1
|
Ren X, Zhang Y, Liu X, Zhang H, He P. Polyion complex nanoparticles composed of methylene blue-decorated hyaluronic acid for enhanced photodynamic therapy of tumor - the whole is greater than the sum of its parts. Int J Biol Macromol 2025; 313:144355. [PMID: 40389004 DOI: 10.1016/j.ijbiomac.2025.144355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Photodynamic therapy (PDT) is a promising non-invasive treatment for tumors. However, the clinical application of existing PDT nanoplatforms remains limited by their complex preparation processes, lack of targeting specificity, and inefficient generation of reactive oxygen species under hypoxic conditions. To address these challenges, a polyion complex (PIC) nanoparticle (NP) system was designed with enhanced PDT efficacy under hypoxia for tumor-targeted therapy. In this system, methylene blue was conjugated onto hyaluronic acid, which mixed with triphenylphosphine modified polyethylenimine to spontaneously form NPs. The PIC NPs were stable over 24 h in PBS with 100 mM NaCl and 10 % serum protein, attributed to synergistic stabilization through hydrophobic interactions, π-π stacking, and electrostatic forces. Notably, PIC NPs predominantly generated superoxide anions (rather than singlet oxygen) upon laser irradiation, even under hypoxic conditions, suggesting a type I photodynamic mechanism. Finally, PIC NPs showed much stronger cancer killing ability than any of the components both in vitro and in 4 T1 tumor-bearing mice due to the enhanced tumor-targeting capacity and PDT efficiency. Thus, the principle "the whole is greater than the sum of its parts" aptly describes the PIC NP system, making it a promising strategy for effective tumor treatment with PDT.
Collapse
Affiliation(s)
- Xiaoyue Ren
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Hongyu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| |
Collapse
|
2
|
Zhao X, Shen J, Qi H, Sun J, Xu B, Tao L, Lin W, Li S, Zhong Z. Thiophene engineering of near-infrared D-π-A nano-photosensitizers for enhanced multiple phototheranostics and inhibition of tumor metastasis. J Colloid Interface Sci 2025; 685:291-303. [PMID: 39848063 DOI: 10.1016/j.jcis.2025.01.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) is widely used for cancer treatment because of its non-invasiveness, spatiotemporal controllability, and low side effects. However, the PTT and PDT capabilities of photosensitizers (PSs) compete so it's still a crucial challenge to simultaneously enhance the PDT and PTT capabilities of PSs. In this work, donor-π-acceptor (D-π-A)-based boron dipyrromethene (BODIPY) dyes were developed via molecular engineering and applied for enhanced phototherapy of triple-negative breast cancer. With thiophene engineering and iodine addition, D-π-A BDP dyes possessed a low energy gap between the singlet and triplet states (ΔES1-T1). After the BDP dyes were prepared into nanoparticles (NPs), the BDP4 NPs showed increased generation of type I and II reactive oxygen species (ROS) as well as a high photothermal conversion efficiency (44 %). Furthermore, folate (FA)-modified BDP4 NPs achieved high tumor targeting via near-infrared bioimaging. With these advantages, BDP4 NPs with FA achieved total tumor eradication and tumor metastasis suppression via a single injection and 808 nm laser irradiation. This work provided a rational design of D-π-A PSs for simultaneously enhancing their photodynamic and photothermal performance, achieving efficient cancer therapy.
Collapse
Affiliation(s)
- Xingyu Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China
| | - Jiaping Shen
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China
| | - Huixuan Qi
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China
| | - Juan Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China
| | - Bin Xu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China
| | - Lei Tao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China
| | - Wenhai Lin
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China.
| |
Collapse
|
3
|
Xiong T, Chen Y, Li M, Chen X, Peng X. Recent Progress of Molecular Design in Organic Type I Photosensitizers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501911. [PMID: 40285604 DOI: 10.1002/smll.202501911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Indexed: 04/29/2025]
Abstract
Photodynamic therapy (PDT) represents a high-efficient and non-invasive therapeutic modality for current and future tumor treatments, drawing extensive attention in the fields of antitumor drug and clinical phototherapy. In recent years, the photosensitizer (PS) market and PDT clinical applications have expanded to address various cancers and skin diseases. However, hypoxic environment within tumors poses a substantial challenge to the therapeutic capability of reactive oxygen species-dependent PDT. Consequently, researches have increasingly focus from the type II to type I PDT mechanism, which relies on radical production with less or no oxygen dependence. Despite significant progress in the development of type I PSs, a holistic understanding regarding the design principles for these molecules remains elusive. Specifically, electron transfer-mediated type I PDT are extensively studied in recent years but is insufficiently addressed in existing reviews. This review systematically summarizes recent advancements in the molecular design rationales of organic type I PSs, categorizing them into three key fundamental strategies: modulating PS charge distribution, singlet oxygen forbidden via low triplet excited state, and accelerating PS radical formation via inducing electron transfer. This review aims to offer valuable insights for the future type I PS design and the advancement of anti-hypoxia PDT.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Liu YC, Feng GL, Jie JL, Zhou W, Liu GJ, Zhang Y, Su HM, Xing GW. Hepatoma Metastasis-Inhibiting Supramolecular Nanoglycocalyx for Enhanced Type I Photodynamic Therapy. Adv Healthc Mater 2025; 14:e2404253. [PMID: 40045640 DOI: 10.1002/adhm.202404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/25/2025] [Indexed: 04/08/2025]
Abstract
Type I photodynamic therapy (PDT) is well demonstrated to have low oxygen dependency. However, fully suppressing the risk of hypoxia-induced tumor metastasis during PDT remains a great challenge. In this study, a tetra-lactosylated amphiphilic Aza-BODIPY glycocluster (TLBP) is reported that self-assembles into a supramolecular nanoglycocalyx on hepatoma cell membranes, serving as an artificial extracellular matrix (ECM) to inhibit hepatoma metastasis while facilitating efficient Type I PDT. Molecular engineering demonstrates that multi-glycosylation promotes the transition of nanostructures from disordered to ordered self-assembly by regulating intermolecular interactions. This modification enables the TLBP glycocalyx to exhibit significant intermolecular electron transfer, generating superoxide anion radicals (O2 -•) for Type I PDT. Moreover, the TLBP glycocalyx inhibits the PI3K-Akt signaling pathway by reducing Na+/K+-ATPase activity, leading to decreased migration and invasion of HepG2 cells. The synergistic antitumor effect of TLBP glycocalyx is further verified in a HepG2-bearing mouse model. This work innovatively utilizes glycosylation to regulate microelectronic properties and macroscopic nanoscale self-assembly characteristics, providing a novel concept for developing efficient synergistic anti-hepatoma strategies.
Collapse
Affiliation(s)
- Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jia-Long Jie
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuan Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hong-Mei Su
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
5
|
Lei Z, Song YH, Leng YL, Gu YJ, Yu M, Chen Y, Yu Q, Liu Y. In Situ NADH-Activated BODIPY-Based Macrocyclic Supramolecular Photosensitizer for Chemo-Photodynamic Synergistic Tumor Therapy. J Med Chem 2025; 68:5891-5906. [PMID: 40009744 DOI: 10.1021/acs.jmedchem.5c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Photodynamic therapy (PDT) based on supramolecular assembly has been receiving wide attention due to its great potential application in clinical treatment. Herein, we report a supramolecular photoelectron "reservoir" (SPR) constructed by tetracationic boron dipyrromethene (BODIPY)-based macrocycle (BBox·4Cl), doxorubicin (Dox), and tumor-targeted β-cyclodextrin-grafted hyaluronic acid (HACD). Upon irradiation, BBox·4Cl can in situ catalyze nicotinamide adenine dinucleotide (NADH) to continuously generate electrons to inject into SPR, which further transfers electrons to oxygen, inducing highly efficient hydroxyl radical generation even under hypoxia. Synergistically, Dox in SPR as "pump" can be encapsulated by BBox·4Cl and transport photoelectrons between two BODIPY units, while HACD as "sponge" can enrich BBox·4Cl by the electrostatic interaction to concentrate them closer in space, which facilitates intramolecular and intermolecular photoelectron transfer, respectively, and significantly enhances the generation of hydroxyl radicals. Meanwhile, electron replenishment in SPR causes NADH depletion and redox dysfunction, thereby accelerating the apoptosis and achieving highly effective synergistic tumor therapy.
Collapse
Affiliation(s)
- Zhuo Lei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ya-Hui Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yuan-Li Leng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi-Jun Gu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Miao Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Huang W, Wang A, Wang W, Lin L, Rong J, Tian J, Zhang W. A Bacteria-Targeting Supramolecular Nanophotosensitizer for Combating Multidrug Resistant Bacteria. ACS Biomater Sci Eng 2025; 11:1741-1750. [PMID: 39961745 DOI: 10.1021/acsbiomaterials.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The increasing prevalence of multidrug-resistant bacteria is a significant global health threat. In contrast to conventional antibiotic treatments, photodynamic therapy (PDT) offers a promising alternative by reducing the bacterial adaptability to antibiotics and bactericides. However, traditional photosensitizers encounter poor antimicrobial efficacy due to poor hydrophilicity of photosensitizers, short lifespan, narrow diffusion radius of reactive oxygen species (ROS), and the risk of exacerbating inflammation. In this study, we report a bacterial-targeting supramolecular nanophotosensitizer for combating multidrug resistant bacteria. The nanophotosensitizer, formed through host-guest interactions and self-assembly of tetra-cyclodextrin-modified silver porphyrin (AgTPP-CD4), adamantyl-modified phenylboronic acid (Ad-PBA), and curcumin (Cur), can effectively target and kill methicillin-resistant Staphylococcus aureus (MRSA). Moreover, it reduces inflammation and promotes wound healing in MRSA-infected wounds without inducing drug resistance. The combination of supramolecular chemistry and targeted PDT offers a promising strategy for combating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Wenlong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Anan Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wenchen Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lihong Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jianyu Rong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
7
|
Saczuk K, Kassem A, Dudek M, Sánchez DP, Khrouz L, Allain M, Welch GC, Sabouri N, Monnereau C, Josse P, Cabanetos C, Deiana M. Organelle-Specific Thiochromenocarbazole Imide Derivative as a Heavy-Atom-Free Type I Photosensitizer for Biomolecule-Triggered Image-Guided Photodynamic Therapy. J Phys Chem Lett 2025; 16:2273-2282. [PMID: 39988904 PMCID: PMC11891978 DOI: 10.1021/acs.jpclett.5c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Modern photodynamic therapy (PDT) demands next-generation photosensitizers (PSs) that overcome heavy-atom dependency and enhance efficacy beyond traditional, highly oxygen-dependent type II mechanisms. We introduce herein TCI-NH, as a thiochromenocarbazole imide derivative designed for type I photodynamic action. Upon light activation, TCI-NH efficiently favors superoxide (O2•-) and PS-centered radical formation instead of singlet oxygen (1O2) generation. Its high luminescence efficiency and selective localization in both the endoplasmic reticulum and mitochondria enable precise, image-guided PDT. Notably, interactions with biomolecules, such as serum albumin or DNA, enhance TCI-NH's emission by up to 40-fold and amplify radical generation by up to 5-fold. With negligible dark toxicity, this results in ∼120 nM photocytotoxicity along with an impressive phototherapeutic index exceeding 200. Real-time live-cell imaging revealed rapid, light-triggered cytotoxicity characterized by apoptotic body formation and extensive cellular damage. With its small size, heavy-atom-free structure, exceptional, organelle specificity, and therapeutic efficacy, TCI-NH sets a new benchmark for anticancer type I PDT.
Collapse
Affiliation(s)
- Karolina Saczuk
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ahmad Kassem
- CNRS,
MOLTECH-ANJOU, SFR-MATRIX, F-49000 Angers, France
| | - Marta Dudek
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | - Lhoussain Khrouz
- ENS
de Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d’Italie, F-69342 Lyon, France
| | - Magali Allain
- CNRS,
MOLTECH-ANJOU, SFR-MATRIX, F-49000 Angers, France
| | - Gregory C. Welch
- Department
of Chemistry, University of Calgary, 731 Campus Place NW, Calgary, Alberta T2N 1N4, Canada
| | - Nasim Sabouri
- Department
of Medical Biochemistry and Biophysics, Science for Life Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Cyrille Monnereau
- ENS
de Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d’Italie, F-69342 Lyon, France
| | - Pierre Josse
- CNRS,
MOLTECH-ANJOU, SFR-MATRIX, F-49000 Angers, France
| | | | - Marco Deiana
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
8
|
Xiong T, Chen Y, Peng Q, Zhou X, Li M, Lu S, Chen X, Fan J, Wang L, Peng X. Heterodimeric Photosensitizer as Radical Generators to Promoting Type I Photodynamic Conversion for Hypoxic Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410992. [PMID: 39865773 DOI: 10.1002/adma.202410992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/21/2024] [Indexed: 01/28/2025]
Abstract
Photodynamic therapy (PDT) using traditional type II photosensitizers (PSs) has been limited in hypoxic tumors due to excessive oxygen consumption. The conversion from type II into a less oxygen-dependent type I PDT pathway has shown the potential to combat hypoxic tumors. Herein, the design of a heterodimeric PS, NBSSe, by conjugating a widely used type I PS NBS and a type II PS NBSe via molecular dimerization, achieving the aggregation-regulated efficient type I photodynamic conversion for the first time is reported. Electrochemistry characterizations and theoretical calculations elucidate that NBSSe tends to form a S+·/Se-· radical pair via intramolecular electron transfer in the co-excited NBSSe* aggregate, realizing 7.25-fold O2 -· generation compared to NBS and 80% suppression of 1O2 generation compared to NBSe. The enhanced O2 -· generation of NBSSe enables excellent anti-hypoxia PDT efficiency and inhibition of pulmonary metastasis. Additionally, the incorporation of electron-rich bovine serum albumin accelerates the recycling of cationic PS radical NBSSe+·, further boosting photostability and O2 -· generation. The resultant BSA@NBSSe nanoparticles demonstrate successful tumor-targeting PDT capability. This work provides an appealing avenue to convert ROS generation from the type II pathway to the type I pathway for efficient cancer phototherapy in hypoxia.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Jiangli Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
Zhang J, Jiao D, Qi X, Zhang Y, Liu X, Pan T, Gao H, Liu Z, Ding D, Feng G. An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410405. [PMID: 39804949 PMCID: PMC11884554 DOI: 10.1002/advs.202410405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis. These multifaceted cell deaths synergistically facilitate the release of damage-associated molecular patterns and antitumor cytokines, thereby provoking robust antitumor immunity. Both in vitro and in vivo experiments confirmed that BSA@TPE-BT-SCT NPs elicited the immunogenic cell death, enhance dendritic cell maturation, activate T cell, and reduce myeloid-derived suppressor cells, leading to the inhibition of both primary and distant tumors. Additionally, BSA@TPE-BT-SCP NPs also exhibited excellent antitumor performance in a humanized mice model, evidenced by a reduction in senescent T cells among these activated T cells. The findings advance the development of robust type I photosensitizers and unveil the important role of type I ROS in enhancing multifaceted tumor cell deaths and antitumor immunogenicity.
Collapse
Affiliation(s)
- Jingtian Zhang
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Di Jiao
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Xinwen Qi
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Yufan Zhang
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Xiaoang Liu
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Tengwu Pan
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Heqi Gao
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjin Institute of HematologyTianjin300052China
| | - Dan Ding
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Guangxue Feng
- Guangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesState Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
10
|
Zhang B, Matus MF, Yao Q, Song X, Wu Z, Hu W, Häkkinen H, Xie J. Unraveling the Stoichiometric Interactions and Synergism between Ligand-Protected Gold Nanoparticles and Proteins. J Am Chem Soc 2025; 147:6404-6414. [PMID: 39823220 DOI: 10.1021/jacs.4c09879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive. Here, we identified stoichiometric interactions of water-soluble gold nanoparticles (Au NPs) with bovine serum albumin (BSA), unraveling their synergism in manipulating emission of nano-bio conjugates in the second near-infrared (NIR-II) regime. Using Au25(p-MBS)18 (p-MBS = para-mercaptobenzenesulfonic acid) as paradigm particles, we achieved precise binding of Au NPs to BSA with definitive molar ratios of 1:1 and 2:1, which is unambiguously evidenced by high-resolution mass spectrometry and transmission electron microscopy. Molecular dynamics simulations identified well-defined binding sites, mediated by electrostatic interactions and hydrogen bonds between the p-MBS moieties on the Au25(p-MBS)18 surface and BSA. Particularly, positively charged residues on BSA were found to be pivotal. By careful control of the molar ratio of Au25(p-MBS)18 to BSA, atomically precise [Au25(p-MBS)18]x-BSA conjugates (x = 1 or 2) could be formed. Through a comprehensive spectroscopy study, an electron transfer process and synergistic effect were manifested in the Au25(p-MBS)18-BSA conjugates, leading to drastically enhanced emission in the NIR-II window. This work offers insights into the precise engineering of nanomaterial-protein interactions and opens new avenues for the development of next-generation nano-bio conjugates for nanotheranostics.
Collapse
Affiliation(s)
- Bihan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - María Francisca Matus
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
11
|
Nguyen VN, Nguyen MV, Pham Thi H, Vu AT, Nguyen TX. Recent advances in near-infrared organic photosensitizers for photodynamic cancer therapy. Biomater Sci 2025; 13:1179-1188. [PMID: 39868556 DOI: 10.1039/d4bm01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers. In this minireview, we will discuss the current developments in near-infrared organic photosensitizers for photodynamic cancer therapy. Furthermore, we will briefly highlight the challenges and prospects in this field. This minireview aims to encourage more researchers to develop advanced near-infrared organic photosensitizers and facilitate their transition from laboratory research to preclinical studies and ultimately to clinical use.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Minh Viet Nguyen
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Vietnam.
| | - Huong Pham Thi
- Laboratory of Environmental Science and Climate Change, Institute for Computation Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Anh-Tuan Vu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Truong Xuan Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| |
Collapse
|
12
|
Cui X, Fang F, Chen H, Cao C, Xiao Y, Tian S, Zhang J, Li S, Lee CS. Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. MATERIALS HORIZONS 2025; 12:1002-1007. [PMID: 39560293 DOI: 10.1039/d4mh00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Among type I photosensitizers, stable organic radicals are superior candidate molecules for hypoxia-overcoming photodynamic therapy. However, their wide applications are limited by complicated preparation processes and poor stabilities. Herein, a nitroxide radical was simply synthesized by introducing a commercially available "TEMPO" moiety. The radical exhibits efficient type-I ROS generation and appreciable photo-cytotoxicity under hypoxia, which open up a new avenue for the exploration of a novel and efficient type-I photosensitizer.
Collapse
Affiliation(s)
- Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Yafang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China.
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
13
|
Ma N, Wang J, Tang H, Wu S, Liu X, Chen K, Zhang Y, Yu X. The Current Advances in Design Strategy (Indirect Strategy and Direct Strategy) for Type-I Photosensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413365. [PMID: 39721012 PMCID: PMC11831511 DOI: 10.1002/advs.202413365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Type-I photosensitizers (PSs) are among the most potential candidates for photodynamic therapy (PDT), as their low dependence on oxygen endow them with many advantages for treating hypoxic tumor. However, most of the reported type-I PSs have a contingency of molecular design, because electron transfer (ET) reaction is more difficult to achieve than energy transfer (EET) process. Therefore, it is urgent to understand molecular design mechanisms for type-I PSs. In this review, the two ways to achieve the type-I PSs, i.e., inhibiting EET process (type-II) or enhancing ET process (type-I), are detailly explained. In response, the current design strategies of type-I PSs are summarized from two perspectives: indirect strategy (inhibiting EET process: reducing the energy of the lowest triplet excited state (T1) to lower than the energy required for the excitation energy transfer to produce singlet oxygen) and direct strategy (enhancing ET process: promoting the ET efficiency of PSs to generate superoxide radicals). The construction of direct strategy can be realized by forming an electron-rich microenvironment, providing an electron-deficient intermediate transmitter, and introducing an enhanced electron transfer capacity primitive.
Collapse
Affiliation(s)
- Ning Ma
- Department of ChemistrySchool of ScienceXihua UniversityChengdu610039China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic DrugsChengdu610039China
| | - Junjie Wang
- Department of ChemistrySchool of ScienceXihua UniversityChengdu610039China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic DrugsChengdu610039China
| | - Hui Tang
- Department of ChemistrySchool of ScienceXihua UniversityChengdu610039China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic DrugsChengdu610039China
| | - Shiyu Wu
- Department of ChemistrySchool of ScienceXihua UniversityChengdu610039China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic DrugsChengdu610039China
| | - Xiaochun Liu
- Department of ChemistrySchool of ScienceXihua UniversityChengdu610039China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic DrugsChengdu610039China
| | - Kangyao Chen
- Department of ChemistrySchool of ScienceXihua UniversityChengdu610039China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic DrugsChengdu610039China
| | - Yahui Zhang
- Department of ChemistrySchool of ScienceXihua UniversityChengdu610039China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic DrugsChengdu610039China
| | - Xiaoqi Yu
- Department of ChemistrySchool of ScienceXihua UniversityChengdu610039China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic DrugsChengdu610039China
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationCollege of ChemistrySichuan UniversityChengdu61064China
| |
Collapse
|
14
|
Fan Z, Teng KX, Xu YY, Niu LY, Yang QZ. The Photodynamic Agent Designed by Involvement of Hydrogen Atom Transfer for Enhancing Photodynamic Therapy. Angew Chem Int Ed Engl 2025; 64:e202413595. [PMID: 39448378 DOI: 10.1002/anie.202413595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Although Type-I photodynamic therapy has attracted increasingly growing interest due to its reduced dependence on oxygen, the design of effective Type-I photosensitizers remains a challenge. In this work, we report a design strategy for Type-I photosensitizers by the involvement of hydrogen atom transfer (HAT). As a proof of concept, a HAT-involved Type-I PS, which simultaneously generates superoxide and carbon-centered radicals under light-irradiation, was synthesized. This photosensitizer is comprised of a fluorene-substituted BODIPY unit as an electron acceptor covalently linked with a triphenylamine moiety as an electron donor. Under light-irradiation, photo-induced intramolecular electron transfer occurs to generate the BODIPY anion radical and triphenylamine cation radical. The former transfers electrons to oxygen to generate O2 -⋅, while the latter loses a proton to produce a benzyl carbon-centered radical which is well characterized. The resulting carbon-centered radicals efficiently oxidize NADH by HAT reaction. This photosensitizer demonstrates remarkable photocytotoxicity even under hypoxic conditions, along with outstanding in vivo antitumor efficacy in mouse models bearing HeLa tumors. This work offers a novel strategy for the design of Type-I photosensitizers by involvement of HAT.
Collapse
Affiliation(s)
- Zhuo Fan
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kun-Xu Teng
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yuan-Yuan Xu
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
15
|
Xu W, Du Y, Ma H, Tang X, Ou Q, Xu JF, Zhang X. Generation of Triplet States by Host-Stabilized Through-Space Conjugation for the Construction of Efficient Supramolecular Photocatalysts. Angew Chem Int Ed Engl 2025; 64:e202413129. [PMID: 39240087 DOI: 10.1002/anie.202413129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Promoting the generation of triplet states is essential for developing efficient photocatalytic systems. This research presents a novel approach of host-stabilized through-space conjugation via the combination of covalent and non-covalent methods. The designed building block, 4,4'-(1,4(1,4)-dibenzene cyclohexaphane-1,4-diyl)bis(1-phenylpyridinium) chloride, features inherently stable through-space conjugation. When this block forms a 1 : 1 host-guest complex with cucurbit[8]uril, the through-space conjugation is further stabilized within the confined cavity. Both the generation and lifetime of triplet state are significantly increased, resulting from the host-stabilized through-space conjugation. Additionally, the ultrahigh binding constant of 6.58×1014 M-1 ensures the persistence of host-stabilization effect. As a result, the host-guest complex acts as a highly efficient catalyst in the photocatalytic oxidation of thioether and aromatic alcohol. In the photodegradation of lignin, a complex natural product, the host-guest complex also exhibits high efficiency, demonstrating its robustness. This line of research is anticipated to enrich the toolbox of supramolecular photochemistry and provide a strategy for fabricating efficient supramolecular photocatalysts.
Collapse
Affiliation(s)
- Weiquan Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yinghao Du
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - He Ma
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xingchen Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Qi Ou
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, 100083, Beijing, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
16
|
Liu H, Li Z, Zhang X, Xu Y, Tang G, Wang Z, Zhao YY, Ke MR, Zheng BY, Huang S, Huang JD, Li X. Phthalocyanine aggregates as semiconductor-like photocatalysts for hypoxic-tumor photodynamic immunotherapy. Nat Commun 2025; 16:326. [PMID: 39747902 PMCID: PMC11696155 DOI: 10.1038/s41467-024-55575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Photodynamic immunotherapy (PIT) has emerged as a promising approach for efficient eradication of primary tumors and inhibition of tumor metastasis. However, most of photosensitizers (PSs) for PIT exhibit notable oxygen dependence. Herein, a concept emphasizing on transition from molecular PSs into semiconductor-like photocatalysts is proposed, which converts the PSs from type II photoreaction to efficient type I photoreaction. Detailed mechanism studies reveal that the nanostructured phthalocyanine aggregate (NanoNMe) generates radical ion pairs through a photoinduced symmetry breaking charge separation process, achieving charge separation through a self-substrate approach and leading to exceptional photocatalytic charge transfer activity. Additionally, a reformed phthalocyanine aggregate (NanoNMO) is fabricated to improve the stability in physiological environments. NanoNMO showcases significant photocytotoxicities under both normoxic and hypoxic conditions and exhibits remarkable tumor targeting ability. Notably, the NanoNMO-based photodynamic therapy and PD-1 checkpoint inhibitor-based immunotherapy synergistically triggers the infiltration of cytotoxic T lymphocytes into the tumor sites of female mice, leading to the effective inhibition of breast tumor growth.
Collapse
Affiliation(s)
- Hao Liu
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Ziqing Li
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Xiaojun Zhang
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yihui Xu
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Guoyan Tang
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhaoxin Wang
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yuan-Yuan Zhao
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Mei-Rong Ke
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Bi-Yuan Zheng
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Shuping Huang
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jian-Dong Huang
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Xingshu Li
- Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
17
|
Zhou W, Liu YC, Liu GJ, Zhang Y, Feng GL, Xing GW. Glycosylated AIE-active Red Light-triggered Photocage with Precisely Tumor Targeting Capability for Synergistic Type I Photodynamic Therapy and CPT Chemotherapy. Angew Chem Int Ed Engl 2025; 64:e202413350. [PMID: 39266462 DOI: 10.1002/anie.202413350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Photocaging is an emerging protocol for precisely manipulating spatial and temporal behaviors over biological activity. However, the red/near-infrared light-triggered photolysis process of current photocage is largely singlet oxygen (1O2)-dependent and lack of compatibility with other reactive oxygen species (ROS)-activated techniques, which has proven to be the major bottleneck in achieving efficient and precise treatment. Herein, we reported a lactosylated photocage BT-LRC by covalently incorporating camptothecin (CPT) into hybrid BODIPY-TPE fluorophore via the superoxide anion radical (O2 -⋅)-cleavable thioketal bond for type I photodynamic therapy (PDT) and anticancer drug release. Amphiphilic BT-LRC could be self-assembled into aggregation-induced emission (AIE)-active nanoparticles (BT-LRCs) owing to the regulation of carbohydrate-carbohydrate interactions (CCIs) among neighboring lactose units in the nanoaggregates. BT-LRCs could simultaneously generate abundant O2 -⋅ through the aggregation modulated by lactose interactions, and DNA-damaging agent CPT was subsequently and effectively released. Notably, the type I PDT and CPT chemotherapy collaboratively amplified the therapeutic efficacy in HepG2 cells and tumor-bearing mice. Furthermore, the inherent AIE property of BT-LRCs endowed the photocaged prodrug with superior bioimaging capability, which provided a powerful tool for real-time tracking and finely tuning the PDT and photoactivated drug release behavior in tumor therapy.
Collapse
Affiliation(s)
- Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuan Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
18
|
Zhang X, Li L, Wang B, Cai Z, Zhang B, Chen F, Xing G, Li K, Qu S. Donor-Acceptor Type Supra-Carbon-Dots with Long Lifetime Photogenerated Radicals Boosting Tumor Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202410522. [PMID: 39171506 DOI: 10.1002/anie.202410522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Carbon dots (CDs) have gained significant interest because of their potential in biomedical applications. Nevertheless, developing CDs with efficient photoinduced charge separation for tumor photodynamic therapy (PDT) remains a challenge. This study presents a novel class of supra-carbon-dots (supra-CDs) developed by fusing red emissive CDs with 2,3-dicyanohydroquinone (DCHQ) via post-solvothermal treatment. In supra-CDs, the core, acting as electron donors, is formed by assembled CDs with substantial sp2 domains, the fused interface originating from DCHQ with electron-withdrawing groups functions as the electron acceptor. This configuration creates the unique donor-acceptor nanostructure. Upon white light irradiation, the excited electrons from the assembled CDs were transferred to the electron-withdrawing interface, whereas the photogenerated holes were retained within the assembled CDs as radicals, leading to effective photoinduced charge separation. The separated photogenerated electrons then react with oxygen to generate superoxide radicals. Simultaneously, the photogenerated holes undergo oxidation of crucial cellular substrates. This dual action underscores the exceptional cell-killing efficacy of supra-CDs. Moreover, the increased particle sizes (~20 nm) ensure supra-CDs to exhibit a notable capacity for tumor accumulation via the improved permeability and retention effect, thereby achieving satisfactory anti-tumor PDT efficacy in a mouse subcutaneous tumor model.
Collapse
Affiliation(s)
- Xianming Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Lingyun Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Zhipeng Cai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bohan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau, 999078, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau, 999078, China
- MOE Frontier Science Centre for Precision Oncology Cancer Center, University of Macau, Taipa, Macau, 999078, China
| |
Collapse
|
19
|
Yan J, Wang H, Zhao X, Tao L, Wang X, Yin J. Polymorphic Supramolecular Therapeutic Platforms with Precise Dye/Drug Ratio to Perform Synergistic Chemo-Photo Anti-Tumor Therapy and Long-Term Immune Protection. Adv Healthc Mater 2024; 13:e2402907. [PMID: 39375970 DOI: 10.1002/adhm.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Malignant tumor has become one of the hellish killers threatening the health of people around the world, its diagnosis and treatment has become the concerns of public. However, the optimal therapeutic dose, undesired side-effect, and long-term immune activation were key and bottleneck problems in tumor treatment. Herein, different batches of supramolecular therapeutic platforms, including vesicles, spherical nanoparticles, and cylindrical nanorods, with precise ratios of dye to drug (1:2) and multiple stimulus responsiveness were constructed by host-guest complexation between cyanine-camptothecin conjugates (IR780-CPT2) and β-cyclodextrin (β-CD) pendent hydrophilic copolymers. The reduction responsiveness, near-infrared photothermal conversion and singlet oxygen (1O2) generation performances endowed these platforms excellent cancer cells killing effect in both of in vitro cellular experiments and in vivo mice models. More importantly, without affecting the weight of mice, the maturation of dendritic cells, proliferation of T cells, up-regulation of high mobility group protein B1, and reduction of immunosuppressive regulatory T cells were detected after employing a synergistic chemo-photo therapy, demonstrating the body's immune effect was successfully activated. Thus, during the treatment of primary tumor, the distal tumor was also inhibited. We believe this work could provide a distinctive way to fabricate supramolecular theranostic platforms with different morphologies and improve antitumor and antimetastasis capabilities.
Collapse
Affiliation(s)
- Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key of Value-Added Catalytic Conversion and Reaction Engineering and Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui, 230009, P. R. China
| | - Haoqi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xueqin Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Longxiang Tao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Xuefu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key of Value-Added Catalytic Conversion and Reaction Engineering and Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui, 230009, P. R. China
| |
Collapse
|
20
|
Singh A, Kumar M, Bhalla V. Regulating the Twisted Intramolecular Charge Transfer and Anti-heavy Atom Effect at Supramolecular Level for Favorable Photosensitizing Activity in Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62064-62081. [PMID: 39481003 DOI: 10.1021/acsami.4c13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Photosensitizing assemblies based on twisted intramolecular charge transfer (TICT) active donor-acceptor-donor (D-A-D) system BrTPA-Qx having bromine atoms at the periphery have been developed. Through strategic incorporation of bromine atoms at the para-position to the nitrogen-carbon bonds of phenyl rings at the periphery, halogen-halogen interactions are induced in BrTPA-Qx nanoassemblies in H2O:DMSO (99:1) solution. Hence, the anti-heavy atom effect is induced, and the limitations of TICT (dark excited state) and heavy atom effect (triplet deactivation via radiative decay) could be overcome. Because of TICT and anti-heavy atom effect, supramolecular BrTPA-Qx nanoassemblies demonstrate high efficiency in promoting activation of aerial oxygen via electron and energy transfer pathways in aqueous media. The significant influence of the stabilized TICT state and anti-heavy-atom effect in controlling the ROS generation was validated through in-depth solvent-dependent photophysical studies and investigations of the structure-activity relationship in several model compounds. The notable photosensitizing activity of BrTPA-Qx nanoassemblies is manifested in their ability to efficiently catalyze the oxidative coupling of benzylamine (via type I and type II mechanisms), Knoevenagel condensation of aromatic aldehydes (type II), and oxidative hydroxylation of arylboronic acids (type I) under mild conditions.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| |
Collapse
|
21
|
Li Q, Yan C, Zhang P, Wang P, Wang K, Yang W, Cheng L, Dang D, Cao L. Tetraphenylethene-Based Molecular Cage with Coenzyme FAD: Conformationally Isomeric Complexation toward Photocatalysis-Assisted Photodynamic Therapy. J Am Chem Soc 2024; 146:30933-30946. [PMID: 39433428 DOI: 10.1021/jacs.4c09508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Flavin adenine dinucleotide (FAD), serving as a light-absorbing coenzyme factor, can undergo conformationally isomeric complexation within different enzymes to form various enzyme-coenzyme complexes, which exhibit photocatalytic functions that play a crucial role in physiological processes. Constructing an artificial photofunctional system using FAD or its derivatives can not only develop biocompatible photocatalytic systems with excellent activities but also further enhance our understanding of the role of FAD in biological systems. Here, we demonstrate a supramolecular approach for constructing an artificial enzyme-coenzyme-type host-guest complex with photoinduced catalytic function in water. First, we have designed and synthesized a water-soluble tetraphenylethene (TPE)-based octacationic molecular cage (1) with a large and flexible cavity, which can adaptively encapsulate with two FAD molecules with "U-shaped" conformation (uFAD) to form a 1:2 host-guest complex (1⊃uFAD2) in water. Second, based on the conformationally isomeric complexation of FAD within 1, the 1⊃uFAD2 complex facilitates electron and energy transfers to molecular oxygen upon the white-light illumination, efficiently producing reactive oxygen species (ROS) such as superoxide radical (O2•-) and singlet oxygen (1O2). To our knowledge, the 1⊃uFAD2 complex acts as a photocatalyst to achieve the highest turnover frequency (TOF) of 35.6 min-1 for the photocatalytic oxidation reaction of NADH via a photoinduced superoxide radical catalysis mechanism in an aqueous medium. At last, combining the cytotoxic effects of ROS and the disruption of the intracellular redox balance involving NADH, 1⊃uFAD2 as a supramolecular photosensitizer displays an excellent oxygen-independent photocatalysis-assisted photodynamic therapy in hypoxic tumors.
Collapse
Affiliation(s)
- Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Chaochao Yan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Pingxia Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Kaige Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wanni Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
22
|
Ding J, Zhu T, Zheng F, Gao F, Zhang S, Zhang K, Zeng J, Dong J, Zeng W. Molecular Engineering of Pure Superoxide Radical Photogenerator for Hypoxia-Tolerant Tumor Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405164. [PMID: 39180458 DOI: 10.1002/smll.202405164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment, but limited oxygen supply in tumors (hypoxia) can hinder its effectiveness. This is because traditional PDT relies on Type-II reactions that require oxygen. Type-I photosensitizers (PSs) offer a promising approach to overcome the limitations of tumor photodynamic therapy (PDT) in hypoxic environments. To leverage the advantages of Type-I PDT, the design and evaluation of a series of Type-I PSs for developing pure Type-1 PSs, by incorporating benzene, thiophene, or bithiophene into the donor-acceptor molecular skeleton are reported. Among them, CTTI (with bithiophene) shows the best performance, generating the most superoxide radical (O2 •-) upon light irradiation. Importantly, CTTI exclusively produced superoxide radicals, avoiding the less effective Type-II pathway. This efficiency is due to CTTI's energy gap and low reduction potential, which favor electron transfer to oxygen for O2 •- generation. Finally, CTTI NPs are successfully fabricated by encapsulating CTTI into liposomes, and validated to be effective in killing tumor cells, even under hypoxic conditions, making them promising hypoxia-tolerant tumor phototheranostic agents in both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Jipeng Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Feng Gao
- The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Shengwang Zhang
- The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Kexiang Zhang
- The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Jinrong Zeng
- The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| |
Collapse
|
23
|
Zhang X, Yu H, Guan S, Lu Y, Zhang Y, Huang Y, Wang Y, Liu C, Cao Z, Qin Y, Pan M, Shen J, Su C. A Highly Charged Positive Cage Causes Simultaneous Enhancement of Type-II and O 2-Independent-Type-I Photodynamic Therapy via One-/Two-Photon Stimulation and Tumor Immunotherapy via PANoptosis and Ferroptosis. SMALL SCIENCE 2024; 4:2400220. [PMID: 40213464 PMCID: PMC11935160 DOI: 10.1002/smsc.202400220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Indexed: 01/22/2025] Open
Abstract
To solve the oxygen dependence problem of photodynamic therapy (PDT), it is critical to explore photosensitizers that do not rely on O2 molecule to generate reactive oxygen species (ROS). Herein, a stable cationic metal-organic cage [Pd6(RuLoz 3)8](BF4)28 (MOC-88) that possesses high +28 charges is designed. The cage-confined positive microenvironment enables efficient generation of hydroxyl radicals and improved yield of the singlet oxygen under one-/two-photon excitation, showing excellent performance to concurrently enhance Type-II and O2-independent-Type-I PDT. Moreover, the effective ROS production and robust lipid peroxidation trigger a series of signaling pathways (inflammasome, cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes, and NF-κB) to evoke PANoptosis and ferroptosis in tumor cells, enabling MOC-88 to simultaneously cause the loss of cell membrane integrity, release a series of inflammatory cytokines and damage-associated molecular patterns, stimulate the maturation and antigen presentation ability of dendritic cells, and ultimately activate T-cell-dependent adaptive immunity in vivo to inhibit tumor growth.
Collapse
Affiliation(s)
- Xiao‐Dong Zhang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Hui‐Juan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of ZoologyGuangdong Academy of SciencesGuangzhou510275China
| | - Shao‐Qi Guan
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu‐Lin Lu
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu Zhang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yin‐Hui Huang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Ya‐Ping Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510030China
| | - Chen‐Hui Liu
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Zhong‐Min Cao
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu‐Han Qin
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Mei Pan
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510030China
| | - Cheng‐Yong Su
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| |
Collapse
|
24
|
Liu C, Liu C, Ji X, Zhao W, Dong X. Synthesis and Photodynamic Activities of Pyridine- or Pyridinium-Substituted Aza-BODIPY Photosensitizers. J Med Chem 2024; 67:15908-15924. [PMID: 39167079 DOI: 10.1021/acs.jmedchem.4c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this work, various novel pyridinyl- and pyridinium-modified Aza-BODIPY PSs were designed and constructed based on monoiodo Aza-BODIPY PSs (BDP-4 and BDP-15) in an attempt to construct "structure-inherent organelles-targeted" PSs to endow potential organelle-targeting ability. Pyridinyl PSs displayed potent photodynamic efficacy, and monorigidified PSs were very effective. The monorigidified PS 20 with meta-pyridinyl moiety displayed the most potent photoactivity and negligible dark toxicity with a favorable dark/phototoxicity ratio (>4800). To our surprise, monorigidified PS with meta-pyridinyl moiety (e.g., 20) was lipid droplet-targeted. 20 showed good cellular uptake and intracellular ROS generation compared with BDP-15. The preliminary cell death process exploration indicated that 20 resulted in lipid peroxidation and induced cell death through an iron-independent ferroptosis-like cell death pathway. In vivo antitumor efficacy experiments manifested that 20 significantly inhibited tumor growth and outperformed BDP-15 and Ce6 even under a single low-dose light irradiation (30 J/cm2).
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chuan Liu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xin Ji
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
25
|
Bu Y, Yu ZP, Lu Z, Wang H, Deng Y, Zhu X, Zhou H. In situ self-assembled near-infrared phototherapeutic agent: unleashing hydrogen free radicals and coupling with NADPH oxidation. Chem Sci 2024; 15:12559-12568. [PMID: 39118605 PMCID: PMC11304770 DOI: 10.1039/d4sc02199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Investigation of electron transfer (ET) between photosensitizers (PSs) and adjacent substrates in hypoxic tumors is integral to highly efficient tumor therapy. Herein, the oxygen-independent ET pathway to generate hydrogen free radicals (H˙) was established by the in situ self-assembled phototherapeutic agent d-ST under near-infrared (NIR)-light irradiation, coupled with the oxidation of reduced coenzyme NADPH, which induced ferroptosis and effectively elevated the therapeutic performance in hypoxic tumors. The higher surface energy and longer exciton lifetimes of the fine crystalline d-ST nanofibers were conducive to improving ET efficiency. In hypoxic conditions, the excited d-ST can effectively transfer electrons to water to yield H˙, during which the overexpressed NADPH with rich electrons can power the electron flow to facilitate the generation of H˙, accompanied by NADP+ formation, disrupting cellular homeostasis and triggering ferroptosis. Tumor-bearing mouse models further showed that d-ST accomplished excellent phototherapy efficacy. This work sheds light onto the versatile electron pathways between PSs and biological substrates.
Collapse
Affiliation(s)
- Yingcui Bu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
- School of Materials and Chemistry, Anhui Agricultural University P.R. China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
| | - Zhou Lu
- Anhui Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University P.R. China
| | - Haoran Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology P.R. China
| | - Yu Deng
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University P.R. China
| |
Collapse
|
26
|
Ma L, Dai Y, Meng Y, Yu W, Bai Y, Cai Y, Han Y, Wang J, Yao L, Yao Y. Perphenazine modified pillar[5]arene based nano-assemblies for synergistic photothermal and photodynamic cancer therapy. Chem Commun (Camb) 2024; 60:8387-8390. [PMID: 39027932 DOI: 10.1039/d4cc02528h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Nano-assemblies based on perphenazine modified pillar[5]arene were constructed successfully for synergistic photothermal and photodynamic (I&II) cancer therapy.
Collapse
Affiliation(s)
- Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yujia Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Wenqiang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yiqiao Bai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Long Yao
- Nantong University Analysis & Testing Center, Nantong University, Nantong, Jiangsu 226019, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
27
|
Xiao H, Wang Y, Chen J, Xi S, Duan Z, Zhan Q, Tian Y, Wang L, Qu J, Liu R. NIR-II Emissive Superoxide Radical Photogenerator for Photothermal/Photodynamic Therapy against Hypoxic Tumor. Adv Healthc Mater 2024; 13:e2303183. [PMID: 38117062 DOI: 10.1002/adhm.202303183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Due to the "Achilles' heels" of hypoxia, complicated location in solid tumor, small molecular photosensitizers with second near-infrared window (NIR-II) fluorescence, type-I photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted great attention. However, these photosensitizers are still few but yet challenging. Herein, an "all in one" NIR-II acceptor-donor-acceptor fused-ring photosensitizer, Y6-Th, is presented for the in-depth diagnosis and efficient treatment of cancer. Benefiting from the strong intramolecular charge transfer, promoted highly efficient intersystem crossing, largely p-conjugated fused-ring structure, and reduced planarity, the fabricated nanoparticles (Y6-Th nanoparticles) can emit NIR-II fluorescence with the peak located at 1020 nm, exclusively generate O2•- for type-I PDT, and display excellent PTT performance under an 808 nm laser stimulation. These characteristics make Y6-Th a distinguished NIR-wavelength-triggered phototheranostic agent, which can effectively therapy the hypoxic tumor using NIR-II-fluorescence-guided type-I PDT/PTT. This work provides a valuable guideline for fabricating high-performing NIR-II emissive superoxide radical photogenerators.
Collapse
Affiliation(s)
- Huichun Xiao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yuran Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jian Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Simin Xi
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zeyu Duan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qiyu Zhan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lei Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
28
|
Yang X, He M, Li Y, Qiu T, Zuo J, Jin Y, Fan J, Sun W, Peng X. Charge-reversal polymeric nanomodulators for ferroptosis-enhanced photodynamic therapy. J Mater Chem B 2024; 12:7113-7121. [PMID: 38919138 DOI: 10.1039/d4tb00616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The clinical application of photodynamic therapy (PDT) has some limitations including poor tumor targeting properties, a high reductive tumor microenvironment, and inefficient activation of single cell death machinery. We herein report pH-sensitive polymeric nanomodulators (NBS-PDMC NPs) for ferroptosis-enhanced photodynamic therapy. NBS-PDMC NPs were constructed using a positively charged type-I photosensitizer (NBS) coordinated with a demethylcantharidin (DMC)-decorated block copolymer via electrostatic interactions. NBS-PDMC NPs had a negative surface charge, which ensures their high stability in bloodstream circulation, while exposure to lysosomal acidic environments reverses their surface charge to positive for tumor penetration and the release of DMC and NBS. Under NIR light irradiation, NBS generated ROS to induce cell damage; in the meantime, DMC inhibited the expression of the GPX4 protein in tumor cells and promoted ferroptosis of tumor cells. This polymer design concept provides some novel insights into smart drug delivery and combinational action to amplify the antitumor effect.
Collapse
Affiliation(s)
- Xuelong Yang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yinghua Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tian Qiu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiexuan Zuo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yixiao Jin
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
29
|
Liu C, Ding Q, Liu Y, Wang Z, Xu Y, Lu Q, Chen X, Liu J, Sun Y, Li R, Yang Y, Sun Y, Li S, Wang P, Kim JS. An NIR Type I Photosensitizer Based on a Cyclometalated Ir(III)-Rhodamine Complex for a Photodynamic Antibacterial Effect toward Both Gram-Positive and Gram-Negative Bacteria. Inorg Chem 2024; 63:13059-13067. [PMID: 38937959 DOI: 10.1021/acs.inorgchem.4c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Type I photosensitizers offer an advantage in photodynamic therapy (PDT) due to their diminished reliance on oxygen levels, thus circumventing the challenge of hypoxia commonly encountered in PDT. In this study, we present the synthesis and comprehensive characterization of a novel type I photosensitizer derived from a cyclometalated Ir(III)-rhodamine complex. Remarkably, the complex exhibits a shift in absorption and fluorescence, transitioning from "off" to "on" states in aprotic and protic solvents, respectively, contrary to initial expectations. Upon exposure to light, the complex demonstrates the effective generation of O2- and ·OH radicals via the type I mechanism. Additionally, it exhibits notable photodynamic antibacterial activity against both Gram-positive and Gram-negative bacteria, demonstrated through in vitro and in vivo experiments. This research offers valuable insights for the development of novel type I photosensitizers.
Collapse
Affiliation(s)
- Chuangjun Liu
- Henan Key Laboratory of Digital Medicine, Affiliated Zhumadian Central Hospital of Huanghuai University, Zhumadian 463000, China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Youju Liu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Zepeng Wang
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yinling Xu
- Digital Medicine Center, Pingyu People's Hospital, Zhumadian 463400, China
| | - Qiang Lu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xinyu Chen
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Junhang Liu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yuanyuan Sun
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rongqiang Li
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yang Yang
- Henan Key Laboratory of Digital Medicine, Affiliated Zhumadian Central Hospital of Huanghuai University, Zhumadian 463000, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Siqiang Li
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Pengfei Wang
- Digital Medicine Center, Pingyu People's Hospital, Zhumadian 463400, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
30
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
31
|
Ju M, Yang L, Wang G, Zong F, Shen Y, Wu S, Tang X, Yu D. A type I and type II chemical biology toolbox to overcome the hypoxic tumour microenvironment for photodynamic therapy. Biomater Sci 2024; 12:2831-2840. [PMID: 38683541 DOI: 10.1039/d4bm00319e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality employed for the treatment of various types of cancers, localized infections, and other diseases. Upon illumination, the photo-excited photosensitizer generates singlet oxygen and other reactive species, thereby inducing cytotoxicity in the target cells. The hypoxic tumour microenvironment (TME), however, poses a limitation on the supply of oxygen in tumour tissues. Moreover, under such conditions, tumour metastasis and drug resistance frequently occur, further compromising the efficacy of PDT in combating tumours. Traditionally, type I photosensitizers with lower oxygen consumption demonstrate significant potential in overcoming hypoxic environments and play a crucial role in determining the therapeutic efficacy of PDT because type I photosensitizers can generate highly cytotoxic free radicals. In comparison, type II photosensitizers exhibit high oxygen dependence. The rate of reactive oxygen species (ROS) generation in the type II process is significantly higher than that in the type I process. Thus, the efficiency and selectivity of PDT depend on the properties of the photosensitizer. Here, the recent development and application of type I and type II photosensitizers, mainly in the past year, are summarized. The design methods, electronic structures, photophysical properties, lipophilic properties, electric charge, and other molecular characteristics of these photosensitizers are discussed in detail. These modifications alter the microstructure of photosensitizers and directly impact the results of PDT. The main content of this paper will have a positive promoting and inspiring effect on the future development of PDT.
Collapse
Affiliation(s)
- Minzi Ju
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guowei Wang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Feng Zong
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Yu Shen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Xuna Tang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
32
|
Liang J, Ran X, Liu Y, Yu X, Chen S, Li K. Rational design of type-I photosensitizer molecules for mitochondrion-targeted photodynamic therapy. J Mater Chem B 2024; 12:3686-3693. [PMID: 38563159 DOI: 10.1039/d4tb00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising approach for tumor treatment. However, traditional type II PDT faces limitations due to its oxygen-dependent nature. Type-I photosensitizers (PSs) exhibit superiority over conventional type-II PSs owing to their diminished oxygen dependence. Nevertheless, designing effective type-I PSs remains a significant challenge. In this work, we provide a novel strategy to tune the PDT mechanism of an excited photosensitizer through aryl substituent engineering. Using S-rhodamine as the base structure, three PSs were synthesized by incorporating phenyl, furyl, or thienyl groups at the meso position. Interestingly, furyl- or thienyl-substituted S-rhodamine are type-I-dominated PSs that produce O2˙-, while phenyl S-rhodamine results in O2˙- and 1O2 through type-I and type-II mechanisms, respectively. Experimental analyses and theoretical calculations showed that the introduction of a five-membered heterocycle at the meso position promoted intersystem crossing (ISC) and electron transfer, facilitating the production of O2˙-. Furthermore, furyl- or thienyl-substituted S-rhodamine exhibited high phototoxicity at ultralow concentrations. Thienyl-substituted S-rhodamine showed promising PDT efficacy against hypoxic solid tumors. This innovative strategy provides an alternative approach to developing new type-I PSs without the necessity for creating entirely new skeletons.
Collapse
Affiliation(s)
- Jiaxin Liang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiaoyun Ran
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yanhong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiaoqi Yu
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, Sichuan 610064, China
| | - Shanyong Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
33
|
Singh M, Kumar M, Bhalla V. Strategic Insertion of Heavy Atom to Tailor TADF OLED Material for the Development of Type I Photosensitizing Catalytic Red Emissive Assemblies. Chem Asian J 2024; 19:e202400033. [PMID: 38403870 DOI: 10.1002/asia.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
The work presented in the manuscript describes a simple strategy for transforming thermally activated delayed fluorescent organic light-emitting diodes (TADF OLEDs) compound 10-(dibenzo[a,c]phenazin-11-yl)-10H-phenoxazine (DPZ-PXZ) into type I photosensitizer 10-(dibenzo[a,c]phenazin-11-yl)-10H-phenothiazine (DPZ-PHZ) by strategically introducing sulfur atom in the photosensitizing core. The synthesized compound DPZ-PHZ exhibits aggregation-induced enhancement (AIE) and through-space charge transfer (TSCT) characteristics and generates red emissive assemblies in mixed aqueous media. The original compound DPZ-PXZ exhibits well-separated HOMO and LUMO levels and is reported to have highly efficient reverse intersystem crossing (RISC). In comparison, the incorporation of sulfur atom in the phenothiazine donor regulates the electronic communication between donor and acceptor units and promotes the intersystem crossing (ISC) in DPZ-PHZ molecules. Interestingly, compound DPZ-PHZ exhibits rapid activation of aerial oxygen for instant generation of superoxide radical anion. Backed by excellent type I photosensitizing activity, DPZ-PHZ assemblies have high catalytic potential for the synthesis of benzimidazoles, benzothiazoles and quinazolines derivatives under mild reaction conditions. The work presented in the manuscript provides an insight into the combination of heavy atom approach and TSCT for achieving adequate electronic communication between donor and acceptor units, balanced RISC/ISC, and stabilized-charge separated state for the development of efficient type I photosensitizing assemblies.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
34
|
Gao K, Cheng Y, Zhang Z, Huo X, Guo C, Fu W, Xu J, Hou GL, Shang X, Zhang M. Guest-Regulated Generation of Reactive Oxygen Species from Porphyrin-Based Multicomponent Metallacages for Selective Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202319488. [PMID: 38305830 DOI: 10.1002/anie.202319488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
The development of novel materials for highly efficient and selective photocatalysis is crucial for their practical applications. Herein, we employ the host-guest chemistry of porphyrin-based metallacages to regulate the generation of reactive oxygen species and further use them for the selective photocatalytic oxidation of benzyl alcohols. Upon irradiation, the sole metallacage (6) can generate singlet oxygen (1O2) effectively via excited energy transfer, while its complex with C70 (6⊃C70) opens a pathway for electron transfer to promote the formation of superoxide anion (O2⋅-), producing both 1O2 and O2⋅-. The addition of 4,4'-bipyridine (BPY) to complex 6⊃C70 forms a more stable complex (6⊃BPY) via the coordination of the Zn-porphyrin faces of 6 and BPY, which drives fullerenes out of the cavities and restores the ability of 1O2 generation. Therefore, benzyl alcohols are oxidized into benzyl aldehydes upon irradiation in the presence of 6 or 6⊃BPY, while they are oxidized into benzoic acids when 6⊃C70 is employed as the photosensitizing agent. This study demonstrates a highly efficient strategy that utilizes the host-guest chemistry of metallacages to regulate the generation of reactive oxygen species for selective photooxidation reactions, which could promote the utilization of metallacages and their related host-guest complexes for photocatalytic applications.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Ying Cheng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xingda Huo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| |
Collapse
|
35
|
Teng KX, Zhang D, Liu BK, Liu ZF, Niu LY, Yang QZ. Photo-Induced Disproportionation-Mediated Photodynamic Therapy: Simultaneous Oxidation of Tetrahydrobiopterin and Generation of Superoxide Radicals. Angew Chem Int Ed Engl 2024; 63:e202318783. [PMID: 38258371 DOI: 10.1002/anie.202318783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
We herein present an approach of photo-induced disproportionation for preparation of Type-I photodynamic agents. As a proof of concept, BODIPY-based photosensitizers were rationally designed and prepared. The photo-induced intermolecular electron transfer between homotypic chromophores leads to the disproportionation reaction, resulting in the formation of charged intermediates, cationic and anionic radicals. The cationic radicals efficiently oxidize the cellularimportant coenzyme, tetrahydrobiopterin (BH4 ), and the anionic radicals transfer electrons to oxygen to produce superoxide radicals (O2 - ⋅). One of our Type-I photodynamic agents not only self-assembles in water but also effectively targets the endoplasmic reticulum. It displayed excellent photocytotoxicity even in highly hypoxic environments (2 % O2 ), with a half-maximal inhibitory concentration (IC50 ) of 0.96 μM, and demonstrated outstanding antitumor efficacy in murine models bearing HeLa tumors.
Collapse
Affiliation(s)
- Kun-Xu Teng
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongsheng Zhang
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bin-Kai Liu
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zheng-Fei Liu
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Institution Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
36
|
Liu JY, Tian Y, Dong L. Galactosyl BODIPY-based nanoparticles as a type-I photosensitizer for HepG2 cell targeted photodynamic therapy. RSC Adv 2024; 14:8735-8739. [PMID: 38495974 PMCID: PMC10938552 DOI: 10.1039/d4ra00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
We report a galactosyl diiodo-BODIPY-based nanoparticles as type-I photosensitizer (PS) with high water solubility for HepG2 cell targeted photodynamic therapy. Functionalized galactoside and glucoside were introduced into diiodo-BODIPY to obtain BP1 and BP2, respectively. The glycolyl PSs could self-assemble to form the nanoparticles BP1-NP and BP2-NP with red-shifted near-infrared (NIR) absorption and fluorescence at 682 nm and 780 nm, as well as excellent chemo- and photo-stability. In comparison to the monomer in DMSO, the aggregated photosensitizers in the nanoparticles enabled the sensitization of oxygen to superoxide (O2˙-) through a type-I process, while repressing the generation of singlet oxygen (1O2) through a type-II process. The galactosyl-modified BP1-NPs could target and concentrate on HepG2 cells, subsequently generating O2˙- and 1O2 to trigger cell death under 660 nm light irradiation. This work provides an efficient strategy for the construction of glycoside-recognized type-I photosensitizers for tumor cell imaging and photodynamic therapy.
Collapse
Affiliation(s)
- Jin-Yu Liu
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou 730000 Gansu P. R. China
| | - Ye Tian
- Shandong Provincial No. 4 Institute of Geological and Mineral Survey 2375 Xiangyang Rd Weifang 261053 P. R. China
| | - Lei Dong
- School of Pharmacy, Shandong Second Medical University 7166 Baotong West St Weifang 261053 P. R. China
| |
Collapse
|
37
|
Li Z, Zhang Z, Ma L, Wen H, Kang M, Li D, Zhang W, Luo S, Wang W, Zhang M, Wang D, Li H, Li X, Wang H. Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202400049. [PMID: 38193338 DOI: 10.1002/anie.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Photodynamic therapy (PDT), as an emerging cancer treatment, requires the development of highly desirable photosensitizers (PSs) with integrated functional groups to achieve enhanced therapeutic efficacy. Coordination-driven self-assembly (CDSA) would provide an alternative approach for combining multiple PSs synergistically. Here, we demonstrate a simple yet powerful strategy of combining conventional chromophores (tetraphenylethylene, porphyrin, or Zn-porphyrin) with pyridinium salt PSs together through condensation reactions, followed by CDSA to construct a series of novel metallo-supramolecular PSs (S1-S3). The generation of reactive oxygen species (ROS) is dramatically enhanced by the direct combination of two different PSs, and further reinforced in the subsequent ensembles. Among all the ensembles, S2 with two porphyrin cores shows the highest ROS generation efficiency, specific interactions with lysosome, and strong emission for probing cells. Moreover, the cellular and living experiments confirm that S2 has excellent PDT efficacy, biocompatibility, and biosafety. As such, this study will enable the development of more efficient PSs with potential clinical applications.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Danxia Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Siqi Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
38
|
Zhang Z, Dao A, Yang X, Pan L, Li W, Lin Y, Zhang X, Huang H. Photoactive rhodamine-based photosensitizer eliminates Staphylococcus aureus via superoxide radical photosensitization. Bioorg Chem 2024; 144:107067. [PMID: 38232683 DOI: 10.1016/j.bioorg.2023.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
Due to the antibiotics abuse, bacterial infection has become one of the leading causes of human death worldwide. Novel selective antimicrobial agents are urgently needed, with the hope of maintaining the balance of the microbial environment. Photo-activated chemotherapeutics have shown great potential to eliminate bacteria with appealing spatiotemporal selectivity. In this work, we reported the structural modification to enhance the triplet excited state property of Rhodamine B, synthesizing a rhodamine-based photosensitizer RBPy. Upon light activation, RBPy exhibited much stronger photosensitization ability than the parent compound Rhodamine B both in solution and in bacteria. Importantly, RBPy can selectively inactivate Staphylococcus aureus and inhibit biofilm formation with high biocompatibility. This work provides a new strategy to develop rhodamine-based photoactive chemotherapeutics for antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Zhishang Zhang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoqi Yang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Li Pan
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenqing Li
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yicao Lin
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, China
| | - Xin Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
39
|
Fang L, Huang R, Gong W, Ji Y, Sun Y, Gou S, Zhao J. A Self-Assembly-Induced Exciton Delocalization Strategy for Converting a Perylene Diimide Derivative from a Type-II to Type-I Photosensitizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307414. [PMID: 37940626 DOI: 10.1002/smll.202307414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Type-I photosensitizers have shown advantages in addressing the shortcomings of traditional oxygen-dependent type-II photosensitizers for the photodynamic therapy (PDT) of hypoxic tumors. However, developing type-I photosensitizers is yet a huge challenge because the type-II energy transfer process is much faster than the type-I electron transfer process. Herein, from the fundamental point of view, an effective approach is proposed to improve the electron transfer efficiency of the photosensitizer by lowering the internal reorganization energy and exciton binding energy via self-assembly-induced exciton delocalization. An example proof is presented by the design of a perylene diimide (PDI)-based photosensitizer (PDIMp) that can generate singlet oxygen (1O2) via a type-II energy transfer process in the monomeric state, but induce the generation of superoxide anion (O2˙-) via a type-I electron transfer process in the aggregated state. Significantly, with the addition ofcucurbit[6]uril (CB[6]), the self-assembled PDIMp can convert back to the monomeric state via host-guest complexation and consequently recover the generation of 1O2. The biological evaluations reveal that supramolecular nanoparticles (PDIMp-NPs) derived from PDIMp show superior phototherapeutic performance via synergistic type-I PDT and mild photothermal therapy (PTT) against cancer under either normoxia or hypoxia conditions.
Collapse
Affiliation(s)
- Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Rong Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Wenqi Gong
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| |
Collapse
|
40
|
Liang L, Peng T, Geng XY, Zhu W, Liu C, Peng HQ, Chen BZ, Guo XD. Aggregation-induced emission photosensitizer microneedles for enhanced melanoma photodynamic therapy. Biomater Sci 2024; 12:1263-1273. [PMID: 38247398 DOI: 10.1039/d3bm01819a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The incidence and mortality rates of skin melanoma have been increasing annually. Photodynamic therapy (PDT) enables effective destruction of tumor cells while minimizing harm to normal cells. However, traditional photosensitizers (PSs) suffer from photobleaching, photodegradation and the aggregation-caused quenching (ACQ) effect, and it is challenging for light to reach the deep layers of the skin to maximize the efficacy of PSs. Herein, we developed dissolving microneedles (MNs) loaded with PSs of TPE-EPy@CB[7] through supramolecular assembly. The PSs effectively enhanced the type-I reactive oxygen species (ROS) generation capacity, with a concentration of 2 μM possessing nearly half of the tumor cell-killing ability under 10 min white light irradiation. The MNs were successfully pierced into the targeted site for precise drug delivery. Additionally, the conical structure of the MNs, as well as the lens-like structure after dissolution, facilitated the transmission of light in the subcutaneous tissue, achieving significant inhibition of tumor growth with a tumor suppression rate of 97.8% and no systemic toxicity or side effects in melanoma mice. The results demonstrated the potent melanoma inhibition and biosafety of this treatment approach, exhibiting a new and promising strategy to conquer malignant melanoma.
Collapse
Affiliation(s)
- Ling Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tuokai Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Yao Geng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenping Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui-Qing Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
41
|
Peng Y, Da X, Zhou W, Xu Y, Liu X, Wang X, Zhou Q. A photo-degradable BODIPY-modified Ru(II) photosensitizer for safe and efficient PDT under both normoxic and hypoxic conditions. Dalton Trans 2024; 53:3579-3588. [PMID: 38314620 DOI: 10.1039/d3dt04063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.
Collapse
Affiliation(s)
- Yatong Peng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuwen Da
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wanpeng Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunli Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiulian Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
42
|
Zhang Q, Lan XY, Chen XQ, Hong JM. Elucidating the roles of Ni ions and crosslinking heteroatoms in Ni 3(BHT) 2/2GO as electron shuttles for electrocatalytic oxidation of tetracycline hydrochloride. CHEMOSPHERE 2024; 349:140849. [PMID: 38043619 DOI: 10.1016/j.chemosphere.2023.140849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
As a hot candidate for marine pollution control, electrocatalytic oxidation strongly depends on the characteristics of anode materials. Even though emerging 2D metal-organic frameworks (2D-MOFs)/graphene oxide (GO) complex has satisfied the conductive and tunable requirements of anode, electrocatalytic efficiency still needs to be improved by maximizing the electron carriers or shuttles. Herein, we capitalized upon crosslinking heteroatoms as pointcut to adjust the electron distribution, mobility, and transfer orientation in 2D-MOFs/GO. As a result, Ni3(BHT)2/2GO (metal centers: Ni; crosslinking heteroatoms: S), which was much higher than materials with metal centers of Cu or crosslinking heteroatoms of N, achieved superior conductivity and 100% tetracycline hydrochloride removal within 12 min. In Ni3(BHT)2/2GO, Ni ions and S atoms cooperated as electron shutters rather than isolated active center and granted accelerated electron transfer from 2D-MOFs to GO layers. Furthermore, Ni sites and S crosslinking heteroatoms exhibited superior activity for ⋅O2- and ⋅OH generation, whereas 1O2 depended more on C and O substrates. All experiments, theory calculations, and application expanding approved the practice feasibility of 2D-MOFs/GO in electrocatalytic oxidation by adjusting crosslinking heteroatoms. All these results provided new perspectives on the micro-molecular regulation for improving electrocatalytic efficiency.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Xin-Yue Lan
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Xiao-Qi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Jun-Ming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China.
| |
Collapse
|
43
|
Yu S, Zhu RX, Niu KK, Han N, Liu H, Xing LB. Switchover from singlet oxygen to superoxide radical through a photoinduced two-step sequential energy transfer process. Chem Sci 2024; 15:1870-1878. [PMID: 38303940 PMCID: PMC10829035 DOI: 10.1039/d3sc05820d] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024] Open
Abstract
The competitive nature of type II photosensitizers in the transfer of excitation energy for the generation of singlet oxygen (1O2) presents significant challenges in the design of type I photosensitizers to produce the superoxide anion radical (O2˙-). In this study, we present an efficient method for the direct transformation of type II photosensitizers into type I photosensitizers through the implementation of an artificial light-harvesting system (ALHSs) involving a two-step sequential energy transfer process. The designed supramolecular complex (DNPY-SBE-β-CD) not only has the ability to generate 1O2 as type II photosensitizers, but also demonstrates remarkable fluorescence properties in aqueous solution, which renders it an efficient energy donor for the development of type I photosensitizers ALHSs, thereby enabling the efficient generation of O2˙-. Meanwhile, to ascertain the capability and practicality of this method, two organic reactions were conducted, namely the photooxidation reaction of thioanisole and oxidative hydroxylation of arylboronic acids, both of which display a high level of efficiency and exhibit significant catalytic performance. This work provides an efficient method for turning type II photosensitizers into type I photosensitizers by a two-step sequential energy transfer procedure.
Collapse
Affiliation(s)
- Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Rong-Xin Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven Leuven 3001 Belgium
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| |
Collapse
|
44
|
Peng J, Feng F. Reactive Reductive Species Participating Photodynamic Therapy for Cancer Treatment. Chemistry 2024; 30:e202302842. [PMID: 37750352 DOI: 10.1002/chem.202302842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Although the development of oxidative photodynamic therapy (O-PDT) based on reactive oxygen species (ROS) has led to great progress in cancer treatment, tumor hypoxia, cellular adaptation and intrinsic antioxidant defenses are still obstacles at this stage. Fortunately, with the discovery and development of reactive reductive species (RRS) in the PDT process, reductive PDT (R-PDT) is receiving increasing research interest. R-PDT with oxygen-independence is an effective reduction therapy that promises excellent therapeutic efficacy in extremely hypoxic or even anaerobic environments. In the concept, we introduce representative strategies to boost the type-I photosensitizing pathway, and then focus on the most recent R-PDT involving hydrogen radical (H⋅) and the single electron transfer (SET) process.
Collapse
Affiliation(s)
- Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
45
|
Zhang Z, Wei Z, Guo J, Lyu J, Wang B, Wang G, Wang C, Zhou L, Yuan Z, Xing G, Wu C, Zhang X. Metallopolymer strategy to explore hypoxic active narrow-bandgap photosensitizers for effective cancer photodynamic therapy. Nat Commun 2024; 15:170. [PMID: 38167652 PMCID: PMC10762066 DOI: 10.1038/s41467-023-43890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Practical photodynamic therapy calls for high-performance, less O2-dependent, long-wavelength-light-activated photosensitizers to suit the hypoxic tumor microenvironment. Iridium-based photosensitizers exhibit excellent photocatalytic performance, but the in vivo applications are hindered by conventional O2-dependent Type-II photochemistry and poor absorption. Here we show a general metallopolymerization strategy for engineering iridium complexes exhibiting Type-I photochemistry and enhancing absorption intensity in the blue to near-infrared region. Reactive oxygen species generation of metallopolymer Ir-P1, where the iridium atom is covalently coupled to the polymer backbone, is over 80 times higher than that of its mother polymer without iridium under 680 nm irradiation. This strategy also works effectively when the iridium atom is directly included (Ir-P2) in the polymer backbones, exhibiting wide generality. The metallopolymer nanoparticles exhibiting efficient O2•- generation are conjugated with integrin αvβ3 binding cRGD to achieve targeted photodynamic therapy.
Collapse
Affiliation(s)
- Zhao Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Zixiang Wei
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jintong Guo
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jinxiao Lyu
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Gang Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Chunfei Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Liqiang Zhou
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Zhen Yuan
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
46
|
Li XL, Han N, Zhang RZ, Niu KK, Dong RZ, Liu H, Yu S, Wang YB, Xing LB. Host-Guest Photosensitizer of a Cationic BODIPY Derivative and Cucurbit[7]uril for High-Efficiency Visible Light-Induced Photooxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55803-55812. [PMID: 37983520 DOI: 10.1021/acsami.3c12827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability. It can form a 1:1 complex (TMB-CB[7]) with cucurbit[7]uril (CB[7]) through host-guest interactions in the aqueous solution and shows obvious fluorescence enhancement. The reactive oxygen species (ROS) including superoxide anion radical (O2·-) and singlet oxygen (1O2) generation ability of TMB-CB[7] were promoted compared with that of TMB in the aqueous solution. More interestingly, the ROS generated from TMB-CB[7] can be used as PCs for aerobic cross dehydrogenation coupling reactions and photooxidation reactions in water with high yields of 89 and 95%, respectively. Therefore, the utilization of a host-guest PS presents a novel and environmentally friendly approach for conducting photocatalyzed organic processes under ambient conditions using visible light.
Collapse
Affiliation(s)
- Xin-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
47
|
Wang X, Xu X, Yang Z, Xu X, Han S, Zhang H. Improvement of the effectiveness of sonodynamic therapy: by optimizing components and combination with other treatments. Biomater Sci 2023; 11:7489-7511. [PMID: 37873617 DOI: 10.1039/d3bm00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sonodynamic therapy (SDT) is an emerging treatment method. In comparison with photodynamic therapy (PDT), SDT exhibits deep penetration, high cell membrane permeability, and free exposure to light capacity. Unfortunately, owing to inappropriate ultrasound parameter selection, poor targeting of sonosensitizers, and the complex tumor environment, SDT is frequently ineffective. In this review, we describe the approaches for selecting ultrasound parameters and how to develop sonosensitizers to increase targeting and improve adverse tumor microenvironments. Furthermore, the potential of combining SDT with other treatment methods, such as chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy, is discussed to further increase the treatment efficiency of SDT.
Collapse
Affiliation(s)
- Xiangting Wang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhe Yang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xuanshou Xu
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Heng Zhang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| |
Collapse
|
48
|
Xia J, Wang J, Zhao Q, Lu B, Yao Y. Dual-Responsive Drug-Delivery System Based on PEG-Functionalized Pillararenes Containing Disulfide and Amido Bonds for Cancer Theranostics. Chembiochem 2023; 24:e202300513. [PMID: 37610867 DOI: 10.1002/cbic.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
The construction of a smart drug-delivery system based on amphiphilic pillararenes with multiple responsiveness properties has become an important way to improve the efficacy of tumor chemotherapy. Here, a new PEG-functionalized pillararene (EtP5-SS-PEG) containing disulfide and amido bonds was designed and synthesized, which has been used to construct a novel supramolecular nanocarrier through a host-guest interaction with a perylene diimide derivative (PDI-2NH4 ) and their supramolecular self-assembly. This nanocarrier showed good drug loading capability, and dual stimulus responsiveness to enzyme and GSH (glutathione). After loading of doxorubicin (DOX), the prepared nanodrugs displayed efficient DOX release and outstanding cancer theranostics ability.
Collapse
Affiliation(s)
- Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Jian Wang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Qin Zhao
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
49
|
Abstract
Ruthenium(II) polypyridyl complexes form a vast family of molecules characterized by their finely tuned photochemical and photophysical properties. Their ability to undergo excited-state deactivation via photosubstitution reactions makes them quite unique in inorganic photochemistry. As a consequence, they have been used, in general, for building dynamic molecular systems responsive to light but, more particularly, in the field of oncology, as prodrugs for a new cancer treatment modality called photoactivated chemotherapy (PACT). Indeed, the ability of a coordination bond to be selectively broken under visible light irradiation offers fascinating perspectives in oncology: it is possible to make poorly toxic agents in the dark that become activated toward cancer cell killing by simple visible light irradiation of the compound inside a tumor. In this Perspective, we review the most important concepts behind the PACT idea, the relationship between ruthenium compounds used for PACT and those used for a related phototherapeutic approach called photodynamic therapy (PDT), and we discuss important questions about real-life applications of PACT in the clinic. We conclude this Perspective with important challenges in the field and an outlook.
Collapse
Affiliation(s)
- Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
50
|
Fu HG, Shi XX, Liu M, Wang HJ, Zhang F, Chen Y, Liu Y. Photo-Controlled Nano-Supramolecular Size and Reversible Luminescent Behaviors Based on Cucurbit[7]uril Cascaded Assembly. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48564-48573. [PMID: 37792571 DOI: 10.1021/acsami.3c12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Supramolecular luminescent material with switchable behavior and photo-induced aggregation with emission enhancement is a current research hot spot. Herein, a size-tunable nano-supramolecular assembly with reversible photoluminescent behavior was constructed by noncovalent polymerization of diarylethene-bridged bis(coumarin) derivative (DAE-CO), cucurbit[7]uril (CB[7]), and β-cyclodextrin-grafted hyaluronic acid (HACD). Benefiting from the macrocyclic confinement effect, the guest molecule DAE-CO was included into the cavity of CB[7] to give enhanced fluorescence emission of the resulting DAE-CO⊂CB[7]2 with longer lifetime at 432 nm to 1.43 ns, thereby further enhancing fluorescence output and lifetime (1.46 ns) when further assembled with HACD, compared with the free DAE-CO (0.95 ns). In addition, DAE-CO, DAE-CO⊂CB[7]2, and DAE-CO⊂CB[7]2&HACD all possessed characteristics of aggregation-induced emission and reversible photo-switched structural interconversion, exhibiting an obvious photophysical activation phenomenon of self-aggregation into larger nanoparticles with increase in fluorescence emission intensity, lifetime, and size after irradiation, which could be increased step by step with the alternating irradiation of 254 nm (5 min) or >600 nm (30 s) repeated 7 times. These supramolecular assemblies were successfully used in the tumor cells' targeted imaging and anti-counterfeiting because of the capability of HACD for recognizing specific receptors overexpressed on the surface of tumor cells and the excellent photo-regulated switch ability of DAE-CO, providing an approach of constructing photo-induced emission-enhanced luminescent materials.
Collapse
Affiliation(s)
- Hong-Guang Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, (Tianjin), Nankai University, Tianjin 300071, P. R. China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xin-Xin Shi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hui-Juan Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, (Tianjin), Nankai University, Tianjin 300071, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Fanjun Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, (Tianjin), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|