136200 DOI: 10.1590/0001-3765202520240717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/02/2024] [Indexed: 03/27/2025] Open
Abstract
Infertility affects 10-15% of reproductive-age couples, with causes ranging from genetic factors to unidentified reasons. Environmental conditions, particularly pollutants, play a significant role in male fertility. Yet, public health policies often overlook reproductive health, despite mounting evidence of pollutants' detrimental repercussion. Understanding this impact is crucial to prevent the effects of dangerous exposure, especially given the high levels of environmental pollutants in today's world. Most of the previous research about the adverse effects from contaminants has been conducted in rodents, with limited human epidemiological research. This article reviews the evidence about the impact of various contaminants (air pollutants, water contaminants, pesticides, herbicides, radiation, heavy metals, and plastics) on male reproductive health, particularly sperm quality and fertility. The literature suggests that exposure to contaminants during fetal development and childhood has irreversible effects, while those of adult exposure are often reversible. These findings highlight the need to alert society about reproductive health threats from certain contaminants. Public authorities should consider this situation when designing health plans, and individuals envisaging fatherhood should be aware of these risks.
Collapse
Affiliation(s)
- Carine Dahl Corcini
- Universidade Federal de Pelotas, Faculdade de Medicina Veterinária, Departamento de Patologia Animal, Reprodução Animal Comparada, Campus Capão do Leão, s/n, 96160-000 Capão do Leão, RS, Brazil
| | - Antonio Sergio Varela Junior
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Reprodução Animal Comparada, Av. Itália, km 8, Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Marc Yeste
- University of Girona, Institute of Food and Agricultural Technology, Biotechnology of Animal and Human Reproduction (TechnoSperm), ES-17003 Girona, Spain
- University of Girona, Faculty of Sciences, Department of Biology, Unit of Cell Biology, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| |
Collapse
|
4
|
Hardegen JB, Knips MSF, Däumer JK, Kretzer S, Wichard T. Biodegradation of Xenoestrogens by the Green Tide Forming Seaweed Ulva: A Model System for Bioremediation. ACS ES&T WATER 2025; 5:1195-1206. [PMID: 40110440 PMCID: PMC11915382 DOI: 10.1021/acsestwater.4c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Anthropogenic xenoestrogens pose serious threats to humans and the environment. Ulva (Chlorophyta), a green macroalga that can propagate in environments of various salinities, is a potential candidate for efficient wastewater treatment and bioremediation. In this study, we tested the class of bisphenols and ethinylestradiol and investigated the underlying removal mechanisms of these xenoestrogens. The model organism Ulva mutabilis demonstrated over 99% removal efficiency for bisphenols A, B, E, F, P, and Z, and partial removal of bisphenol S. Ulva showed complete removal capabilities even under axenic conditions, while its associated bacteria were not involved. Complete removal of 6.6 mg L-1 of bisphenol A was achieved within 2 days and a half-time of 1.85 h. Biodegradation was the leading cause of removal, whereas bioaccumulation was minimal. The model substance bisphenol A underwent various reactions, and 20 transformation products were detected using stable isotope labeling. While most of the bisphenol A was completely biodegraded, the primary transformation products were monobromobisphenol A, bisphenol A bisulfate, and 4-hydroxypropanylphenol. This study highlights the potential of the green seaweed Ulva to provide a pathway for more effective and sustainable bioremediation strategies to tackle the environmental pollution caused by xenoestrogens.
Collapse
Affiliation(s)
- Justus B Hardegen
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maximilian S F Knips
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Johanna K Däumer
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Svenja Kretzer
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
5
|
Yadetie F, Zhang X, Reboa A, Noally GSC, Eilertsen M, Fleming MS, Helvik JV, Jonassen I, Goksøyr A, Karlsen OA. Transcriptome analysis reveals effects of ethynylestradiol and bisphenol A on multiple endocrine and metabolic pathways in the pituitary and liver of female Atlantic cod ( Gadus morhua). Front Endocrinol (Lausanne) 2025; 15:1491432. [PMID: 39931438 PMCID: PMC11808150 DOI: 10.3389/fendo.2024.1491432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The pituitary and liver are among the main sites of action of estrogens in fish. Years of research has shown that xenoestrogens can interfere with functions of estrogens. There is however incomplete understanding of xenoestrogen targets genes, their molecular mechanisms and potential effects in some of the target organs, particularly the pituitary. Methods We performed a comprehensive analysis of pituitary and liver transcriptome 72 h after injection of ethynylestradiol (EE2: 10, 50 or 250 nmol/kg body weight/bw) and bisphenol A (BPA: 8, 40 or 200 μmol/kg bw) in juvenile female Atlantic cod (Gadus morhua). Results A broad range of reproductive and metabolic pathways were affected in both organs by BPA and EE2. In the pituitary, effects on the expression of many genes associated with reproduction-related hormonal pathways including the gonadotropin system, as well as genes in processes such as cell differentiation and metabolic homeostasis were observed. In the liver, in addition to upregulation of well-known estrogen marker genes, effects on metabolic pathways, in particular, a coordinated downregulation of genes in the triglyceride synthesis pathways were observed. Discussion The results suggest that estrogenic compounds affect a broad range of reproductive and metabolic processes in the pituitary. The alterations in the liver unravel the transcriptional changes underlying metabolic remodeling during estrogen induced vitellogenesis. This study provides new insights into mechanisms of endocrine and metabolic interactions that can be potential targets of environmental estrogens in fish. The study also identifies potential gene expression biomarkers for pituitary and liver effects of xenoestrogens.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Xiaokang Zhang
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Anna Reboa
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Inge Jonassen
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Blanc-Legendre M, Guillot L, Chevalier L, Malleret C, Le Menach K, Pardon P, Budzinski H, Brion F, Sire S, Coumailleau P, Charlier TD, Pellegrini E, Cousin X. Long-term impact of embryonic exposure to ethinylestradiol and clotrimazole on behavior and neuroplasticity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104592. [PMID: 39581484 DOI: 10.1016/j.etap.2024.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Estrogen receptors (ER) are widely expressed in the brain of many species and experimental results highlighted the role of estradiol in neuronal plasticity and behavior. Consequently, the brain is therefore a prime target for endocrine disrupting chemicals (EDCs) interacting with estrogen signaling. Very little is known about the late effects of early disruption of estrogen signaling by EDCs. We focused on: ethinylestradiol (EE2; ER agonist) and clotrimazole (inhibitor of key steroidogenesis enzymes, including aromatases). Zebrafish eleutheroembryos were exposed (0-5 days) and then raised normally until adulthood. Several behavioral tests were performed in adults, then cell proliferation and dopaminergic neurons were quantified in several brain regions using immunostaining. Overall, a developmental exposure to EDCs stimulates cell proliferation in the dorsal telencephalon. At environmentally-relevant concentrations, male fish exposed to EE2 exhibited increased activity levels and decreased social behavior, posing a potential risk to population balance and health.
Collapse
Affiliation(s)
- M Blanc-Legendre
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas-les-Flots, France
| | - L Guillot
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - L Chevalier
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - C Malleret
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - K Le Menach
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - P Pardon
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - H Budzinski
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - F Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte 60550, France
| | - S Sire
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas-les-Flots, France
| | - P Coumailleau
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - T D Charlier
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France; University of Rennes, ImPACcell Platform, Biosit, Rennes, France
| | - E Pellegrini
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - X Cousin
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas-les-Flots, France.
| |
Collapse
|
7
|
Jovanović D, Bognár S, Despotović V, Finčur N, Jakšić S, Putnik P, Deák C, Kozma G, Kordić B, Šojić Merkulov D. Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production. Foods 2024; 13:2643. [PMID: 39200570 PMCID: PMC11353736 DOI: 10.3390/foods13162643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Pure water scarcity is the most significant emerging challenge of the modern society. Various organics such as pesticides (clomazone, quinmerac), pharmaceuticals (ciprofloxacin, 17α-ethynilestradiol), and mycotoxins (deoxynivalenol) can be found in the aquatic environment. The aim of this study was to fabricate ZnO nanomaterial on the basis of banana peel extract (ZnO/BPE) and investigate its efficiency in the photocatalytic degradation of selected organics under various experimental conditions. Newly synthesized ZnO/BPE nanomaterials were fully characterized by the XRD, FTIR, SEM-EPS, XPS, and BET techniques, which confirmed the successful formation of ZnO nanomaterials. The photocatalytic experiments showed that the optimal catalyst loading of ZnO/BPE was 0.5 mg/cm3, while the initial pH did not influence the degradation efficiency. The reusability of the ZnO/BPE nanomaterial was also tested, and minimal activity loss was found after three photocatalytic cycles. The photocatalytic efficiency of pure banana peel extract (BPE) was also studied, and the obtained data showed high removal of ciprofloxacin and 17α-ethynilestradiol. Finally, the influence of water from Danube River was also examined based on the degradation efficiency of selected pollutants. These results showed an enhanced removal of ciprofloxacin in water from the Danube River, while in the case of other pollutants, the treatment was less effective.
Collapse
Affiliation(s)
- Dušica Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Szabolcs Bognár
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Vesna Despotović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Nina Finčur
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Sandra Jakšić
- Scientific Veterinary Institute “Novi Sad”, Rumenački Put 20, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Cora Deák
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Square 1, H-6720 Szeged, Hungary; (C.D.); (G.K.)
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Square 1, H-6720 Szeged, Hungary; (C.D.); (G.K.)
| | - Branko Kordić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Daniela Šojić Merkulov
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| |
Collapse
|
8
|
Alves RF, Lopes C, Rocha E, Madureira TV. Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol. J Xenobiot 2024; 14:1064-1078. [PMID: 39189175 PMCID: PMC11348032 DOI: 10.3390/jox14030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Three-dimensional (3D) fish hepatocyte cultures are promising alternative models for replicating in vivo data. Few studies have attempted to characterise the structure and function of fish 3D liver models and illustrate their applicability. This study aimed to further characterise a previously established spheroid model obtained from juvenile brown trout (Salmo trutta) primary hepatocytes under estrogenic stimulation. The spheroids were exposed for six days to environmentally relevant concentrations of 17α-ethinylestradiol-EE2 (1-100 ng/L). The mRNA levels of peroxisome (catalase-Cat and urate oxidase-Uox), lipid metabolism (acyl-CoA long chain synthetase 1-Acsl1, apolipoprotein AI-ApoAI, and fatty acid binding protein 1-Fabp1), and estrogen-related (estrogen receptor α-ERα, estrogen receptor β-ERβ, vitellogenin A-VtgA, zona pellucida glycoprotein 2.5-ZP2.5, and zona pellucida glycoprotein 3a.2-ZP3a.2) target genes were evaluated by quantitative real-time polymerase chain reaction. Immunohistochemistry was used to assess Vtg and ZP protein expressions. At the highest EE2 concentration, VtgA and ZP2.5 genes were significantly upregulated. The remaining target genes were not significantly altered by EE2. Vtg and ZP immunostaining was consistently increased in spheroids exposed to 50 and 100 ng/L of EE2, whereas lower EE2 levels resulted in a weaker signal. EE2 did not induce significant changes in the spheroids' viability and morphological parameters. This study identified EE2 effects at environmentally relevant doses in trout liver spheroids, indicating its usefulness as a proxy for in vivo impacts of xenoestrogens.
Collapse
Affiliation(s)
- Rodrigo F. Alves
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (R.F.A.); (C.L.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia Lopes
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (R.F.A.); (C.L.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eduardo Rocha
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (R.F.A.); (C.L.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Tânia Vieira Madureira
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (R.F.A.); (C.L.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
de Souza TL, da Luz JZ, Roque ADA, Opuskevitch I, Ferreira FCADS, Ribeiro CADO, Neto FF. Exploring the endocrine disrupting potential of a complex mixture of PAHs in the estrogen pathway in Oreochromis niloticus hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107002. [PMID: 38936242 DOI: 10.1016/j.aquatox.2024.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
This study aimed to investigate the toxicity and endocrine disrupting potential of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) in the estrogen pathway using hepatocytes of Nile tilapia Oreochromis niloticus, the hepatocytes were exposed to various concentrations of the PAH mixture, and multiple endpoints were evaluated to assess their effects on cell viability, gene expression, oxidative stress markers, and efflux activity. The results revealed that the PAH mixture had limited effects on hepatocyte metabolism and cell adhesion, as indicated by the non-significant changes observed in MTT metabolism, neutral red retention, and crystal violet staining. However, significant alterations were observed in the expression of genes related to the estrogen pathway. Specifically, vitellogenin (vtg) exhibited a substantial increase of approximately 120% compared to the control group. Similarly, estrogen receptor 2 (esr2) showed a significant upregulation of approximately 90%. In contrast, no significant differences were observed in the expression of estrogen receptor 1 (esr1) and the G protein-coupled estrogen receptor 1 (gper1). Furthermore, the PAH mixture elicited complex responses in oxidative stress markers. While reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels remained unchanged, the activity of catalase (Cat) was significantly reduced, whereas superoxide dismutase (Sod) activity, glutathione S-transferase (Gst) activity, and non-protein thiols levels were significantly elevated. In addition, the PAH mixture significantly influenced efflux activity, as evidenced by the increased efflux of rhodamine and calcein, indicating alterations in multixenobiotic resistance (MXR)-associated proteins. Overall, these findings, associated with bioinformatic analysis, highlight the potential of the PAH mixture to modulate the estrogen pathway and induce oxidative stress in O. niloticus hepatocytes. Understanding the mechanisms underlying these effects is crucial for assessing the ecological risks of PAH exposure and developing appropriate strategies to mitigate their adverse impacts on aquatic organisms.
Collapse
Affiliation(s)
- Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil.
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Aliciane de Almeida Roque
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Iracema Opuskevitch
- Copel GeT-SOS/DNGT - Rua José Izidoro Biazetto, no. 18, Bloco A, CEP 81200-240, Curitiba, PR, Brazil
| | | | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Baekelandt S, Bouchat A, Leroux N, Robert JB, Burattin L, Cishibanji E, Lambert J, Gérard C, Delierneux C, Kestemont P. Estetrol/drospirenone versus 17α-ethinylestradiol/drospirenone: An extended one generation test to evaluate the endocrine disruption potential on zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2024; 187:108702. [PMID: 38678935 DOI: 10.1016/j.envint.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Combined oral contraceptives, comprising of both an oestrogen and a progestin component, are released in aquatic environments and potentially pose a risk to aquatic wildlife by their capacity to disrupt physiological mechanisms. In this study, the endocrine disruptive potential of two mixtures, 17α-ethinylestradiol (EE2), a synthetic oestrogen, or estetrol (E4), a natural oestrogen, with the progestin drospirenone (DRSP) have been characterised in three generations of zebrafish, according to an adapted Medaka Extended One Generation Reproduction Test. Zebrafish (Danio rerio) were exposed to a range of concentrations of EE2/DRSP and E4/DRSP (∼1×, ∼3×, ∼10× and ∼30× predicted environmental concentration, PEC). Survival, growth, hatching success, fecundity, fertilisation success, vitellogenin (VTG), gonad histopathology, sex differentiation, and transcriptional analysis of genes related to gonadal sex steroid hormones synthesis were assessed. In the F0 generation, exposure to EE2/DRSP at ∼10 and ∼30× PEC decreased fecundity and increased male VTG concentrations. The highest concentration of EE2/DRSP also affected VTG concentrations in female zebrafish and the expression of genes implicated in steroid hormones synthesis. In the F1 generation, sex determination was impaired in fish exposed to EE2/DRSP at concentrations as low as ∼3× PEC. Decreased fecundity and fertility, and abnormal gonadal histopathology were also observed. No effects were observed in the F2 generation. In contrast, E4/DRSP induced only minor histopathological changes and an increase in the proportion of males, at the highest concentration tested (∼30× PEC) in the F1 generation and had no effect on hatching success of F2 generation. Overall, this study suggests that the combination E4/DRSP has a more favourable environmental profile than EE2/DRSP.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Antoine Bouchat
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Emmanuel Cishibanji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, An Affiliated Company of Mithra Pharmaceuticals, Rue Saint-Georges 5, 4000 Liège, Belgium
| | - Céline Delierneux
- Estetra SRL, An Affiliated Company of Mithra Pharmaceuticals, Rue Saint-Georges 5, 4000 Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
11
|
Goswami S, Dutta D, Pandey S, Chattopadhyay P, Lalhmunsiama, Dubey R, Tiwari D. Novel fibrous Ag(NP) decorated clay-polymer composite: Implications in water purification contaminated with predominant micro-pollutants and bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121063. [PMID: 38704955 DOI: 10.1016/j.jenvman.2024.121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Due to the potential harm caused by emerging micro-pollutants to living organisms, contaminating water supplies by micro-pollutants like EDCs, pharmaceuticals, and microorganisms has become a concern in many countries. Considering both microbiological and micro-pollutant exposure risks associated with water use for agricultural/or household purposes, it is imperative to create a strategy for improving pollutant removal from treated wastewater that is both effective and affordable. Natural clay minerals efficiently remove contaminants from wastewater, though the pristine clay has less affinity to several organic pollutants. Hydrophilic polymers, viz., poly(ethylene glycol) (PEG), improve the dispersion of particles, flocculation processes, and surface properties. In this study, PEG grafted with attapulgite, thereby providing a high-specific surface-area, mesoporous materials for the adsorption of micro-pollutants like ciprofloxacin (CIP) and 17α-ethinylestradiol (EE2) at high rates. A gentle washing process regenerates the clay-polymer material several times with no performance loss, and the natural water implications show fair applicability of solid in decontaminating the CIP and EE2 in an aqueous medium. Further, greenly synthesized silver nanoparticles in situ disperse with the clay polymer efficiently remove the gram-positive and gram-negative bacterium viz., Bacillus subtilis, and Pseudomonas aeruginosa, which are commonly persistent in aquatic environments. The clay polymer outperformed a modified clay composite to eliminate microorganisms and organic micro-pollutants in significant quantities quickly. These results clearly show the importance of fibrous clay-polymer composite for water purification technologies.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India
| | - Dhiraj Dutta
- DRL, Post Bag No 02, Tezpur, Assam, 784001, India
| | - Shreekant Pandey
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | | | - Lalhmunsiama
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India
| | - Rama Dubey
- DRL, Post Bag No 02, Tezpur, Assam, 784001, India
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
12
|
Faulstich L, Wollenweber S, Reinhardt-Imjela C, Arendt R, Schulte A, Hollert H, Schiwy S. Ecotoxicological evaluation of surface waters in Northern Namibia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:456. [PMID: 38630192 PMCID: PMC11024038 DOI: 10.1007/s10661-024-12613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The increasing pressure on freshwater systems due to intensive anthropogenic use is a big challenge in central-northern Namibia and its catchment areas, the Kunene and the Kavango Rivers, and the Cuvelai-Etosha Basin, that provide water for more than 1 million people. So far, there is no comprehensive knowledge about the ecological status and only few knowledge about the water quality. Therefore, it is crucial to learn about the state of the ecosystem and the ecological effects of pollutants to ensure the safe use of these resources. The surface waters of the three systems were sampled, and three bioassays were applied on three trophic levels: algae, daphnia, and zebrafish embryos. Additionally, in vitro assays were performed to analyze mutagenicity (Ames fluctuation), dioxin-like potential (micro-EROD), and estrogenicity (YES) by mechanism-specific effects. The results show that acute toxicity to fish embryos and daphnia has mainly been detected at all sites in the three catchment areas. The systems differ significantly from each other, with the sites in the Iishana system showing the highest acute toxicity. At the cellular level, only weak effects were identified, although these were stronger in the Iishana system than in the two perennial systems. Algae growth was not inhibited, and no cytotoxic effects could be detected in any of the samples. Mutagenic effects and an estrogenic potential were detected at three sites in the Iishana system. These findings are critical in water resource management as the effects can adversely impact the health of aquatic ecosystems and the organisms within them.
Collapse
Affiliation(s)
- L Faulstich
- Freie Universität Berlin, Berlin, Germany.
- Goethe-Universität Frankfurt, Frankfurt, Germany.
| | | | | | - R Arendt
- Freie Universität Berlin, Berlin, Germany
| | - A Schulte
- Freie Universität Berlin, Berlin, Germany
| | - H Hollert
- Goethe-Universität Frankfurt, Frankfurt, Germany
| | - S Schiwy
- Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
El Yagoubi Y, Lemieux B, Segura PA, Cabana H. Characterization of laccases from Trametes hirsuta in the context of bioremediation of wastewater treatment plant effluent. Enzyme Microb Technol 2023; 171:110308. [PMID: 37660578 DOI: 10.1016/j.enzmictec.2023.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The bioremediation of pharmaceutical compounds contained in wastewater, in an ecological and sustainable way, is possible via the oxidative action of fungal laccases. The discovery of new fungal laccases with unique physico-chemical characteristics pushes researchers to identify suitable laccases for specific applications. The aim of this study is to purify and characterize laccase isoenzymes produced from the Trametes hirsuta IBB450 strain for the bioremediation of pharmaceutical compounds. Two main laccases mixtures were observed and purified in the extracts and were called Yn and Yg. Peptide fingerprinting analysis suggested that Yn was constituted mainly of laccase Q02497 and Yg of laccase A0A6M5CX58, respectively. Robustness tests, based on tolerance and stability, showed that both laccases were affected in a relatively similar way by salts (KCl, NaCl), organic solvents (ACN, MeOH), denaturing compounds (urea, trypsin, copper) and were virtually unaffected and stable in wastewater. Determination of kinetic constants (Michaelis (KM), catalytic constant (kcat) and kinetic efficiency (K=kcat/KM)) for the transformation of synthetic hormone 17α-ethynylestradiol and the anti-inflammatory agent diclofenac indicates a lower KM and kcat for laccase Yn but relative similar K constant compared to Yg. Synergistic effects were observed for the transformation of diclofenac, unlike 17α-ethynylestradiol. Transformation studies of 17α-ethynylestradiol at different temperatures (4 and 21 °C) indicate a transformation rate reduction of approximately 75-80% at 4 °C against 25% for diclofenac in less than an hour. Finally, the classification of laccases Yg and Yn into one of eight groups (group A-H) suggests that laccase Yg belongs to group A (constitutive laccase) and laccase Yn belongs to group B (inducible laccase).
Collapse
Affiliation(s)
- Younès El Yagoubi
- Université de Sherbrooke Water Research Group (GREAUS), 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada; Department of Chemistry, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Bruno Lemieux
- Plateforme de purification des protéines de l'Université de Sherbrooke, Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Pedro A Segura
- Université de Sherbrooke Water Research Group (GREAUS), 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada; Department of Chemistry, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group (GREAUS), 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada; Department of Civil and Building Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
14
|
Hidayati NV, Asia L, Lebarillier S, Widowati I, Sabdono A, Piram A, Hidayat RR, Fitriyah D, Almanar IP, Doumenq P, Syakti AD. Environmental Sample Stability for Pharmaceutical Compound Analysis: Handling and Preservation Recommendations. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:5526429. [PMID: 37901345 PMCID: PMC10602706 DOI: 10.1155/2023/5526429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/09/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Efficient and resilient techniques for handling samples are essential for detecting pharmaceutical compounds in the environment. This study explores a method for preserving water samples during transport before quantitative analysis. The study investigates the stability of 17α-ethynylestradiol (EE2), acetaminophen (ACM), oxytetracycline (OTC), sulfamethoxazole (SMX), and trimethoprim (TMP) after preconcentration within solid-phase extraction (SPE) cartridges. Through various experiments involving different holding times and storage temperatures, it was determined that four pharmaceutical compounds remained stable when stored for a month at 4°C and for six months when stored at -18°C in darkness. Storing these compounds in SPE cartridges at -18°C seemed effective in preserving them for extended periods. In addition, ACM, TMP, OTC, EE2, and SMX remained stable for three days at room temperature. These findings establish guidelines for appropriate storage and handling practices of pharmaceutical compounds preconcentrated from aqueous environmental samples using SPE.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Fisheries and Marine Sciences Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
- Center for Maritime Biosciences Studies, Institute for Research and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
| | - Laurence Asia
- Aix Marseille University, CNRS, LCE, Marseille, France
| | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille University, CNRS, LCE, Marseille, France
| | - Rizqi Rizaldi Hidayat
- Fisheries and Marine Sciences Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
| | - Dina Fitriyah
- Maritime Technique and Technology Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| | - Indra Putra Almanar
- Maritime Technique and Technology Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| | | | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies, Institute for Research and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
- Marine Sciences and Fisheries Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| |
Collapse
|
15
|
Durcik M, Grobin A, Roškar R, Trontelj J, Peterlin Mašič L. Estrogenic potency of endocrine disrupting chemicals and their mixtures detected in environmental waters and wastewaters. CHEMOSPHERE 2023; 330:138712. [PMID: 37068617 DOI: 10.1016/j.chemosphere.2023.138712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
Endocrine disrupting chemicals such as natural and synthetic steroid hormones and bisphenols are among the most important pollutants in the aquatic environment. We performed an environmental chemical analysis of five Slovenian water samples, two rivers, one groundwater, and the influent and effluent of wastewater treatment plants, with a highly sensitive analysis of twenty-five endocrine-disrupting compounds belonging to the groups of natural hormones, synthetic hormones, and bisphenols. Since these compounds are simultaneously present in the environment, it is important to study their individual effects as well as the effects of mixtures. We investigated in vitro the estrogenic potency of selected natural and synthetic steroid hormones and bisphenols detected in surface, ground and waste water in Slovenia using the OECD-validated transactivation assay on the cell line Hela9903. We predicted their mixture effects using the concentration addition model and compared them with experimentally determined values. Two mixing designs were used: a balanced design in which chemicals were combined in proportion to their individual EC50 values, and an unbalanced design with compounds in proportion to their measured concentrations in the environmental samples. The estrogenic effects of the experimental mixtures followed the concentration addition model. Real water samples exhibited weaker estrogenic effects, showing the great heterogeneity of the real water samples.
Collapse
Affiliation(s)
- Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Reis R, Dhawle R, Du Pasquier D, Tindall AJ, Frontistis Z, Mantzavinos D, de Witte P, Cabooter D. Electrochemical degradation of 17α-ethinylestradiol: Transformation products, degradation pathways and in vivo assessment of estrogenic activity. ENVIRONMENT INTERNATIONAL 2023; 176:107992. [PMID: 37244003 DOI: 10.1016/j.envint.2023.107992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Conventional water treatment methods are not efficient in eliminating endocrine disrupting compounds (EDCs) in wastewater. Electrochemical Advanced Oxidation Processes (eAOPs) offer a promising alternative, as they electro-generate highly reactive species that oxidize EDCs. However, these processes produce a wide spectrum of transformation products (TPs) with unknown chemical and biological properties. Therefore, a comprehensive chemical and biological evaluation of these remediation technologies is necessary before they can be safely applied in real-life situations. In this study, 17α-ethinylestradiol (EE2), a persistent estrogen, was electrochemically degraded using a boron doped diamond anode with sodium sulfate (Na2SO4) and sodium chloride (NaCl) as supporting electrolytes. Ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was used for the quantification of EE2 and the identification of TPs. Estrogenic activity was assessed using a transgenic medaka fish line. At optimal operating conditions, EE2 removal reached over 99.9% after 120 min and 2 min, using Na2SO4 and NaCl, respectively. The combined EE2 quantification and in vivo estrogenic assessment demonstrated the overall estrogenic activity was consistently reduced with the degradation of EE2, but not completely eradicated. The identification and time monitoring of TPs showed that the radical agents readily oxidized the phenolic A-ring of EE2, leading to the generation of hydroxylated and/or halogenated TPs and ring-opening products. eAOP revealed to be a promising technique for the removal of EE2 from water. However, caution should be exercised with respect to the generation of potentially toxic TPs.
Collapse
Affiliation(s)
- Rafael Reis
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Rebecca Dhawle
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - David Du Pasquier
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Andrew J Tindall
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece; School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| | | | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Deirdre Cabooter
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
17
|
Kuo YH, How CM, Huang CW, Yen PL, Yu CW, Chang CH, Liao VHC. Co-contaminants of ethinylestradiol and sulfamethoxazole in groundwater exacerbate ecotoxicity and ecological risk and compromise the energy budget of C. elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106473. [PMID: 36871484 DOI: 10.1016/j.aquatox.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Ethinylestradiol (EE2) and sulfamethoxazole (SMX) are among pharmaceuticals and personal care products (PPCPs) and regarded as emerging contaminants in groundwater worldwide. However, the ecotoxicity and potential risk of these co-contaminants remain unknown. We investigated the effects of early-life long-term co-exposure to EE2 and SMX in groundwater on life-history traits of Caenorhabditis elegans and determined potential ecological risks in groundwater. L1 larvae of wild-type N2 C. elegans were exposed to measured concentrations of EE2 (0.001, 0.75, 5.1, 11.8 mg/L) or SMX (0.001, 1, 10, 100 mg/L) or co-exposed to EE2 (0.75 mg/L, no observed adverse effect level derived from its reproductive toxicity) and SMX (0.001, 1, 10, 100 mg/L) in groundwater. Growth and reproduction were monitored on days 0 - 6 of the exposure period. Toxicological data were analyzed using DEBtox modeling to determine the physiological modes of action (pMoAs) and the predicted no-effect concentrations (PNECs) to estimate ecological risks posed by EE2 and SMX in global groundwater. Early-life EE2 exposure significantly inhibited the growth and reproduction of C. elegans, with lowest observed adverse effect levels (LOAELs) of 11.8 and 5.1 mg/L, respectively. SMX exposure impaired the reproductive capacity of C. elegans (LOAEL = 0.001 mg/L). Co-exposure to EE2 and SMX exacerbated ecotoxicity (LOAELs of 1 mg/L SMX for growth, and 0.001 mg/L SMX for reproduction). DEBtox modeling showed that the pMoAs were increased growth and reproduction costs for EE2 and increased reproduction costs for SMX. The derived PNEC falls within the range of detected environmental levels of EE2 and SMX in groundwater worldwide. The pMoAs for EE2 and SMX combined were increased growth and reproduction costs, resulting in lower energy threshold values than single exposure. Based on global groundwater contamination data and energy threshold values, we calculated risk quotients for EE2 (0.1 - 123.0), SMX (0.2 - 91.3), and combination of EE2 and SMX (0.4 - 341.1). Our findings found that co-contamination by EE2 and SMX exacerbates toxicity and ecological risk to non-target organisms, suggesting that the ecotoxicity and ecological risk of co-contaminants of pharmaceuticals should be considered to sustainably manage groundwater and aquatic ecosystems.
Collapse
Affiliation(s)
- Yu-Hsuan Kuo
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
18
|
Peng W, Lin S, Deng Z, Liang R. Bioaugmentation removal and microbiome analysis of the synthetic estrogen 17α-ethynylestradiol from hostile conditions and environmental samples by Pseudomonas citronellolis SJTE-3. CHEMOSPHERE 2023; 317:137893. [PMID: 36690257 DOI: 10.1016/j.chemosphere.2023.137893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Synthetic estrogens are emerging environmental contaminants with great estrogenic activities and stable structures that are widespread in various ecological systems and significantly threaten the health of organisms. Pseudomonas citronellolis SJTE-3 is reported to degrade the synthetic estrogen 17α-ethynylestradiol (EE2) efficiently in laboratory conditions. In this work, the environmental adaptability, the EE2-degrading properties, and the ecological effects of P. citronellolis SJTE-3 under different hostile conditions (heavy metals and surfactants) and various natural environment samples (solid soil, lake water, and pig manure) were studied. Strain SJTE-3 can tolerate high concentrations of Zn2+ and Cr3+, but is relatively sensitive to Cu2+. Tween 80 of low concentration can significantly promote EE2 degradation by strain SJTE-3, different from the repressing effect of Triton X-100. High concentration of Tween 80 prolonged the lagging phase of EE2-degrading process, while the final EE2 removal efficiency was improved. More importantly, strain SJTE-3 can grow normally and degrade estrogen stably in various environmental samples. Inoculation of strain SJTE-3 removed the intrinsic synthetic and natural estrogens (EE2 and estrone) in lake water samples in 4 days, and eliminated over 90% of the amended 1 mg/L EE2 in 2 days. Bioaugmentation of strain SJTE-3 in EE2-supplied solid soil and pig manure samples achieved a removal rate of over 55% and 70% of 1 mg/kg EE2 within 2 weeks. Notably, the bioaugmentation of extrinsic strain SJTE-3 had a slight influence on indigenous bacterial community in pig manure samples, and its relative abundance decreased significantly after EE2 removal. Amendment of EE2 or strain SJTE-3 in manure samples enhanced the abundance of Proteobacteria and Actinobacteria, implying their potential in utilizing EE2 or its metabolites. These findings not only shed a light on the environment adaptability and degradation efficiency of strain SJTE-3, but also provide insights for bioremediation application in complex and synthetic estrogen polluted environments.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Occurrence of Selected Emerging Contaminants in Southern Europe WWTPs: Comparison of Simulations and Real Data. Processes (Basel) 2022. [DOI: 10.3390/pr10122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging contaminants (ECs) include a diverse group of compounds not commonly monitored in wastewaters, which have become a global concern due to their potential harmful effects on aquatic ecosystems and human health. In the present work, six ECs (ibuprofen, diclofenac, erythromycin, triclosan, imidacloprid and 17α-ethinylestradiol) were monitored for nine months in influents and effluents taken from four wastewater treatment plants (WWTPs). Except for the case of ibuprofen, which was in all cases in lower concentrations than those usually found in previous works, results found in this work were within the ranges normally reported. Global removal efficiencies were calculated, in each case being very variable, even when the same EC and facility were considered. In addition, the SimpleTreat model was tested by comparing simulated and real ibuprofen, diclofenac and erythromycin data. The best agreement was obtained for ibuprofen which was the EC with the highest removal efficiencies.
Collapse
|