1
|
Al-Otaibi JS, Mary YS, Jethawa U, Chakraborty B, Gamberini MC. Examining the adsorption and sensing characteristics of cytosine (CTE) on Y9N9 (Y = Al, B, Ga) nanorings using solvent effects, DFT, AIM and SERS analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126148. [PMID: 40184987 DOI: 10.1016/j.saa.2025.126148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Nucleobases are nitrogenous biological compounds that are more significant in a range of biological and in medical applications. They are constituents of nucleotides in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Therefore, we assessed the sensing applicability by studying the cytosine (CTE)-Y9N9 (Y = Al, B, Ga) nanoring interaction using density functional theory. It was evident that CTE interacted strongly with each ring. Due to charge transfer between the nanoring and CTE, a dipole moment (DM) is generated. All complexes have band gaps less than that of CTE. Complexes' band gap energies are lower in aqueous phase and vacuum than they are in pristine rings. All complexes exhibit higher adsorption energies in solvent medium in comparison with that in vacuum. Changes in the frontier molecular orbitals (FMOs) energies of nanorings after interaction have a major impact on their electrical conductivity and work function. In addition to being an electrical sensor, the Y9N9 nanorings for CTE can also be utilized as a work function-based sensor. But Y9N9's CTE recovery time indicates that it can be used to extract or store CTE depending on the environment. The current work can be expanded to examine the impact of Ag/Au/Cu doping using Y9N9 in order to examine the characteristics of drug delivery carriers and the consequence of doping. The interaction between the analyte and substrate was further studied using reduced density gradient (RDG) analysis, comparing the nature and strength of the interaction in both vacuum and aqueous medium. The observations revealed a stronger interaction in the presence of an aqueous medium, which aligns with the higher adsorption energy values.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Y Sheena Mary
- Department of Physics, FMN College (Autonomous), Kollam, Kerala, University of Kerala, India
| | - Unnati Jethawa
- Department of Physics, SIES College of Arts, Science & Commerce, Mumbai 400022, India
| | - Brahmananda Chakraborty
- High Pressure &Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi J Bhabha National Institute, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
2
|
Pandey RD, de Moraes MMF, Boguslawski K, Tecmer P. Frozen-Pair-Type pCCD-Based Methods and Their Double Ionization Variants to Predict Properties of Prototypical BN-Doped Light Emitters. J Chem Theory Comput 2025; 21:5049-5061. [PMID: 40366330 DOI: 10.1021/acs.jctc.5c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Novel, robust, computationally efficient, and reliable theoretical methods are indispensable for the large-scale modeling of desired molecular properties. One such example is the orbital optimized pair coupled-cluster doubles (oo-pCCD) ansatz and its various CC extensions, which range from closed-shell ground- and excited-state models to open-shell variants. Specifically, the ionization-potential equation-of-motion frozen-pair (IP-EOM-fp)CC methods proved to be competitive with standard CC-type methods for modeling the ionization potentials of organic electronics. In this work, we extend the existing IP-EOM-pCCD-based methods to their double ionization potential (DIP) variants, resulting in various DIP-EOM-fpCC models, including up to double excitations. These methods open the way to reach open-shell singlet, triplet, and quintet states using various pCCD reference functions. Their accuracy is tested for the singlet-triplet gaps of the ortho-, meta-, and para-benzynes. Then, the most accurate models are applied to study the effects of boron and nitrogen doping on designing prototypical naphthalene-based donors and acceptors. Our results demonstrate consistent and reliable outcomes with standard methods and available experimental data. Most importantly, fpCC-type methods show slightly better performance than DIP-EOM-CCSD for strongly-correlated cases and similar performance for systems dominated by dynamical correlation when determining singlet-triplet gaps.
Collapse
Affiliation(s)
- Ram Dhari Pandey
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Matheus Morato F de Moraes
- Department of Chemistry, University of Louisville, 2320 S. Brook St. Louisville, Kentucky 40292, United States
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Pawel Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
3
|
Feng Q, Zhou Y, Xu H, Liu J, Wan Z, Wang Y, Yang P, Ye S, Zhang Y, Cao X, Cao D, Huang H. BN-embedded aromatic hydrocarbons: synthesis, functionalization and applications. Chem Soc Rev 2025. [PMID: 40392597 DOI: 10.1039/d5cs00147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Substituting CC double bonds with B-N bonds in polycyclic aromatic hydrocarbons (PAHs) has emerged as a promising approach to advance and diversify organic functional materials. This structural modification not only imparts unique electronic and optical properties, but also enhances chemical stability, thereby opening new avenues for material design and applications. However, the widespread adoption of BN-fused aromatic hydrocarbons in practical applications is still in its nascent phase. This constraint stems primarily from the challenges in precisely tailoring molecular structures to optimize photophysical and electronic properties, thereby influencing their efficacy in targeted applications. Consequently, a comprehensive evaluation of historical, current, and prospective developments in BN-fused aromatic hydrocarbons is deemed essential. This review offers an in-depth overview of recent advancements in BN-fused aromatic hydrocarbons, focusing on synthetic strategies, fundamental properties, and emerging applications. Additionally, we elucidate the pivotal role of computational chemistry in directing the design, discovery, and optimization of these materials. Our objective is to foster interdisciplinary collaboration and stimulate innovative approaches to fully harness the potential of azaborinine chemistry across various fields, including organic optoelectronics, biomedicine, and related disciplines.
Collapse
Affiliation(s)
- Qiang Feng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Jianhua Liu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Zicheng Wan
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Yawei Wang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Pinghua Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Shan Ye
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Yiding Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| |
Collapse
|
4
|
Szczuczko L, Gałyńska M, Kriebel MH, Tecmer P, Boguslawski K. Domain-Based Charge-Transfer Decomposition and Its Application to Explore the Charge-Transfer Character in Prototypical Dyes. J Chem Theory Comput 2025; 21:4506-4519. [PMID: 40297970 PMCID: PMC12079794 DOI: 10.1021/acs.jctc.5c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
We introduce a new domain-based charge-transfer analysis tool exploiting the locality of pair Coupled Cluster Doubles orbitals. Unique features of the proposed model include the ability to monitor the direction of the charge flow between different parts or moieties of the system and its quantitative evaluation. We assess the predictive power of our new method for selected dye candidates of dye-sensitized solar cells with different doping and structural arrangements and compare our results for excitation and orbital energies to various density functional approximations and the domain-based local pair natural orbital variant of coupled cluster singles doubles. Our work confirms that the dyes with S-doped bridges are the most promising candidates for dye-sensitized solar cells applications, featuring the largest donor → bridge → acceptor directed charge transfer and the most favorable electrodonating and electroaccepting powers.
Collapse
Affiliation(s)
- Lena Szczuczko
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Marta Gałyńska
- Faculty
of Chemistry, Nicolaus Copernicus University
in Toruń, Gagarina
7, 87-100 Toruń, Poland
| | - Maximilian H. Kriebel
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Paweł Tecmer
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Li G, Wang Y, Li Y, Wen Z, Luo Z, Song W, Zhang W. Multi-stimuli-responsive aggregation-induced emission of boryl substituted phenothiazine. RSC Adv 2025; 15:15480-15489. [PMID: 40365201 PMCID: PMC12067193 DOI: 10.1039/d5ra01331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Stimuli-responsive materials, especially multi-stimuli-responsive ones, represent a kind of intelligent materials with significant potential in high-tech innovations, owing to their ability to undergo physical property changes in response to external stimuli. This investigation produced three new functionalized donor-acceptor (D-A) fluorophores, specifically aminoboranes incorporating phenothiazyl groups (4a, 4b, and 4c), featuring analogous structural components. These aminoborane derivatives demonstrated excellent resistance to air/moisture degradation, along with reduced HOMO energy states compared to a CN-containing analog, 4d. Analysis indicated that these aminoborane compounds displayed fascinating photophysical characteristics, encompassing aggregation-induced emission (AIE). Notably, the diarylboryl-phenothiazines show case reversible and distinct multi-stimuli-responsive luminescence upon exposure to fluoride ions, voltage, and mechanical force. This investigation enhances understanding of molecular interaction mechanisms and structural modifications essential for developing advanced stimuli-responsive luminescent compounds.
Collapse
Affiliation(s)
- Guoqiang Li
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Yan Wang
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Yaohui Li
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Zengheng Wen
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Zhuang Luo
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Weijun Song
- School of Chemical Engineering, Qinghai University Xining 810016 China
| | - Weidong Zhang
- School of Chemical Engineering, Qinghai University Xining 810016 China
| |
Collapse
|
6
|
Albaqami FF, Sahib AS, Alharthy KM, Altharawi A, Alshahrani MY, Jawad MA, Suliman M, Ahmad I. A phenanthroline-based erbium (III) complex: molecular docking, DNA/BSA -binding and biological evaluation. J Biomol Struct Dyn 2025; 43:3873-3885. [PMID: 38174386 DOI: 10.1080/07391102.2023.2300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
With the help of both theoretical as well as experimental research, in vitro binding research with CT-DNA (calf thymus) and BSA (bovine serum albumin) were carefully examined to figure out the chemotherapeutic and pharmacokinetic facets of the Erbium complex, which contains 1,10-phenanthroline (Phen). The binding characteristics and the mechanism of complex's interaction with DNA as well as the protein were determined utilizing fluorescence quenching method. Findings indicated that the complex's interaction with DNA via groove binding into DNA's minor grooves, with their binding constants falling within the 104 M-1 range. Furthermore, thermodynamic characteristics and the fluorescence emission of the tryptophan residues of the protein were obtained through fluorescence quenching studies at different temperatures. According to the results of the binding constants, the protein's interactions with the Er- complex were moderate, demonstrating that the compound may be transported effectively by the protein. Molecular docking results supported that of the experimental research. The HeLa and MCF-7 cancer cell lines, along with the normal human fibroblast cell line, were used in an MTT assay evaluation of the Er-complex cytotoxicity. The Er-complex displayed a selective inhibitory effect on the proliferation of different cancer cells.
Collapse
Affiliation(s)
- Faisal F Albaqami
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, Hilla, Iraq
| | - Khalid M Alharthy
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Iraq
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Li Z, Wang Z, Zhang L, Yingjie F, Yang J, Li H, Song W, Wang Q, Yang Y, Huang Z, Xu Y, Fu Y, Ding M, Fan G, Ren J, Yu A, Feng J, Li G, Huang L, Cheng Y. A strategy of extracting and purifying the α-terpineol obtained from the Penicillium digitatum biotransformation of limonene. Prep Biochem Biotechnol 2025:1-9. [PMID: 40260987 DOI: 10.1080/10826068.2025.2494102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
α-Terpineol, an abundant oxygenated monoterpene compound, shows a varied range of beneficial bioactivities. This study focused on the efficient extraction and purification of α-terpineol from the biotransformation of limonene using Penicillium digitatum DSM 62840 mutant (PdTP1-overexpressed OE2 strain). The α-terpineol was primarily distributed in the supernatant, with minimal association with the biomass. And the optimal extraction was achieved using ethyl acetate as the extractant, which can directly obtain the highest recovery of α-terpineol without sequential extractions. The equilibrium of mass transfer was quickly reached (≤20 s in vortex). Additionally, the purification method of α-terpineol using column chromatography was described, further improving the purity of product to 96.86% in gas chromatography. Structural identification of purified α-terpineol was confirmed using gas chromatography-mass spectrometry, Fourier-transform infrared spectroscopy, and nuclear magnetic resonance. This simplified and efficient strategy for the extraction and purification of α-terpineol not only provides a solid theoretical basis for the final step in the relevant study of microbial synthesis of α-terpineol but also is of great significance for its industrial application.
Collapse
Affiliation(s)
- Zehao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Zixuan Wang
- College of International Education, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Feng Yingjie
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Haoliang Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Weimin Song
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Qiuling Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Zhenzhen Huang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Yufeng Fu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Meizhou Ding
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jian Feng
- Henan Jinrui Flavoring and Essence Co., Ltd., Zhengzhou, People's Republic of China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| | - Yujiao Cheng
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Zhang M, Zhang X, Yang N, Wu Y, Ouyang X. Dimethylacridine Based Emitters for Non-Doped Organic Light-Emitting Diodes with Improved Efficiency. Chem Asian J 2025; 20:e202401447. [PMID: 39781846 DOI: 10.1002/asia.202401447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Organic light-emitting diodes (OLEDs) has been attracting much extensive interest owing to their advantages of high-definition and flexible displays. Many advances have been focused on boosting the efficiency and stability. Two innovative dimethylacridine-based emitters, 1,1,2,2-tetrakis(4- (2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl ethene (AcTPE), and bis(4-(2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl)methanone (Ac2BP) were designed and synthesized, in which TPE-baesed AcTPE presents AIE properties, and with the phenyl as spacer between the DMAC and carbony, aryl-ketone-based Ac2BP doesn't show AIE properties due to the absence of restriction of intramolecular rotations. As the electron-withdrawing ability of carbonyl, well-matched energy levels of the Ac2BP improve carriers transfer and hole injecting process in devices, resulting an efficient green emission with a maximum PE of of 5.64 lm W-1, a EQE of 10.56 % and a maximum CE of 18.27 cd A-1. They are much higher than that of AcTPE-based devices (3.45 cd A-1, 1.18 lm W-1, and 1.46 %). This study provides a promising design strategy for efficient OLED emitters of aryl-ketone-architecture.
Collapse
Affiliation(s)
- Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Xingye Zhang
- South China University of Technology Advanced Institute of Aggregation-Induced Light Emission, Guangzhou, 510530, PR China
| | - Ning Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Yibing Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
- College of Digital and Economy, Fujian Agriculture and Forestry University, Fu Zhou Shi, Anxi, 350108, P. R. China
| | - Xinhua Ouyang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| |
Collapse
|
9
|
Parui R, Roy H, Meher N, Ghosh SS, Iyer PK. Mechanistic investigation on cellular internalization triggering structure-induced conformational modulation of boron-nitrogen luminogens. Chem Sci 2025; 16:6023-6034. [PMID: 40070468 PMCID: PMC11891783 DOI: 10.1039/d4sc08296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Exploring the effects of electron donor (D) and acceptor (A) functional groups in tuning the condensed state properties has been a challenging yet efficient approach to reveal promising materials for cutting-edge applications. Herein, a series of boron-nitrogen (BN) incorporated organic congeners (NBNMe2, NBOMe, NBF, NBCl, NBBr, NBCN, NBPy) appended with functional groups having various degrees of D/A characteristics were developed and their potential in controlling supramolecular assembly and condensed state luminescence features (>90 nm redshift in λ em,max) was explored. Despite the minor structural engineering in BN-based small molecules, they effectively modulated conformational orientation and molecular packing, leading to the directed growth of distinct and highly ordered self-assembly patterns, i.e., nanosheets, nanospheres, nanowires, and nanorods. The structure-property correlation investigation also highlighted the time-dependent fluorescence enhancement for NBPy owing to morphological growth via the fusion of nanospheres into nanowire conformation. Further, these nano-architectures with distinct conformations were employed to examine the mechanistic aspects as well as the influence of morphologies in cellular uptake and imaging, where all the nano-aggregates exhibited lysosomal localization following multiple endocytosis pathways and the nanorods possessed the highest uptakes (CTCF4h/0.5h = 3.11) with respect to other conformations. The in-depth inspection of the structural impact in single crystal X-ray diffraction (SCXRD) analysis disclosed the decisive role of boron atoms and functional group tuning that built a conceptual correlation between the molecular architecture and their photophysical characteristics, supramolecular assembly, and cellular internalization process, offering key insights on the development of rapid and effective drug delivery techniques.
Collapse
Affiliation(s)
- Retwik Parui
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Hirakjyoti Roy
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Niranjan Meher
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
| |
Collapse
|
10
|
Tao N, Yan Z, Wang X, Wang Y, Ji L, Qiu L, Cui P, Wang J. A Facile Way to Enhance the Therapeutic Efficacy of Hydrophobic Drugs via Amorphous Solid Dispersions. AAPS J 2025; 27:63. [PMID: 40087240 DOI: 10.1208/s12248-025-01046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
Approximately 40% of marketed drugs and 75% of invested drugs in the pharmaceutical field are poorly soluble hydrophobic drugs with minimal solubility in water which make them difficult to be absorbed by the body and significantly limiting their applications. Among chemotherapeutic agents, numerous antitumor drugs such as platinum compounds, camptothecin, paclitaxel and others are also restricted in processing and preparation due to solubility issues. Therefore, improving the solubility and enhancing the therapeutic efficacy of drugs have always been significant research topics in current pharmaceutics. Herein, we propose an amorphous solid dispersion system PRTA-DOX, involving the protein drug protamine sulphate and hydrophobic doxorubicin as the model hydrophobic drug. In previous studies, ASD (Amorphous Solid Dispersion) has been demonstrated to enhance the solubility of hydrophobic drugs and result in a storage-stable system. Protamine sulphate as a marketed drug is reliable in safety and conveniently obtained. Doxorubicin, an antitumor drug with a broad antitumor spectrum, is commonly used in the treatment of breast cancer. Typically, doxorubicin is prepared in the form of a hydrochloride salt to increase its solubility. However, the utilization of doxorubicin hydrochloride is reduced due to drug resistance issues in biological cells and it exhibits higher toxicity to the body. In this system, protamine sulphate which is rich in arginine guanidino hydrophobic planes physically mixes with doxorubicin which is a hydrophobic molecule with aromatic rings and they are connected through weak interactions: π-π conjugation. They constitute an amorphous solid dispersion system which increases the solubility of hydrophobic doxorubicin, enhances cellular uptake, mitigate some cellular drug resistance and thereby achieves the purpose of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Ning Tao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Zihui Yan
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Xin Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Li Ji
- Department of Otolaryngology, The Affiliated Changzhou No. 2 People'S Hospital of Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| |
Collapse
|
11
|
Chorbacher J, Klopf J, Friedrich A, Fest M, Schneider JS, Engels B, Helten H. Regioregular Poly(p-phenylene iminoborane): A Strictly Alternating BN-Isostere of Poly(p-phenylene vinylene) with Stimuli-Responsive Behavior. Angew Chem Int Ed Engl 2025; 64:e202416088. [PMID: 39614780 DOI: 10.1002/anie.202416088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 12/12/2024]
Abstract
Incorporation of BN units into π-conjugated organic compounds, as substitutes for specific CC couples, often leads to new hybrid materials with modified physical and chemical properties. Poly(p-phenylene iminoborane)s are derived from well-known poly(p-phenylene vinylene) (PPV) by replacement of the vinylene groups by B=N linking units. Herein, an unprecedented poly(p-phenylene iminoborane) is presented that features a strictly alternating sequence of BN units along the main chain. The synthesis thereof was achieved by AB-type polymerization of a monomer featuring an N and a B terminus. Monodisperse oligomers with up to three BN units in the chain were additionally prepared and structurally characterized. Associated with the introduction of a dipole in the regioregular backbone structure, they display notable fluorescence already in solution and large Stokes shifts, distinct from their previously reported BBNN-sequenced congeners. All compounds show aggregation-induced emission enhancement (AIEE) properties. Computational studies provided evidence for emission from either locally excited (LE) or twisted intramolecular charge transfer (TICT) states. These processes can be optionally addressed by various stimuli, giving rise to dual emission, solvatochromic, thermochromic, and reversible mechanochromic behavior.
Collapse
Affiliation(s)
- Johannes Chorbacher
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Maximilian Fest
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Bernd Engels
- Julius-Maximilians-Universität Würzburg, Institute for Physical and Theoretical Chemistry, Emil-Fischer-Strasse 42, 97074, Würzburg, Germany
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
12
|
Saleem M, Hussain A, Rauf M, Khan SU, Haider S, Hanif M, Rafiq M, Park SH. Ratiometric Fluorescence and Chromogenic Probe for Trace Detection of Selected Transition Metals. J Fluoresc 2025; 35:1841-1853. [PMID: 38457078 DOI: 10.1007/s10895-024-03648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The design and development of a fluorescence sensor aimed at detecting and quantifying trace amounts of toxic transition metal ions within environmental, biological, and aquatic samples has garnered significant attention from diagnostic and testing laboratories, driven by the imperative to mitigate the health risks associated with these contaminants. In this context, we present the utilization of a heterocyclic symmetrical Schiff Base derivative for the purpose of fluorogenic and chromogenic detection of Co2+, Cu2+ and Hg2+ ions. The characterization of the ligand involved a comprehensive array of techniques, including physical assessments, optical analyses, NMR, FT-IR, and mass spectrometric examinations. The mechanism of ligand-metal complexation was elucidated through the utilization of photophysical parameters and FT-IR spectroscopic analysis, both before and after the interaction between the ligand and the metal salt solution. The pronounced alterations observed in absorption and fluorescence spectra, along with the distinctive chromogenic changes, following treatment with Co2+, Cu2+ and Hg2+, affirm the successful formation of complexes between the ligands and the treated metal ions. Notably, the receptor's complexation response exhibited selectivity towards Co(II), Cu(II), and Hg(II), with no observed chromogenic changes, spectral variations, or band shifts for the various tested metal ions, including Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+ and Al3+. This absence of interaction between these metal ions and the ligand could be attributed to their compact or inadequately conducive conduction bands for complexation with the ligand's structural composition. To quantify the sensor's efficacy, fluorescence titration spectra were employed to determine the detection limits for Co2+, Cu2+ and Hg2+, yielding values of 2.92 × 10-8, 8.91 × 10-8, and 4.39 × 10-3 M, respectively. The Benesi-Hildebrand plots provided association constant values for the ligand-cobalt, ligand-copper, and ligand-mercury complexes as 0.74, 2.52, and 13.89 M-1, respectively.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar, Pakistan.
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Muhammad Rauf
- School of Chemistry and Chemical Engineering, Shanxi University, Shanxi, China
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub campus layyah, Faisalabad, 31200, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
13
|
Suganthirani K, Thiruppathiraja T, Lakshmipathi S, Malecki JG, Murugesapandian B. Aminothiophenol and 7-diethylamino-4-hydroxycoumarin derived probe for reversible turn off-on-off detection of Cu 2+ ions and cysteine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125315. [PMID: 39515231 DOI: 10.1016/j.saa.2024.125315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Here, we present a simple disulfide linked probe HTP for rapid detection of Cu2+ ions, which was prepared by a condensation reaction between 7-diethylamino-4-hydroxycoumarin aldehyde and 2-aminothiophenol. The disulfide linked probe HTP was characterized using 1H NMR, 13C NMR, and HRMS spectroscopic analysis and confirmed by single crystal X-ray diffraction analysis. The photophysical behavior of HTP in various solvents (non-polar to polar) was studied and HTP displayed aggregation induced emission (AIE) characteristics in CH3CN-water mixtures (0-99 %). Upon binding with Cu2+ ions, emission enhancement occurs along with color changes from weak green to intense yellow emission in CH3CN/Tris-HCl buffer (20 μM, 9:1, 10 mM Tris HCl Buffer, pH = 7.4). Detection limit for Cu2+ ions was found to be 0.97 nM which is lower than the recommended tolerance limit by the WHO and the association constant 0.42 × 108 M-1 was obtained using B-H plot. Furthermore, the stoichiometric ratio 1:1 was confirmed by Job's plot, 1H NMR, mass spectral analysis and DFT calculations were supported the formation of HTP-Cu2+ complex. The reversibility of HTP with Cu2+ ions was achieved by cysteine with detection limit and association constant value of 1.64 µM and 0.15 × 107 M-1 respectively. The reversible sensing nature of HTP with Cu2+/cysteine was further applied for constructing a molecular logic gate (INHIBIT) and practical applications such as paper strips, cotton swabs and real water analysis.
Collapse
Affiliation(s)
| | | | | | - Jan Grzegorz Malecki
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | | |
Collapse
|
14
|
Yadav VK, Pramanik S, Alghamdi S, Atwah B, Qusty NF, Babalghith AO, Solanki VS, Agarwal N, Gupta N, Niazi P, Patel A, Choudhary N, Zairov R. Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes. Int J Nanomedicine 2025; 20:403-444. [PMID: 39816378 PMCID: PMC11734620 DOI: 10.2147/ijn.s462031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025] Open
Abstract
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features. MTB and magnetosomes have gained popularity in cancer treatment and diagnosis, especially in magnetic resonance imaging. Distinctive features highlighted include advancements in extraction, characterization, and functionalization techniques, alongside breakthroughs in utilizing MTB-based magnetosomes as contrast agents in imaging, biocompatible drug carriers, and tools for minimally invasive therapies. The biocompatible nature, functionalizing of the surface of bacterial magnetosomes, and response to the external magnetic field make them a potential candidate for the theragnostic purpose of MTB and magnetosomes. In the present review, emphasis has been given to the foundation of magnetosomes at a genetic level, mass production of magnetosomes, etc. Further authors have reviewed the various functionalization methods of the magnetosomes for cancer treatment. Finally, the authors have reviewed the recent advancements in MTB and magnetosome-based cancer detection, diagnosis, and treatment. Challenges such as scalability, long-term safety, and clinical translation are also discussed, presenting a roadmap for future research exploiting MTBs and magnetosomes' unique properties.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Banan Atwah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vijendra Singh Solanki
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Neha Agarwal
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Nishant Gupta
- Department of Engineering and Medical Devices, River Engineering Pvt Ltd, Ecotech-III, Greater Noida, U.p., India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Nisha Choudhary
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Rustem Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
15
|
Zhang L, Peng K, Gao A. Clinical diagnostic value of PIMREG on liver cancer cell phenotype and tumorigenic ability in nude mice. Am J Transl Res 2024; 16:7994-8007. [PMID: 39822525 PMCID: PMC11733372 DOI: 10.62347/yvee7827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES In vitro experiments were manipulated to investigate the effect of the PIMREG (PICALM-interacting mitotic regulator gene) expression level on the malignant phenotype of liver cancer cells and their tumorigenesis ability in nude mice, and bioinformatics were used to analyze the clinical diagnostic and prognostic value in liver cancer. METHODS After liver cancer-related data were obtained from the TCGA database and GTEx database, the differences in PIMREG expression in liver cancer and normal liver tissue were compared using bioinformatics, and their correlation with the clinical pathological characteristics of liver cancer and the prognosis value were analyzed. A knockdown and overexpression model of PIMREG was constructed using Huh7 cells. The effect of the PIMREG expression level on the malignant phenotype of Huh7 cells was tested through CCK-8 and Transwell experiments. At the same time, animal knockdown and overexpression models were constructed to study the effect of the PIMREG expression level on the tumorigenesis ability in nude mice. RESULTS Bioinformatics analysis showed that PIMREG mRNA was significantly overexpressed in liver cancer tissue (P<0.001). There were differences in T-staging (P<0.001), pathological staging (P=0.002), vascular infiltration (P<0.001), histological grading (P<0.001), and AFP levels (P<0.001) between the high- and low-expression groups. A high expression of PIMREG is associated with a poor prognosis, manifested as a significant decrease in the overall survival, disease-specific survival, and progression-free survival rates of patients (P values of 0.006, 0.014, and 0.002, respectively). In the PIMREG overexpression model, the proliferation rate and invasion ability of Huh7 cells were significantly increased, and the tumorigenesis ability of nude mice was significantly enhanced. In the knockdown model, the opposite results were observed. CONCLUSIONS The PIMREG gene is highly expressed in hepatocellular carcinoma, and increasing its expression level can significantly promote the malignant phenotype of liver cancer cells and their tumorigenesis ability in nude mice. Knocking down its expression level has the opposite effect. The expression level of PIMREG is related to the pathological stages of liver cancer patients, and its elevated expression is a risk factor for poor prognosis. PIMREG may become a new target for the clinical diagnosis, treatment, and prognosis evaluation of liver cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medical Laboratory Technology, Medical College, Yangzhou Polytechnic CollegeYangzhou 225009, Jiangsu, PR China
| | - Kaiyun Peng
- Clinical Laboratory, Yangzhou Hospital of TCMYangzhou 225009, Jiangsu, PR China
| | - Aijun Gao
- Department of Medical Laboratory Technology, Medical College, Yangzhou Polytechnic CollegeYangzhou 225009, Jiangsu, PR China
| |
Collapse
|
16
|
Fang J, Dai L, Ren X, Wu D, Cao W, Wei Q, Ma H. Protein-driven interaction enhanced electrochemiluminescence biosensor of hydrogen-bonded biohybrid organic frameworks for sensitive immunoassay of disease markers. Biosens Bioelectron 2024; 266:116726. [PMID: 39226752 DOI: 10.1016/j.bios.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
The oriented design of reticular materials as emitters can significantly enhance the sensitivity of electrochemiluminescence (ECL) sensing analysis for disease markers. However, due to the structural fragility of hydrogen bonds, relational research on hydrogen-bonded organic frameworks (HOFs) has not been thoroughly conducted. Additionally, the modulation of luminescence behavior through HOFs has been rarely reported. In view of this, hydrogen-bonded biohybrid organic frameworks (HBOFs) were synthesized and recruited for ECL immunoassay applications. HBOFs was easily prepared using 6,6',6″,6‴-(pyrene-1,3,6,8-tetrayl)tetrakis(2-naphthoic acid) as linkers via bovine serum albumin (BSA) activated hydrogen-bonded cross-linking. The material exhibited good fluorescence emission characteristics. And the highly ordered topological structure and molecular motion limitation mediated by BSA overcome aggregation-caused quenching and generate strong aggregation induced emission, expressing hydrogen-bond interaction enhanced ECL (HIE-ECL) activity with the participation of tri-n-propylamine. Furthermore, a sandwich immunosensor was constructed employing cobalt-based metal-phenolic network (CMPN) coated ferrocene nanoparticles (FNPs) as quenchers (CMPN@FNPs). Signal closure can be achieved by annihilating the excited state through electron transfer from both CMPN and FNPs. Using a universal disease marker, carcinoembryonic antigen, as the analysis model, the signal-off sensor obtained a detection limit of 0.47 pg/mL within the detection range of 1 pg/mL - 50 ng/mL. The synthesis and application of highly stable HBOFs triggered by proteins provide a reference for the development of new reticular ECL signal labels, and electron transfer model provides flexible solutions for more sensitive sensing analysis.
Collapse
Affiliation(s)
- Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
17
|
Yao J, Meng Q, Xu Q, Fu H, Xu H, Feng Q, Cao X, Zhou Y, Huang H, Bai C, Qiao R. A novel BN aromatic module modified near-infrared fluorescent probe for monitoring carbon monoxide-releasing molecule CORM-3 in living cells and animals. Talanta 2024; 280:126734. [PMID: 39173248 DOI: 10.1016/j.talanta.2024.126734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/15/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Carbon monoxide (CO), a significant gas transmitter, plays a vital role in the intricate functioning of living systems and is intimately linked to a variety of physiological and pathological processes. To comprehensively investigate CO within biological system, researchers have widely adopted CORM-3, a compound capable of releasing CO, which serves as a surrogate for CO. It aids in elucidating the physiological and pathological effects of CO within living organisms and can be employed as a therapeutic drug molecule. Therefore, the pivotal role of CORM-3 necessitates the development of effective probes that can facilitate the visualization and tracking of CORM-3 in living systems. However, creating fluorescent probes for real-time imaging of CORM-3 in living species has proven to be a persisting challenge that arises from factors such as background interference, light scattering and photoactivation. Herein, the BNDN fluorescent probe, a brand-new near-infrared is proposed. Remarkably, the BNDN probe offers several noteworthy advantages, including a substantial Stokes shift (201 nm), heightened sensitivity, exceptional selectivity, and an exceedingly low CORM-3 detection limit (0.7 ppb). Furthermore, the underlying sensing mechanism has been meticulously examined, revealing a process that revives the fluorophore by reducing the complex Cu2+ to Cu+. This distinctive NIR fluorescence "turn-on" character, coupled with its larger Stokes shift, holds great promise for achieving high resolution imaging. Most impressively, this innovative probe has demonstrated its efficacy in detecting exogenous CORM-3 in living animal. It is important to underscore that these endeavors mark a rare instance of a near-infrared probes successfully detecting exogenous CORM-3 in vivo. These exceptional outcomes highlighted the potential of BNDN as a highly promising new tool for in vivo detection of CORM-3. Considering the impressive imaging capabilities demonstrated by BNDN presented in this study, we anticipate that this tool may offer a compelling avenue for shedding light on the roles of CO in future research endeavors.
Collapse
Affiliation(s)
- Junxiong Yao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China
| | - Qian Meng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China
| | - Qixing Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Huimin Fu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Qiang Feng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China.
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China.
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China.
| |
Collapse
|
18
|
Shen XA, Zhou H, Chen X, Wu J, Su Y, Huang X, Xiong Y. Janus plasmonic-aggregation induced emission nanobeads as high-performance colorimetric-fluorescent probe of immunochromatographic assay for the ultrasensitive detection of staphylococcal enterotoxin B in milk. Biosens Bioelectron 2024; 261:116458. [PMID: 38852321 DOI: 10.1016/j.bios.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Herein, a colorimetric-fluorescent hybrid bifunctional nanobead with Janus structure (J-cf-HBN) was synthesized via one-pot microemulsification. Oleylamine-coated AuNPs and aggregation-induced emission luminogens (AIEgens) were suggested as building blocks to obtain high-performance colorimetric-fluorescent signals. The as-prepared J-cf-HBNs were used as a signal amplification probe to construct an immunochromatographic assay (J-cf-HBNs-ICA) platform for the ultrasensitive detection of staphylococcal enterotoxin B (SEB) in milk samples. Owing to the rational spatial distribution of AuNPs and AIEgens, the J-cf-HBNs present a highly retained photoluminescence and enhanced colorimetric signals. Combined with a pair of highly affinitive anti-SEB antibodies, the J-cf-HBN-ICA platform enabled the fast naked-eye visualization and fluorescent quantitative detection of SEB in various milk matrices. Given the advantages of the dual-mode high-performance J-cf-HBNs, the proposed strip achieved a high sensitivity for SEB qualitative determination with a visual limit of detection (LOD) of 1.56 ng mL-1 and exhibited ultrasensitivity for SEB quantitative detection with a LOD of 0.09 ng mL-1, which is 139-fold lower than that of ELISA using same antibodies. In conclusion, this work provides new insights into the construction of multimode immunochromatographic methods for food safety detection in the field.
Collapse
Affiliation(s)
- Xuan-Ang Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Haoxiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Jingyu Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
19
|
Dong YX, Gao LX, Cao Q, Cao ZT, Gan SY, Li J, Zhu YL, Zhou YB, Zhang C, Wang WL. Synthesis, Fluorescence, and Bioactivity of Novel Isatin Derivatives. J Phys Chem B 2024; 128:6123-6133. [PMID: 38875519 DOI: 10.1021/acs.jpcb.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The isatin group is widespread in nature and is considered to be a privileged building block for drug discovery. In order to develop novel SHP1 inhibitors with fluorescent properties as tools for SHP1 biology research, this work designed and synthesized a series of isatin derivatives. The presentive compound 5a showed good inhibitory activity against SHP1PTP with IC50 of 11 ± 3 μM, displayed about 92% inhibitory rate against MV-4-11 cell proliferation at the concentration of 20 μM, exhibited suitable fluorescent properties with a long emission wavelength and a large Stokes shift, and presented blue fluorescent imaging in HeLa cells with low cytotoxicity. This study could offer chemical tool to further understand SHP1 biology and develop novel SHP1 inhibitors in therapy.
Collapse
Affiliation(s)
- Yi-Xin Dong
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Cao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Zi-Tong Cao
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Ya Gan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jia Li
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| |
Collapse
|
20
|
Zhang L, Liu R, Liu L, Xing X, Cai H, Fu Y, Sun J, Ruan W, Chen J, Qiu X, Yu D. Study of cell and drug interactions based on dual-mode detection using SPR and fluorescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124170. [PMID: 38513319 DOI: 10.1016/j.saa.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The investigation of the interactions between cells and drugs forms a crucial aspect of biological and clinical medical studies. Generally, single-cell or local-cellular studies require a microscopic imaging system with high magnifications, which suffers from low detection throughputs and poor time responses. The study presented in this paper combined SPR and fluorescence to achieve cell localization, real-time monitoring of cell images and quantitative analysis of drugs. In order to obtain more comprehensive, accurate and real-time data, a dual-mode system based on surface plasmon resonance (SPR) and fluorescence was constructed based on a 4× magnification lens. This enables simultaneous studies of an entire cell and a specific region of the cell membrane. An adaptive adjustment algorithm was established for distorted SPR images, achieving temporal and spatial matching of the dual-mode detection. The combination of SPR and fluorescence not only achieved micro-detection but also complemented the qualitative or quantitative limitations of SPR or fluorescence method alone. In system characterization, the response signal of SPR was noticed to increase with the increasing concentration of EGF in stimulated cells. It indicated that this platform could be employed for quantitative detection of the cell membrane region. Upon addition of EGF, a peak in the SPR curve was observed, and the cells in the corresponding SPR image turned whiter. This indicated that the platform can simultaneously monitor the SPR response signal and image changes. The response time of fluorescence in EGF testing was several seconds earlier than SPR, revealing that signal transduction first occurred in the whole cell and then propagated to the cell membrane region. The inhibitory ability of Gefitinib on cells was verified in a fast and real-time manner within 20 min. The results indicated that the detection limit of this method was 20 IU/mL for EGF and 10 µg/mL for Gefitinib. In conclusion, this study demonstrates the advantages of SPR and fluorescence dual-mode techniques in the analysis of cell-drug interactions, as well as their strong potential in drug screening.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Runye Liu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Luyao Liu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyuan Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongdong Fu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianhai Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Ruan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianbo Qiu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Liu Y, Jiang Z, Yang X, Wang Y, Yang B, Fu Q. Engineering Nanoplatforms for Theranostics of Atherosclerotic Plaques. Adv Healthc Mater 2024; 13:e2303612. [PMID: 38564883 DOI: 10.1002/adhm.202303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Atherosclerotic plaque formation is considered the primary pathological mechanism underlying atherosclerotic cardiovascular diseases, leading to severe cardiovascular events such as stroke, acute coronary syndromes, and even sudden cardiac death. Early detection and timely intervention of plaques are challenging due to the lack of typical symptoms in the initial stages. Therefore, precise early detection and intervention play a crucial role in risk stratification of atherosclerotic plaques and achieving favorable post-interventional outcomes. The continuously advancing nanoplatforms have demonstrated numerous advantages including high signal-to-noise ratio, enhanced bioavailability, and specific targeting capabilities for imaging agents and therapeutic drugs, enabling effective visualization and management of atherosclerotic plaques. Motivated by these superior properties, various noninvasive imaging modalities for early recognition of plaques in the preliminary stage of atherosclerosis are comprehensively summarized. Additionally, several therapeutic strategies are proposed to enhance the efficacy of treating atherosclerotic plaques. Finally, existing challenges and promising prospects for accelerating clinical translation of nanoplatform-based molecular imaging and therapy for atherosclerotic plaques are discussed. In conclusion, this review provides an insightful perspective on the diagnosis and therapy of atherosclerotic plaques.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
22
|
Saboon, Iqbal A, Bibi Y, Afzal T, Sher A, Qayyum A, Akmal M, Almoallim HS, Ansari MJ, Zeng Y. GC-MS based antioxidants characterization in Saussurea heteromalla (D. Don) Hand-Mazz by inhibition of nitric oxide generation in macrophages. Sci Rep 2024; 14:10145. [PMID: 38698070 PMCID: PMC11065987 DOI: 10.1038/s41598-024-60577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
For centuries, medicinal plants have served as the cornerstone for traditional health care systems and same practice is still prevalent today. In the Himalayan region, Saussurea heteromalla holds a significant place in traditional medicine and is used to address various health issues. Despite its historical use, little exploration has focused on its potential for scavenging free radicals and reducing inflammation. Hence, our current study aims to investigate the free radical scavenging capabilities of S. heteromalla extracts. The n-hexane extract of entire plant revealed promising activity. This extract underwent extensive extraction on a larger scale. Subsequent purification, employing column chromatography, HPLC-DAD techniques, led to the identification of active compounds, confirmed via GC-MS and the NIST database as 1-O-butyl 2-O-octyl benzene-1,2-dicarboxylate and 2,4-ditert-butylphenol. Assessing the free radical scavenging properties involved utilizing RAW-264.7 macrophages activated by lipopolysaccharides. Notably, the compound 2,4-di-tert-butylphenol exhibited remarkable scavenging abilities, demonstrating over 80% inhibition of Nitric oxide. This study stands as the inaugural report on the isolation of these compounds from S. heteromalla.
Collapse
Affiliation(s)
- Saboon
- Department of Botany, Women University Mardan, Mardan, 23200, Pakistan
| | - Asia Iqbal
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, 46300, Pakistan.
| | - Tayyiba Afzal
- Institute of Environmental Biology, Department of Plant Biology, Wroclaw University of Environmental and Life Sciences, ul. Kozuchowska 5b, PL 51-631, Wroclaw, Poland
| | - Ahmad Sher
- Institute of Agronomy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| | - Muhammad Akmal
- Institute of Soil and Environmental Sciences, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, 11545, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, 244001, India
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650205, China.
| |
Collapse
|
23
|
Bhuiyan TS, Said MA, Bulbul MZH, Ahmed S, Bhat AR, Chalkha M, Kawsar SMA. Synthesis, antimicrobial, and in silico studies of C5'- O-substituted cytidine derivatives: cinnamoylation leads to improvement of antimicrobial activity. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1472-1510. [PMID: 38547445 DOI: 10.1080/15257770.2024.2333495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 12/12/2024]
Abstract
Nucleoside derivatives are important therapeutic drugs that have drawn significant attention recently. In this study, cytidine (1) was first exposed to react with cinnamoyl chloride in N,N-dimethylformamide, and trimethylamine to obtain 5'-O-(cinnamoyl)cytidine, which was further treated with several acylating agents to obtain a series of 2',3'-di-O-acyl derivatives. The chemical structures of the synthesized compounds were established through spectral, analytical, and physicochemical techniques. In vitro antimicrobial efficacy was evaluated, and the antimicrobial effect was greater than that of the precursor compound; in particular, compound 3 exhibited the most promising activity. Cytotoxicity measurements revealed that the compounds demonstrated a decreased degree of toxicity. A structure-activity relationship (SAR) study showed that the ribose moiety combined with the acyl chains (C-12/C13) and (C6H5CH = CHCO) had enhanced effects on bacteria and fungi. Molecular docking was applied for the potential inhibitors (3, 4, and 6) to predict their mode of action and confirm their efficacy against isozymes, tubulin-like protein TubZ, Bacillus cereus [PDB: 4ei9], and dihydrofolate reductase of Aspergillus flavus [PDB: 6dtc]. A molecular dynamics simulation study was performed to evaluate the deformability, flexibility, and stiffness of the target enzyme residues. Density functional theory (DFT) indicates the high polarizability and chemical reactivity of the synthesized compounds. The ADMET (absorption, distribution, mechanism, excretion, and toxicity) study suggested that all the designed molecules have moderate human intestinal absorption and good distribution values in addition to the absence of CNS side effects and structural toxicity. Above all else, these cytidine derivatives possess potential antimicrobial behavior, thereby rendering them suitable drug candidate(s) for additional exploration.
Collapse
Affiliation(s)
- Tahmida Sultana Bhuiyan
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohamed A Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Md Z H Bulbul
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Sumeer Ahmed
- Postgraduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur, India
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
24
|
Ahmad I, Parveen W, Noor S, Udin Z, Ali A, Ali I, Ullah R, Ali H. Design and synthesis of novel dihydropyridine- and benzylideneimine-based tyrosinase inhibitors. Front Pharmacol 2024; 15:1332184. [PMID: 38595924 PMCID: PMC11002185 DOI: 10.3389/fphar.2024.1332184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 04/11/2024] Open
Abstract
Tyrosinase (TYR) inhibitors are very significant as they inhibit enzyme tyrosinase activity, and its inhibition is vital for skin care, anticancer medication, and antibrowning of fruits and vegetables. This work presents a novel and economical route for the preparation of new synthetic tyrosinase inhibitors using amlodipine (4). The novel conjugates 6 (a-o) were designed, synthesized, and characterized by spectroscopic analyses, including Fourier transform infrared and low- and high-resolution mass spectroscopy. The purified compound 4 was refluxed with various aldehydes and ketones 5 (a-o) for 5-8 h in methanol at 60°C-90°C. This research modified the drug in a step-by-step manner to develop therapeutic properties as a tyrosinase inhibitor. The structures of synthesized ligands 6 (a-o) were established based on spectral and analytical data. The synthesized compounds 6 (a-o) were screened against tyrosinase enzyme. Kojic acid was taken as standard. All the prepared compounds 6 (a-o) have good inhibition potential against the enzyme tyrosinase. Compounds 6o, 6b, 6f, and 6k depicted excellent antityrosinase activity. Compound 6k, with an IC50 value of 5.34 ± 0.58 µM, is as potent as the standard kojic acid (IC50 6.04 ± 0.11 µM), standing out among all synthesized compounds 6 (a-o). The in silico studies of the conjugates 6 (a-o) were evaluated via PatchDock. Compound 6k showed a binding affinity score of 8,999 and an atomic contact energy (ACE) value of -219.66 kcal/mol. The structure-activity relationship illustrated that the presence of dihydropyridine nuclei and some activating groups at the ortho and para positions of the benzylideneimine moiety is the main factor for good tyrosinase activity. The compound 6k could be used as a lead compound for drug modification as a tyrosinase inhibitor for skin care, anticancer medication, and antibrowning for fruits and vegetables.
Collapse
Affiliation(s)
- Ifraz Ahmad
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Warda Parveen
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Shah Noor
- Key Laboratory of Automobile Materials, Department of Material Sciences and Engineering, Jilin University, Changchun, China
| | - Zahoor Udin
- Chemistry Department, Gomal University, Dera Ismail Khan, Pakistan
| | - Amjad Ali
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
25
|
Ibrahim M, Halim SA, Latif A, Ahmad M, Ali S, Ullah S, Khalid A, Abdalla AN, Khan A, Al-Harrasi A, Ali M. Synthesis, biochemical and computational evaluations of novel bis-acylhydrazones of 2,2'-(1,1'-biphenyl)-4,4'-diylbis(oxy))di(acetohydrazide) as dual cholinesterase inhibitors. Bioorg Chem 2024; 144:107144. [PMID: 38281382 DOI: 10.1016/j.bioorg.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
A series of twenty-seven bis(acylhydrazones) were successfully synthesized with high yields through a multistep process, which entailed the esterification of hydroxyl groups, hydrazination with an excess of hydrazine hydrate, and subsequent reactions with various carbonyl moieties (aldehydes). In the final stage of synthesis, different chemical species including aromatic, heterocyclic, and aliphatic compounds were integrated into the framework. The resulting compounds were characterized using several spectroscopic techniques (1H NMR, 13C NMR, and mass spectrometry). Their anticholinesterase activities were assessed in vitro by examining their interactions with two cholinesterase enzymes: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the synthesized hits, compounds 3, 5, 6, 9-12, and 14 exhibited good to moderate inhibition of AChE. Specifically, 10 (IC50 = 26.3 ± 0.4 μM) and 11 (IC50 = 28.4 ± 0.5 μM) showed good inhibitory activity against AChE, while 9, 12, 3, and 6 exhibited significant inhibition potential against AChE with IC50 values ranging from 35.2 ± 1.1 μM to 64.4 ± 0.3 μM. On the other hand, 5 (IC50 = 22.0 ± 1.1 μM) and 27 (IC50 = 31.3 ± 1.3 μM) displayed significant, and 19 (IC50 = 92.6 ± 0.4 μM) showed moderate inhibitory potential for BChE. Notably, 5 and 27 exhibited dual inhibition of AChE and BChE, with greater potency than the standard drug galantamine. The binding patterns of these molecules within the binding cavities of AChE and BChE were anticipated by molecular docking which showed good correlation with our in vitro findings. Further structural optimization of these molecules may yield more potent AChE and BChE inhibitors.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Department of Chemistry, University of Malakand, Chakdara 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Chakdara 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, Chakdara 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Sajid Ali
- Department of Chemistry, University of Malakand, Chakdara 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Samee Ullah
- Department of Chemistry, University of Malakand, Chakdara 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Chakdara 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
26
|
Ullah N, Alam A, Zainab, Elhenawy AA, Naz S, Islam MS, Ahmad S, Shah SAA, Ahmad M. Investigating Novel Thiophene Carbaldehyde Based Thiazole Derivatives as Potential Hits for Diabetic Management: Synthesis, In Vitro and In Silico Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 11/25/2024]
Abstract
AbstractThis research work is based on synthesis of eleven novel thiazole derivatives (3 a‐k) of thiophene carbaldehyde. All the synthesized compounds were successfully synthesized, characterized by 1H‐NMR and EI‐MS spectroscopic techniques and finally subjected for their in vitro α‐glucosidase inhibitory activity. Seven derivatives 3 i (IC50=10.21±1.84 μM), 3 b (IC50=11.14±0.99 μM), 3 f (IC50=13.21±2.76 μM), 3 h (IC50=14.21±0.31 μM), 3 k (IC50=15.21±1.02 μM), 3 e (IC50=16.21±1.32 μM), and 3 c (IC50=18.21±1.89 μM), in the series displayed excellent inhibitory potential better than the standard acarbose. However, two compounds 3 g (IC50=33.21±1.99 μM) and 3 d (IC50=42.31±2.12 μM) showed significant activity while two compounds 3 j and 3 a were found less active with IC50 values of 82.31±0.31 and 88.36±1.21 μM respectively. Additional research revealed that the compounds are not exhibiting any cytotoxic effects. The molecular docking study of these derivatives showed their good binding potential for α‐glucosidase active site with excellent interactions and docking scores.
Collapse
Affiliation(s)
- Najeeb Ullah
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Aftab Alam
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Zainab
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | | | - Saira Naz
- Department of Chemistry Bacha Khan University Charsadda Pakistan
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Shujaat Ahmad
- Department of Pharmacy Shaheed Benazir Bhutto University Sheringal, Dir (Upper) Khyber Pakhtunkhwa Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy Universiti Teknologi MARA Puncak Alam Campus 42300 Bandar Puncak Alam Selangor D. E. Malaysia
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| |
Collapse
|
27
|
Blazevicius D, Grigalevicius S. A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:356. [PMID: 38392729 PMCID: PMC10892487 DOI: 10.3390/nano14040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Organic light-emitting diodes (OLEDs) have garnered considerable attention in academic and industrial circles due to their potential applications in flat-panel displays and solid-state lighting technologies, leveraging the advantages offered by organic electroactive derivatives over their inorganic counterparts. The thin and flexible design of OLEDs enables the development of innovative lighting solutions, facilitating the creation of customizable and contoured lighting panels. Among the diverse electroactive components employed in the molecular design of OLED materials, the benzophenone core has attracted much attention as a fragment for the synthesis of organic semiconductors. On the other hand, benzophenone also functions as a classical phosphor with high intersystem crossing efficiency. This characteristic makes it a compelling candidate for effective reverse intersystem crossing, with potential in leading to the development of thermally activated delayed fluorescent (TADF) emitters. These emitting materials witnessed a pronounced interest in recent years due to their incorporation in metal-free electroactive frameworks and the capability to convert triplet excitons into emissive singlet excitons through reverse intersystem crossing (RISC), consequently achieving exceptionally high external quantum efficiencies (EQEs). This review article comprehensively overviews the synthetic pathways, thermal characteristics, electrochemical behaviour, and photophysical properties of derivatives based on benzophenone. Furthermore, we explore their applications in OLED devices, both as host materials and emitters, shedding light on the promising opportunities that benzophenone-based compounds present in advancing OLED technology.
Collapse
Affiliation(s)
- Dovydas Blazevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| |
Collapse
|
28
|
van Beek CM, Swarbrook AM, Creissen CE, Hawes CS, Gazis TA, Matthews PD. Juggling Optoelectronics and Catalysis: The Dual Talents of Bench Stable 1,4-Azaborinines. Chemistry 2024; 30:e202301944. [PMID: 38050753 PMCID: PMC11497314 DOI: 10.1002/chem.202301944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/06/2023]
Abstract
Boron- and nitrogen-doped polycyclic aromatic hydrocarbons (B-PAHs) have established a strong foothold in the realm of organic electronics. However, their catalytic potential remains largely untapped. In this study, we synthesise and characterise two bench stable B,N-doped PAH derivatives based on a 1,4-azaborinine motif. Most importantly, the anthracene derived structure is an efficient catalyst in the reduction of various carbonyls and imines. These results underscore the potential of B,N-PAHs in catalytic transformations, setting the stage for deeper exploration in this chemical space.
Collapse
Affiliation(s)
- Chloe M. van Beek
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Amelia M. Swarbrook
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Charles E. Creissen
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Chris S. Hawes
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Theodore A. Gazis
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Peter D. Matthews
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| |
Collapse
|
29
|
Xu J, Huang M, Zhang S, Ning D, Pang H, Jiao L, Yang Q, Yang J, Wu Q. Study on the modulating effect of halogen atom substitution on the detection range of water content detection probes in organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123415. [PMID: 37742590 DOI: 10.1016/j.saa.2023.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Fluorescence probes based on the variations of aggregation state (Aggregation-Induced Emission (AIE) and Aggregation-Caused Quenching (ACQ)) have received widespread attention due to their simplicity, efficiency and intuitiveness. However, typical probes are highly sensitive to changes in polarity and slight variations in the external environment can cause a complete change in the aggregation state. With the aim of expanding the detection range of the molecular probe, this work adopts a different design strategy from adjusting the molecular backbone but regulates the fluorescence behavior of the Schiff base molecular backbone by introducing different halogen atoms. Systematic studies show that when chlorine serves as substitutional atoms (3,5-Cl Salen), the probe can achieve full-range detection of water content (0-100 vol%) in ethanol and DMF. To our knowledge, the 3,5-Cl Salen represents the best water content probe in organic molecules. Experimental and theoretical studies have shown that the adjustment of halogen atoms can linearly change the charge distribution on the benzene ring and precisely control the strength of intermolecular interactions. At the same time, we developed a fluorescent filter paper based on 3,5-Cl Salen and used smartphones for rapid, sensitive and precise on-site measurement of water content in organic solvents.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Meifen Huang
- College of Physics Science and Technology, Kunming University, Kunming, Yunnan, 650214, China
| | - Siman Zhang
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Dan Ning
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Haijun Pang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Liang Jiao
- College of Physics Science and Technology, Kunming University, Kunming, Yunnan, 650214, China
| | - Qiuling Yang
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Jiao Yang
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China; Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering. Kunming University, Kunming 650214, China.
| |
Collapse
|
30
|
Javeed M, Abdelhaq M, Algarni A, Jalal A. Biosensor-Based Multimodal Deep Human Locomotion Decoding via Internet of Healthcare Things. MICROMACHINES 2023; 14:2204. [PMID: 38138373 PMCID: PMC10745656 DOI: 10.3390/mi14122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Multiple Internet of Healthcare Things (IoHT)-based devices have been utilized as sensing methodologies for human locomotion decoding to aid in applications related to e-healthcare. Different measurement conditions affect the daily routine monitoring, including the sensor type, wearing style, data retrieval method, and processing model. Currently, several models are present in this domain that include a variety of techniques for pre-processing, descriptor extraction, and reduction, along with the classification of data captured from multiple sensors. However, such models consisting of multiple subject-based data using different techniques may degrade the accuracy rate of locomotion decoding. Therefore, this study proposes a deep neural network model that not only applies the state-of-the-art Quaternion-based filtration technique for motion and ambient data along with background subtraction and skeleton modeling for video-based data, but also learns important descriptors from novel graph-based representations and Gaussian Markov random-field mechanisms. Due to the non-linear nature of data, these descriptors are further utilized to extract the codebook via the Gaussian mixture regression model. Furthermore, the codebook is provided to the recurrent neural network to classify the activities for the locomotion-decoding system. We show the validity of the proposed model across two publicly available data sampling strategies, namely, the HWU-USP and LARa datasets. The proposed model is significantly improved over previous systems, as it achieved 82.22% and 82.50% for the HWU-USP and LARa datasets, respectively. The proposed IoHT-based locomotion-decoding model is useful for unobtrusive human activity recognition over extended periods in e-healthcare facilities.
Collapse
Affiliation(s)
- Madiha Javeed
- Department of Computer Science, Air University, Islamabad 44000, Pakistan;
| | - Maha Abdelhaq
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asaad Algarni
- Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Ahmad Jalal
- Department of Computer Science, Air University, Islamabad 44000, Pakistan;
| |
Collapse
|
31
|
Yuan JW, Peng QC, Fu JC, Yang Q, Gao ZY, Wang ZY, Li K, Zang SQ, Tang BZ. Highly Efficient Stable Luminescent Radical-Based X-ray Scintillator. J Am Chem Soc 2023. [PMID: 38016919 DOI: 10.1021/jacs.3c11027] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Stable luminescent radicals are open-shell emitters with unique doublet emission characteristics. This feature makes stable luminescent radicals exhibit widespread application prospects in constructing optical, electrical, and magnetic materials. In this work, a stable luminescent radical-based X-ray scintillator of AuPP-1.0 was prepared, which exhibited a high X-ray excited luminescence (XEL) efficiency as well as excellent stability. A mechanism study showed that the heavy atom of Au in AuPP-1.0 endowed it with effective absorption of X-rays, and the doublet emission characteristics of AuPP-1.0 significantly increased its exciton utilization rate in the radioluminescence process. Moreover, AuPP-1.0 has good processability to fabricate a flexible screen for high-quality X-ray imaging, whose resolution can reach 20 LP mm-1. This work demonstrates that the doublet emission is beneficial for improving the exciton utilization rate of radioluminescence, providing a brand-new strategy for the construction of high-performance X-ray scintillators.
Collapse
Affiliation(s)
- Jia-Wang Yuan
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiu-Chen Peng
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Cong Fu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Ying Gao
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | | | - Shuang-Quan Zang
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology. The Chinese University of Hong Kong Shenzhen, Shenzhen 518172, China
| |
Collapse
|
32
|
Campbell AD, Ellis K, Gordon LK, Riley JE, Le V, Hollister KK, Ajagbe SO, Gozem S, Hughley RB, Boswell AM, Adjei-Sah O, Baruah PD, Malone R, Whitt LM, Gilliard RJ, Saint-Louis CJ. Solvatochromic and Aggregation-Induced Emission Active Nitrophenyl-Substituted Pyrrolidinone-Fused-1,2-Azaborine with a Pre-Twisted Molecular Geometry. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:13740-13751. [PMID: 38855717 PMCID: PMC11160477 DOI: 10.1039/d3tc03278g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Boron-nitrogen-containing heterocycles with extended conjugated π-systems such as polycyclic aromatic 1,2-azaborines, hold the fascination of organic chemists due to their unique optoelectronic properties. However, the majority of polycyclic aromatic 1,2-azaborines aggregate at high concentrations or in the solid-state, resulting in aggregation-caused quenching (ACQ) of emission. This practical limitation poses significant challenges for polycyclic aromatic 1,2-azaborines' use in many applications. Additionally, only a few solvatochromic polycyclic aromatic 1,2-azaborines have been reported and they all display minimal solvatochromism. Therefore, the scope of available polycyclic 1,2-azaborines needs to be expanded to include those displaying fluorescence at high concentration and in the solid-state as well as those that exhibit significant changes in emission intensity in various solvents due to different polarities. To address the ACQ issue, we evaluate the effect of a pre-twisted molecular geometry on the optoelectronic properties of polycyclic aromatic 1,2-azaborines. Specifically, three phenyl-substituted pyrrolidinone-fused 1,2-azaborines (PFAs) with similar structures and functionalized with diverse electronic moieties (-H, -NO2, -CN, referred to as PFA 1, 2, and 3, respectively) were experimentally and computationally studied. Interestingly, PFA 2 displays two distinct emission properties: 1) solvatochromism, in which its emission and quantum yields are tunable with respect to solvent polarity, and 2) fluorescence that can be completely "turned off" and "turned on" via aggregation-induced emission (AIE). This report provides the first example of a polycyclic aromatic 1,2-azaborine that displays both AIE and solvatochromism properties in a single BN-substituted backbone. According to time-dependent density function theory (TD-DFT) calculations, the fluorescence properties of PFA 2 can be explained by the presence of a low-lying n-π* charge transfer state inaccessible to PFA 1 or PFA 3. These findings will help in the design of future polycyclic aromatic 1,2-azaborines that are solvatochromic and AIE-active as well as in understanding how molecular geometry affects these compounds' optoelectronic properties.
Collapse
Affiliation(s)
- Albert D Campbell
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - Kaia Ellis
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - Lyric K Gordon
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - Janiyah E Riley
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - VuongVy Le
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, United States
| | - Kimberly K Hollister
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States
| | - Stephen O Ajagbe
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, United States
| | - Robert B Hughley
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - Adeline M Boswell
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - Ophelia Adjei-Sah
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - Prioska D Baruah
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - Ra'Nya Malone
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| | - Logan M Whitt
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama, 35487, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States
| | - Carl Jacky Saint-Louis
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, United States
| |
Collapse
|
33
|
Ye Y, Wei Y, Ke Y, Liu W, Wang Z, Tan Y, Chen N, Wu T, Zhou J, Zhang X, Wu X, Xie L. One-Step Transformations from ACQ Luminogens to DSEgens via the Boc Protection Process. ACS OMEGA 2023; 8:21008-21015. [PMID: 37323382 PMCID: PMC10268262 DOI: 10.1021/acsomega.3c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Dual-state emission luminogens (DSEgens), as a new type of luminescent materials that can effectively emit light in solution and solid state, have attracted tremendous attention due to their potential application in chemical sensing, biological imaging, organic electronic devices, etc. In this study, two new rofecoxib derivatives ROIN and ROIN-B have been synthesized, and their photophysical properties are fully investigated by experimental studies and theoretical calculations. The key intermediate ROIN, resulting from one-step conjugation of rofecoxib with an indole unit, shows the classical aggregation-caused quenching (ACQ) effect. Meanwhile, by introducing a tert-butoxycarbonyl (Boc) group on the basis of ROIN without enlarging the π conjugation system, ROIN-B was successfully developed with an obvious DSE property. In addition, both fluorescent behaviors and their transformation from ACQ to DSE were elucidated clearly by going through the analysis of their single X-ray data. Moreover, the target ROIN-B, as a new DSEgens, also displays reversible mechanofluorochromism and lipid droplet-specific imaging ability in HeLa cells. Taken together, this work proposes a precise molecular design strategy to afford a new DSEgens, which may provide guidance for the future exploration of new DSEgens.
Collapse
Affiliation(s)
- Yuqiu Ye
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
- Mycological
Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yongbo Wei
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Yanbing Ke
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Wei Liu
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Zexin Wang
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Yinfeng Tan
- Hainan
Key Laboratory for Research and Development of Tropical Herbs, School
of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Nannan Chen
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Tong Wu
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Jingming Zhou
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Xiaopo Zhang
- Hainan
Key Laboratory for Research and Development of Tropical Herbs, School
of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xiaoping Wu
- Mycological
Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lijun Xie
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| |
Collapse
|
34
|
Pu C, Huang Z, Huang L, Shen Q, Yu C. Label‐Free Fluorescence Turn‐On Detection of Histidine‐Tagged Proteins Based on Intramolecular Rigidification Induced Emission. ChemistrySelect 2023. [DOI: 10.1002/slct.202204406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Chibin Pu
- Department of Gastroenterology Zhongda Hospital School of Medicine Southeast University 87 Dingjiaqiao Road 210009 Nanjing P. R. China
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) (SoFE) Nanjing Tech University 30 South Puzhu Road 211816 Nanjing P. R. China
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) (SoFE) Nanjing Tech University 30 South Puzhu Road 211816 Nanjing P. R. China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) (SoFE) Nanjing Tech University 30 South Puzhu Road 211816 Nanjing P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) (SoFE) Nanjing Tech University 30 South Puzhu Road 211816 Nanjing P. R. China
| |
Collapse
|
35
|
Xu W, Shao Q, Xia C, Zhang Q, Xu Y, Liu Y, Wu M. Visible-light-induced selective defluoroalkylations of polyfluoroarenes with alcohols. Chem Sci 2023; 14:916-922. [PMID: 36755709 PMCID: PMC9890929 DOI: 10.1039/d2sc06290a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
To provide α-polyfluoroarylalcohols, a novel protocol for the selective defluoroalkylation of polyfluoroarenes with easily accessible alcohols was reported via the cooperation of photoredox and hydrogen atom transfer (HAT) strategies with the assistance of Lewis acids under visible light irradiation. The protocol featured broad scope, excellent regioselectivity for both C-H and C-F bond cleavages, and mild conditions. Mechanistic studies suggested that the reaction occurred through Lewis acid-promoted HAT to provide an alkyl radical and sequential addition to polyfluoroarenes. Impressively, the regioselectivity for C-F cleavage was verified with the Fukui function. The feasibility and application of this protocol on fluoroarene synthesis were well illustrated by gram-scale synthesis under both batch and flow conditions, late-stage decoration of bioactive compounds, and further transformations of the fluoroarylalcohols.
Collapse
Affiliation(s)
- Wengang Xu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Qi Shao
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China)QingdaoShandong Province266580P. R. China
| | - Congjian Xia
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China)QingdaoShandong Province266580P. R. China
| | - Qiao Zhang
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Yadi Xu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Yingguo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China .,College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| |
Collapse
|
36
|
Green synthesis of BOSCHIBAs: Photo- and water stability, cytotoxicity assays, and theoretical calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Wang R, Lee CS, Lu Z. Recent Development of Three-coordinated Boron-doped Aromatics for Optoelectronic Applications. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Jia Y, Li P, Liu K, Li C, Liu M, Di J, Wang N, Yin X, Zhang N, Chen P. Expanding new chemistry of aza-boracyclophanes with unique dipolar structures, AIE and redox-active open-shell characteristics. Chem Sci 2022; 13:11672-11679. [PMID: 36320401 PMCID: PMC9555748 DOI: 10.1039/d2sc03581b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 08/03/2023] Open
Abstract
π-Conjugated macrocycles involving electron-deficient boron species have received increasing attention due to their intriguing tunable optoelectronic properties. However, most of the reported B(sp2)-doped macrocycles are difficult to modify due to the synthetic challenge, which limits their further applications. Motivated by the research of non-strained hexameric bora- and aza-cyclophanes, we describe a new class of analogues MC-BN5 and MC-ABN5 that contain charge-reversed triarylborane (Ar3B) units and oligomeric triarylamines (Ar3N) in the cyclics. As predicted by DFT computations, the unique orientation of the donor-acceptor systems leads to an increased dipole moment compared with highly symmetric macrocycles (M1, M2 and M3), which was experimentally represented by a significant solvatochromic effect with large Stokes shifts up to 12 318 cm-1. Such a ring-structured design also allows the easy peripheral modification of aza-boracyclophanes with tetraphenylethenyl (TPE) groups, giving rise to a change in the luminescence mechanism from aggregation-caused quenching (ACQ) in MC-BN5 to aggregation-induced emission (AIE) in MC-ABN5. The open-shell characteristics have been chemically enabled and were characterized by UV-Vis-NIR spectroscopy and electron paramagnetic resonance (EPR) for MC-BN5. The present study not only showed new electronic properties, but also could expand the research of B/N doped macrocycles into the future scope of supramolecular chemistry, as demonstrated in the accessible functionalization of ring systems.
Collapse
Affiliation(s)
- Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Meiyan Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology of China Beijing 102488 China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
39
|
Qin J, Zhou T, Zhou TP, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao RZ, Zhong F. Catalytic Atroposelective Electrophilic Amination of Indoles. Angew Chem Int Ed Engl 2022; 61:e202205159. [PMID: 35612900 DOI: 10.1002/anie.202205159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 01/13/2023]
Abstract
Reported here is the first catalytic atroposelective electrophilic amination of indoles, which delivers functionalized atropochiral N-sulfonyl-3-arylaminoindoles with excellent optical purity. This reaction was furnished by 1,6-nucleophilic addition to p-quinone diimines. Control experiments suggest an ionic mechanism that differs from the radical addition pathway commonly proposed for 1,6-addition to quinones. The origin of 1,6-addition selectivity was investigated through computational studies. Preliminary studies show that the obtained 3-aminoindoles atropisomers exhibit anticancer activities. This method is valuable with respect to enlarging the toolbox for atropochiral amine derivatives.
Collapse
Affiliation(s)
- Jingyang Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tong Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Langyu Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Honghua Zuo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
40
|
Shellaiah M, Sun KW. Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. BIOSENSORS 2022; 12:bios12070550. [PMID: 35884351 PMCID: PMC9313392 DOI: 10.3390/bios12070550] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 05/06/2023]
Abstract
Aggregation-induced emission (AIE) is a unique research topic and property that can lead to a wide range of applications, including cellular imaging, theranostics, analyte quantitation and the specific detection of biologically important species. Towards the development of the AIE-active materials, many aromatic moieties composed of tetraphenylethylene, anthracene, pyrene, etc., have been developed. Among these aromatic moieties, pyrene is an aromatic hydrocarbon with a polycyclic flat structure containing four fused benzene rings to provide an unusual electron delocalization feature that is important in the AIE property. Numerous pyrene-based AIE-active materials have been reported with the AIE property towards sensing, imaging and theranostics applications. Most importantly, these AIE-active pyrene moieties exist as small molecules, Schiff bases, polymers, supramolecules, metal-organic frameworks, etc. This comprehensive review outlines utilizations of AIE-active pyrene-based materials on the imaging and theranostics studies. Moreover, the design and synthesis of these pyrene-based molecules are delivered with discussions on their future scopes.
Collapse
|
41
|
Qin J, Zhou T, Zhou T, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao RZ, Zhong F. Catalytic Atroposelective Electrophilic Amination of Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jingyang Qin
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Tong Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Taiping Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Langyu Tang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Honghua Zuo
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Huaibin Yu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Guojiao Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Fangrui Zhong
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering Luoyu road 1037 430074 Wuhan CHINA
| |
Collapse
|