1
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2025; 18:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Woldu AR, Yohannes AG, Huang Z, Kennepohl P, Astruc D, Hu L, Huang XC. Experimental and Theoretical Insights into Single Atoms, Dual Atoms, and Sub-Nanocluster Catalysts for Electrochemical CO 2 Reduction (CO 2RR) to High-Value Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414169. [PMID: 39593251 DOI: 10.1002/adma.202414169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Electrocatalytic carbon dioxide (CO2) conversion into valuable chemicals paves the way for the realization of carbon recycling. Downsizing catalysts to single-atom catalysts (SACs), dual-atom catalysts (DACs), and sub-nanocluster catalysts (SNCCs) has generated highly active and selective CO2 transformation into highly reduced products. This is due to the introduction of numerous active sites, highly unsaturated coordination environments, efficient atom utilization, and confinement effect compared to their nanoparticle counterparts. Herein, recent Cu-based SACs are first reviewed and the newly emerged DACs and SNCCs expanding the catalysis of SACs to electrocatalytic CO2 reduction (CO2RR) to high-value products are discussed. Tandem Cu-based SAC-nanocatalysts (NCs) (SAC-NCs) are also discussed for the CO2RR to high-value products. Then, the non-Cu-based SACs, DACs, SAC-NCs, and SNCCs and theoretical calculations of various transition-metal catalysts for CO2RR to high-value products are summarized. Compared to previous achievements of less-reduced products, this review focuses on the double objective of achieving full CO2 reduction and increasing the selectivity and formation rate toward C-C coupled products with additional emphasis on the stability of the catalysts. Finally, through combined theoretical and experimental research, future outlooks are offered to further develop the CO2RR into high-value products over isolated atoms and sub-nanometal clusters.
Collapse
Affiliation(s)
- Abebe Reda Woldu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Zanling Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Pierre Kennepohl
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Didier Astruc
- ISM, UMR CNRS 5255, University of Bordeaux, Talence, Cedex, 33405, France
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| |
Collapse
|
3
|
Luo ZM, Wang JW, Nicaso M, Gil-Sepulcre M, Solano E, Nikolaou V, Benet J, Segado-Centellas M, Bo C, Llobet A. Supramolecular Anchoring of Fe(III) Molecular Redox Catalysts into Graphitic Surfaces Via CH-π and π-π Interactions for CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202412188. [PMID: 39132954 DOI: 10.1002/anie.202412188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Photoelectrochemical devices require solid anodes and cathodes for the easy assembling of the whole cell and thus redox catalysts need to be deposited on the electrodes. Typical catalyst deposition involves drop casting, spin coating, doctor blading or related techniques to generate modified electrodes where the active catalyst in contact with the electrolyte is only a very small fraction of the deposited mass. We have developed a methodology where the redox catalyst is deposited at the electrode based on supramolecular interactions, namely CH-π and π-π between the catalyst and the surface. This generates a very well-defined catalysts-surface structure and electroactivity, together with a very large catalytic response. This approach represents a new anchoring strategy that can be applied to catalytic redox reactions in heterogeneous phase and compared to traditional methods involves about 4-5 orders of magnitude less mass deposition to achieve comparable activity and with very well-behaved electroactivity and stability.
Collapse
Affiliation(s)
- Zhi-Mei Luo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Jia-Wei Wang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Marco Nicaso
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Eduardo Solano
- NCD-SWEET beamline, ALBA synchrotron light source., Carrer de la Llum, 2, 26, 08290, Cerdanyola del Vallès, Barcelona
| | - Vasilis Nikolaou
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Jordi Benet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
- Departament de Quıímica Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí, Domingo s/n, 43007, Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
- Departament de Quıímica Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí, Domingo s/n, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| |
Collapse
|
4
|
Curet L, Foix D, Palomares E, Billon L, Viterisi A. Porphyrin-silver acetylide cluster catalysts with dual active sites for the electrochemical reduction of CO 2. Chem Commun (Camb) 2024; 60:10168-10171. [PMID: 39190321 DOI: 10.1039/d4cc03836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A one-step synthesis of porphyrin-silver acetylide clusters from tetra alkyne-substituted porphyrin is described. The solid-state properties of three 2D-like compounds were fully characterised using XPS and XRD while their catalytic properties under CO2 electroreduction reaction conditions were assessed and their faradaic efficiency quantified.
Collapse
Affiliation(s)
- Leonard Curet
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254 Technopole Hélioparc 2 avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France.
| | - Dominique Foix
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254 Technopole Hélioparc 2 avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France.
| | - Emilio Palomares
- Institute of chemical research of Catalonia (ICIQ) Avda, Països Catalans, 16 43007 Tarragona, Spain
- ICREA. Passeig Lluís Companys, 28, E-08010 Barcelona, Spain
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254 Technopole Hélioparc 2 avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France.
| | - Aurelien Viterisi
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254 Technopole Hélioparc 2 avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France.
| |
Collapse
|
5
|
Wang C, Sun Y, Chen Y, Zhang Y, Yue L, Han L, Zhao L, Zhu X, Zhan D. In Situ Electropolymerizing Toward EP-CoP/Cu Tandem Catalyst for Enhanced Electrochemical CO 2-to-Ethylene Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404053. [PMID: 38973357 PMCID: PMC11425910 DOI: 10.1002/advs.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Electrochemical CO2 reduction has garnered significant interest in the conversion of sustainable energy to valuable fuels and chemicals. Cu-based bimetallic catalysts play a crucial role in enhancing *CO concentration on Cu sites for efficient C─C coupling reactions, particularly for C2 product generation. To enhance Cu's electronic structure and direct its selectivity toward C2 products, a novel strategy is proposed involving the in situ electropolymerization of a nano-thickness cobalt porphyrin polymeric network (EP-CoP) onto a copper electrode, resulting in the creation of a highly effective EP-CoP/Cu tandem catalyst. The even distribution of EP-CoP facilitates the initial reduction of CO2 to *CO intermediates, which then transition to Cu sites for efficient C─C coupling. DFT calculations confirm that the *CO enrichment from Co sites boosts *CO coverage on Cu sites, promoting C─C coupling for C2+ product formation. The EP-CoP/Cu gas diffusion electrode achieves an impressive current density of 726 mA cm-2 at -0.9 V versus reversible hydrogen electrode (RHE), with a 76.8% Faraday efficiency for total C2+ conversion and 43% for ethylene, demonstrating exceptional long-term stability in flow cells. These findings mark a significant step forward in developing a tandem catalyst system for the effective electrochemical production of ethylene.
Collapse
Affiliation(s)
- Chao Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Sun
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuzhuo Chen
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yiting Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liangliang Yue
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lianhuan Han
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liubin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xunjin Zhu
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dongping Zhan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Lu X, Yuan B, Liu Y, Liu LX, Zhu JJ. Bioinspired molecule-functionalized Cu with high CO adsorption for efficient CO electroreduction to acetate. Dalton Trans 2024; 53:10919-10927. [PMID: 38888145 DOI: 10.1039/d4dt01293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2) or carbon monoxide (CO) to valuable multi-carbon (C2+) products like acetate is a promising approach for a sustainable energy economy. However, it is still challenging to achieve high activity and selectivity for acetate production, especially in neutral electrolytes. Herein, a bioinspired hemin/Cu hybrid catalyst was developed to enhance the surface *CO coverage for highly efficient electroreduction of CO to acetate fuels. The hemin/Cu electrocatalyst exhibits a remarkable faradaic efficiency of 45.2% for CO-to-acetate electroreduction and a high acetate partial current density of 152.3 mA cm-2. Furthermore, the developed hybrid catalyst can operate stably at 200 mA cm-2 for 14.6 hours, producing concentrated acetate aqueous solutions (0.235 M, 2.1 wt%). The results of in situ Raman spectroscopy and theoretical calculations proved that the Fe-N4 structure of hemin could enhance the CO adsorption and enrich the local concentration of CO, thereby improving C-C coupling for acetate production. In addition, compared to the unmodified Cu catalysts, the Cu catalysts functionalized with cobalt phthalocyanine with a Co-N4 structure also exhibit improved acetate performance, proving the universality of this bioinspired molecule-enhanced strategy. This work paves a new way to designing bioinspired electrolysis systems for producing specific C2+ products from CO2 or CO electroreduction.
Collapse
Affiliation(s)
- Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Baozhen Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Li-Xia Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Plaza-Mayoral E, Okatenko V, Dalby KN, Falsig H, Chorkendorff I, Sebastián-Pascual P, Escudero-Escribano M. Composition effects of electrodeposited Cu-Ag nanostructured electrocatalysts for CO 2 reduction. iScience 2024; 27:109933. [PMID: 38812548 PMCID: PMC11134916 DOI: 10.1016/j.isci.2024.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024] Open
Abstract
The electrochemical carbon dioxide reduction (CO2RR) on Cu-based catalysts is a promising strategy to store renewable electricity and produce valuable C2+ chemicals. We investigate the CO2RR on Cu-Ag nanostructures that have been electrodeposited in a green choline chloride and urea deep eutectic solvent (DES). We determine the electrochemically active surface area (ECSA) using lead underpotential deposition (UPD) to investigate the CO2RR intrinsic activity and selectivity. We show that the addition of Ag on electrodeposited Cu primarily suppresses the production of hydrogen and methane. While the production of carbon monoxide slightly increases, the partial current of the total C2+ products does not considerably increase. Despite that the production rate of C2+ is similar on Cu and Cu-Ag, the addition of Ag enhances the formation of alcohols and oxygenates over ethylene. We highlight the potential of metal electrodeposition from DES as a sustainable strategy to develop bimetallic Cu-based nanocatalysts for CO2RR.
Collapse
Affiliation(s)
- Elena Plaza-Mayoral
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Kim N. Dalby
- Topsoe A/S, Haldor Topsøe Allé 1, DK-2800 Kgs, Lyngby, Denmark
| | - Hanne Falsig
- Topsoe A/S, Haldor Topsøe Allé 1, DK-2800 Kgs, Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis, Technical University of Denmark, Fysikvej, DK-2800 Lyngby, Denmark
| | - Paula Sebastián-Pascual
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - María Escudero-Escribano
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, UAB, 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Kolding KN, Bretlau M, Zhao S, Ceccato M, Torbensen K, Daasbjerg K, Rosas-Hernández A. NHC-CDI Ligands Boost Multicarbon Production in Electrocatalytic CO 2 Reduction by Increasing Accumulated Charged Intermediates and Promoting *CO Dimerization on Cu. J Am Chem Soc 2024; 146:13034-13045. [PMID: 38698544 DOI: 10.1021/jacs.3c14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Copper-based materials exhibit significant potential as catalysts for electrochemical CO2 reduction, owing to their capacity to generate multicarbon hydrocarbons. The molecular functionalization of Cu electrodes represents a simple yet powerful strategy for improving the intrinsic activity of these materials by favoring specific reaction pathways through the creation of tailored microenvironments around the surface active sites. However, despite its success, comprehensive mechanistic insights derived from experimental techniques are often limited, leaving the active role of surface modifiers inconclusive. In this work, we show that N-heterocyclic carbene-carbodiimide-functionalized Cu catalysts display a remarkable activity for multicarbon product formation, surpassing bare Cu electrodes by more than an order of magnitude. These hybrid catalysts operate efficiently using an electrolyzer equipped with a gas diffusion electrode, achieving a multicarbon product selectivity of 58% with a partial current density of ca. -80 mA cm-2. We found that the activity for multicarbon product formation is closely linked to the surface charge that accumulates during electrocatalysis, stemming from surface intermediate buildup. Through X-ray photoelectron spectroscopy, we elucidated the role of the molecular additives in altering the electronic structure of the Cu electrodes, promoting the stabilization of surface CO. Additionally, in situ Raman measurements established the identity of the reaction intermediates that accumulate during electrocatalysis, indicating preferential CO binding on Cu step sites, known for facilitating C-C coupling. This study underscores the significant potential of molecular surface modifications in developing efficient electrocatalysts for CO2 reduction, highlighting surface charge as a pivotal descriptor of multicarbon product activity.
Collapse
Affiliation(s)
- Kirstine Nygaard Kolding
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Matias Bretlau
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Siqi Zhao
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Marcel Ceccato
- Department of Biological and Chemical Engineering, Aarhus University, 8200 Aarhus N, Denmark
| | - Kristian Torbensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Alonso Rosas-Hernández
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Wang JW, Luo ZM, Yang G, Gil-Sepulcre M, Kupfer S, Rüdiger O, Ouyang G. Highly efficient electrocatalytic CO 2 reduction by a Cr III quaterpyridine complex. Proc Natl Acad Sci U S A 2024; 121:e2319288121. [PMID: 38527206 PMCID: PMC10998623 DOI: 10.1073/pnas.2319288121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024] Open
Abstract
Design tactics and mechanistic studies both remain as fundamental challenges during the exploitations of earth-abundant molecular electrocatalysts for CO2 reduction, especially for the rarely studied Cr-based ones. Herein, a quaterpyridyl CrIII catalyst is found to be highly active for CO2 electroreduction to CO with 99.8% Faradaic efficiency in DMF/phenol medium. A nearly one order of magnitude higher turnover frequency (86.6 s-1) over the documented Cr-based catalysts (<10 s-1) can be achieved at an applied overpotential of only 190 mV which is generally 300 mV lower than these precedents. Such a high performance at this low driving force originates from the metal-ligand cooperativity that stabilizes the low-valent intermediates and serves as an efficient electron reservoir. Moreover, a synergy of electrochemistry, spectroelectrochemistry, electron paramagnetic resonance, and quantum chemical calculations allows to characterize the key CrII, CrI, Cr0, and CO-bound Cr0 intermediates as well as to verify the catalytic mechanism.
Collapse
Affiliation(s)
- Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Zhi-Mei Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Guangjun Yang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
| | - Marcos Gil-Sepulcre
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| |
Collapse
|
10
|
Cousins LS, Creissen CE. Multiscale effects in tandem CO 2 electrolysis to C 2+ products. NANOSCALE 2024; 16:3915-3925. [PMID: 38099592 DOI: 10.1039/d3nr05547g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
CO2 electrolysis is a sustainable technology capable of accelerating global decarbonisation through the production of high-value alternatives to fossil-derived products. CO2 conversion can generate critical multicarbon (C2+) products such as drop-in chemicals ethylene and ethanol, however achieving high selectivity from single-component catalysts is often limited by the competitive formation of C1 products. Tandem catalysis can overcome C2+ selectivity limitations through the incorporation of a component that generates a high concentration of CO, the primary reactant involved in the C-C coupling step to form C2+ products. A wide range of approaches to promote tandem CO2 electrolysis have been presented in recent literature that span atomic-scale manipulation to device-scale engineering. Therefore, an understanding of multiscale effects that contribute to selectivity alterations are required to develop effective tandem systems. In this review, we use relevant examples to highlight the complex and interlinked contributions to selectivity and provide an outlook for future development of tandem CO2 electrolysis systems.
Collapse
Affiliation(s)
- Lewis S Cousins
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | - Charles E Creissen
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
11
|
Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci 2023; 14:13629-13660. [PMID: 38075661 PMCID: PMC10699555 DOI: 10.1039/d3sc04353c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 04/26/2024] Open
Abstract
The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Shichao Ding
- Department of Nanoengineering, University of California La Jolla San Diego CA 92093 USA
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Liu J, Yu K, Qiao Z, Zhu Q, Zhang H, Jiang J. Integration of Cobalt Phthalocyanine, Acetylene Black and Cu 2 O Nanocubes for Efficient Electroreduction of CO 2 to C 2 H 4. CHEMSUSCHEM 2023; 16:e202300601. [PMID: 37488969 DOI: 10.1002/cssc.202300601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Suppressing side reactions and simultaneously enriching key intermediates during CO2 reduction reaction (CO2 RR) has been a challenge. Here, we propose a tandem catalyst (Cu2 O NCs-C-Copc) consisting of acetylene black, cobalt phthalocyanine (Copc) and cuprous oxide nanocubes (Cu2 O NCs) for efficient CO2 -to-ethylene conversion. Density-functional theory (DFT) calculation combined with experimental verification demonstrated that Copc can provide abundant CO to nearby copper sites while acetylene black successfully reduces the formation energies of key intermediates, leading to enhanced C2 H4 selectivity. X-ray photoelectron spectroscopy (XPS) and potentiostatic tests indicated that the catalytic stability of Cu2 O NCs-C-Copc was significantly enhanced compared with Cu2 O NCs. Finally, the industrial application prospect of the catalyst was evaluated using gas diffusion electrolyzers. TheF E C 2 H 4 ${{\rm { F}}{{\rm { E}}}_{{{\rm { C}}}_{{\rm { 2}}}{{\rm { H}}}_{{\rm { 4}}}}}$ of Cu2 O NCs-C-Copc can reach to 58.4 % at -1.1 V vs. RHE in 0.1 M KHCO3 and 70.3 % at -0.76 V vs. RHE in 1.0 M KOH. This study sheds new light on the design and development of highly efficient CO2 RR tandem catalytic systems.
Collapse
Affiliation(s)
- Jilin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Kai Yu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Zhiyuan Qiao
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Qianlong Zhu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Hong Zhang
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| |
Collapse
|
13
|
Vos R, Kolmeijer KE, Jacobs TS, van der Stam W, Weckhuysen BM, Koper MTM. How Temperature Affects the Selectivity of the Electrochemical CO 2 Reduction on Copper. ACS Catal 2023; 13:8080-8091. [PMID: 37342834 PMCID: PMC10278069 DOI: 10.1021/acscatal.3c00706] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/22/2023] [Indexed: 06/23/2023]
Abstract
Copper is a unique catalyst for the electrochemical CO2 reduction reaction (CO2RR) as it can produce multi-carbon products, such as ethylene and propanol. As practical electrolyzers will likely operate at elevated temperatures, the effect of reaction temperature on the product distribution and activity of CO2RR on copper is important to elucidate. In this study, we have performed electrolysis experiments at different reaction temperatures and potentials. We show that there are two distinct temperature regimes. From 18 up to ∼48 °C, C2+ products are produced with higher Faradaic efficiency, while methane and formic acid selectivity decreases and hydrogen selectivity stays approximately constant. From 48 to 70 °C, it was found that HER dominates and the activity of CO2RR decreases. Moreover, the CO2RR products produced in this higher temperature range are mainly the C1 products, namely, CO and HCOOH. We argue that CO surface coverage, local pH, and kinetics play an important role in the lower-temperature regime, while the second regime appears most likely to be related to structural changes in the copper surface.
Collapse
Affiliation(s)
- Rafaël
E. Vos
- Leiden
Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands
| | - Kees E. Kolmeijer
- Leiden
Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands
| | - Thimo S. Jacobs
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science
and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ward van der Stam
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science
and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science
and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Green PB, Lecina OS, Albertini PP, Loiudice A, Buonsanti R. Colloidal-ALD-Grown Metal Oxide Shells Enable the Synthesis of Photoactive Ligand/Nanocrystal Composite Materials. J Am Chem Soc 2023; 145:8189-8197. [PMID: 36996442 PMCID: PMC10103164 DOI: 10.1021/jacs.3c01439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Colloidal nanocrystals (NCs) are ideal materials for a variety of applications and devices, which span from catalysis and optoelectronics to biological imaging. Organic chromophores are often combined with NCs as photoactive ligands to expand the functionality of NCs or to achieve optimal device performance. The most common methodology to introduce these chromophores involves ligand exchange procedures. Despite their ubiquitous nature, ligand exchanges suffer from a few limitations, which include reversible binding, restricted access to binding sites, and the need for purification of the samples, which can result in loss of colloidal stability. Herein, we propose a methodology to bypass these inherent issues of ligand exchange through the growth of an amorphous alumina shell by colloidal atomic layer deposition (c-ALD). We demonstrate that c-ALD creates colloidally stable composite materials, which comprise NCs and organic chromophores as photoactive ligands, by trapping the chromophores around the NC core. As representative examples, we functionalize semiconductor NCs, which include PbS, CsPbBr3, CuInS2, Cu2-xX, and lanthanide-based upconverting NCs, with polyaromatic hydrocarbons (PAH) ligands. Finally, we prove that triplet energy transfer occurs through the shell and we realize the assembly of a triplet exciton funnel structure, which cannot be obtained via conventional ligand exchange procedures. The formation of these organic/inorganic hybrid shells promises to synergistically boost catalytic and multiexcitonic processes while endowing enhanced stability to the NC core.
Collapse
Affiliation(s)
- Philippe B Green
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion, CH-1950, Switzerland
| | - Ona Segura Lecina
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion, CH-1950, Switzerland
| | - Petru P Albertini
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion, CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion, CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion, CH-1950, Switzerland
| |
Collapse
|
15
|
Wang M, Loiudice A, Okatenko V, Sharp ID, Buonsanti R. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C 2 products in tandem electrocatalytic CO 2 reduction. Chem Sci 2023; 14:1097-1104. [PMID: 36756336 PMCID: PMC9891351 DOI: 10.1039/d2sc06359j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The coupling of CO-generating molecular catalysts with copper electrodes in tandem schemes is a promising strategy to boost the formation of multi-carbon products in the electrocatalytic reduction of CO2. While the spatial distribution of the two components is important, this aspect remains underexplored for molecular-based tandem systems. Herein, we address this knowledge gap by studying tandem catalysts comprising Co-phthalocyanine (CoPc) and Cu nanocubes (Cucub). In particular, we identify the importance of the relative spatial distribution of the two components on the performance of the tandem catalyst by preparing CoPc-Cucub/C, wherein the CoPc and Cucub share an interface, and CoPc-C/Cucub, wherein the CoPc is loaded first on carbon black (C) before mixing with the Cucub. The electrocatalytic measurements of these two catalysts show that the faradaic efficiency towards C2 products almost doubles for the CoPc-Cucub/C, whereas it decreases by half for the CoPc-C/Cucub, compared to the Cucub/C. Our results highlight the importance of a direct contact between the CO-generating molecular catalyst and the Cu to promote C-C coupling, which hints at a surface transport mechanism of the CO intermediate between the two components of the tandem catalyst instead of a transfer via CO diffusion in the electrolyte followed by re-adsorption.
Collapse
Affiliation(s)
- Min Wang
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Anna Loiudice
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Ian D. Sharp
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|