1
|
Khoshdooz S, Khoshdooz P, Bonyad R, Bonyad A, Sheidaei S, Nosrati R. Cubosomes-based hydrogels; A promising advancement for drug delivery. Int J Pharm 2025; 674:125510. [PMID: 40132766 DOI: 10.1016/j.ijpharm.2025.125510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Hydrogels have so far shown promising opportunities for possible drug delivery applications. Cubosomes (Cub), bicontinuous cubic phase liquid crystals, possess several characteristics that make them appealing as a versatile medium for drug administration. They have been regarded as prospective nanocarriers for drugs, offering a promising alternative to liposomes as a drug delivery method. Cub have the ability to encapsulate lipophilic, hydrophilic, and amphiphilic medicines. Hydrogels have recently shown significant interest in using Cub-based formulations. This paper examines the current advancements in biodegradable Cub-based hydrogels (Cubogel) for intelligent medication delivery to various organs. In conclusion, this paper briefly discusses the prospects and problems of hydrogels based on Cub.
Collapse
Affiliation(s)
- Sara Khoshdooz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Khoshdooz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reihaneh Bonyad
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Bonyad
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sina Sheidaei
- Department of Chemistry, Faculty of Science, University of Guilan, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Son HK, Pomseethong P, Kim JC. Coacervation-responsive cubosome containing hyaluronic acid and albumin complex. J Biomater Appl 2025:8853282251334466. [PMID: 40233713 DOI: 10.1177/08853282251334466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Coacervation-responsive cubosomes were prepared by loading a complex of hydrophobically modified hyaluronic acid (HmHA) and hydrophobically modified albumin (HmAlb) and steviol glycoside (SG) into the water channels. Hyaluronic acid and albumin were modified with a lipid chain, and the HmHA and HmAlb were characterized by 1H NMR and FT-IR spectroscopy, respectively. The formation of the HmHA/HmAlb coacervate complex was optimized when the mass ratio was 1:9 under pH 4.0 conditions. The phase transition temperature of the cubic phase complex was observed to increase slightly from 60.9°C to 61.6°C as a result of the inclusion of the coacervate complex, as evidenced by differential scanning calorimetry. The maximum release degree of SG at 22°C was suppressed to 30.9% due to the coacervate at pH 3, and it was promoted to 75.9% at pH 5.5 due to the dissolution of the electrostatic complex as the pH value increased. The monoolein of the cubosDome enhanced the in vitro skin permeation of the cubosomal SG, as it could play a role as a skin permeation enhancer. The coacervation-responsive cubosome could be potentially used as a drug carrier that can release its content in a pH-controlled manner.
Collapse
Affiliation(s)
- Hyeon Ki Son
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Panalee Pomseethong
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Guillot S, Delpeux S, Méducin F, Gagner A, Camara FA, Hayef A, Benoist O, Ramézani H, Hennet L. Innovative use of lipid mesophase dispersions for bisphenol A sequestration in water. J Colloid Interface Sci 2025; 679:849-859. [PMID: 39486224 DOI: 10.1016/j.jcis.2024.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
HYPOTHESIS Mesophase dispersions are promising colloids for removing micropollutants from water. We hypothesized that the complex internal nanostructure and tunable lipid/water interface amounts play a crucial role in absorbed quantities. Modifications in interfacial organization within the particles while trapping the micropollutant is assumed. EXPERIMENTS We formulated stable monolinolein-based dispersions with four types of mesophases (bicontinuous and micellar cubic, hexagonal, and fluid isotropic L2) by varying dodecane contents. The absorption of bisphenol A by these dispersions from water was monitored using molecular spectroscopy. At equilibrium, absorbed quantities by mesophase dispersions were compared to unstructured dodecane/water miniemulsions for two bisphenol concentrations. Structural changes during bisphenol incorporation were identified using small-angle X-ray scattering. FINDINGS Lipid mesophase particles of submicron size showed greater bisphenol incorporation than dodecane/water miniemulsions, with cubosomes being most effective ones, absorbing twice as much as unstructured emulsions. Higher absorption levels are observed for more complex nanostructures with increased lipid/dodecane ratios. The incorporation of bisphenol affected the curvature of internal interfaces, potentially causing phase transitions and indicating that bisphenol settles at interfaces. Similar absorption levels in identical mesophases suggest a strong correlation between nano-structure and absorbed quantities.
Collapse
Affiliation(s)
- Samuel Guillot
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France.
| | - Sandrine Delpeux
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Fabienne Méducin
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Aude Gagner
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Fatokhoma A Camara
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Abdelhamid Hayef
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Oriane Benoist
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Hamidréza Ramézani
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Louis Hennet
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| |
Collapse
|
4
|
Feizi S, Awad M, Ramezanpour M, Cooksley C, Murphy W, Prestidge CA, Psaltis AJ, Wormald PJ, Barry S, Vreugde S. Promoting the Efficacy of Deferiprone-Gallium-Protoporphyrin (IX) against Mycobacterium abscessus Intracellular Infection with Lipid Liquid Crystalline Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70274-70283. [PMID: 39660476 DOI: 10.1021/acsami.4c15843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Nontuberculous mycobacteria (NTM) are among the recalcitrant bacterial strains that cause difficult-to-treat infections for patients with chronic underlying pulmonary conditions. The bacteria's intrinsic resistance to various antibiotics and their ability to infect macrophages enable them to overcome both the host immune response and standard antibiotics. Unconventional approaches to treating NTM-mediated infections are required. Using the heme mimic agent gallium protoporphyrin (GaPP) and the iron chelator deferiprone (DEF) in combination has been proven as an effective strategy against different bacteria including NTM in vitro. To enable more effective delivery and promote the activity of DEF/GaPP against intracellular NTM infections, both compounds are loaded in lipid liquid crystalline nanoparticles (LCNP). GaPP and DEF are sufficiently entrapped in LCNP with entrapment efficiency of 98% ± 2.1 and 39.4% ± 4.2, respectively. DEF/GaPP LCNP has an average diameter of 171 nm ± 10.2 with a uniform size distribution. DEF/GaPP LCNP reduces the viability of Mycobacterium abscessus intracellular infection by 3.34 log10 in comparison to the control group and is significantly more efficacious than nonformulated DEF/GaPP. Furthermore, DEF/GaPP LCNP is nontoxic to human bronchial epithelial cells in vitro. These findings are envisaged to pave the way for future progress in eradicating NTM-mediated infections.
Collapse
Affiliation(s)
- Sholeh Feizi
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Muhammed Awad
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Clare Cooksley
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - William Murphy
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Alkis J Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Simone Barry
- Precision Medicine Theme, South Australian Health and Medical Institute, Adelaide 5000, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide 5000, South Australia, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
5
|
Upadhyay R, Ghosh P, Desavathu M. Advancement in the Nose-to-Brain Drug delivery of FDA-approved drugs for the better management of Depression and Psychiatric disorders. Int J Pharm 2024; 667:124866. [PMID: 39486490 DOI: 10.1016/j.ijpharm.2024.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The Prevalence of Depressive and Psychiatric disorders is increasing globally, and despite the availability of numerous FDA-approved drugs, treatment remains challenging. Many conventional antidepressants and antipsychotic formulations face issues such as low solubility, high first-pass metabolism, poor bioavailability, inadequate blood-brain barrier penetration, and systemic side effects. These challenges lead to reduced efficacy, slower onset of action, and decreased patient adherence to treatment. To address these problems, recent studies have explored the nose-to-brain route for drug delivery. This method offers several advantages, including non-invasive drug administration, direct access to the brain, rapid onset of action, reduced systemic exposure and side effects, avoidance of first-pass metabolism, enhanced bioavailability, precision dosing, and improved patient compliance. The formulations used for this approach include lipidic nanoparticles, polymeric nanoparticles, nasal gels, cubosomes, niosomes, polymeric micelles, nanosuspensions, nanoemulsions, nanocapsules, and elastosomes. This review analyzes and summarizes the published work on the nose-to-brain delivery of FDA-approved antidepressants and antipsychotic drugs, with a focus on the preparation, characterization, pharmacokinetics, pharmacodynamics, and toxicity profiling of these nanoformulations.
Collapse
Affiliation(s)
- Rajshekher Upadhyay
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Pappu Ghosh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Madhuri Desavathu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
6
|
Wei H, Hao Y, Zhang J, Qi Y, Feng C, Zhang C. Advances in lysosomal escape mechanisms for gynecological cancer nano-therapeutics. J Pharm Anal 2024; 14:101119. [PMID: 39811489 PMCID: PMC11732538 DOI: 10.1016/j.jpha.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 01/16/2025] Open
Abstract
Gynecological cancers present significant treatment challenges due to drug resistance and adverse side effects. This review explores advancements in lysosomal escape mechanisms, essential for enhancing nano-therapeutic efficacy. Strategies such as pH-sensitive linkers and membrane fusion are examined, showcasing their potential to improve therapeutic outcomes in ovarian, cervical, and uterine cancers. We delve into novel materials and strategies developed to bypass the lysosomal barrier, including pH-sensitive linkers, fusogenic lipids, and nanoparticles (NPs) engineered for endosomal disruption. Mechanisms such as the proton sponge effect, where NPs induce osmotic swelling and rupture of the lysosomal membrane, and membrane fusion, which facilitates the release of therapeutic agents directly into the cytoplasm, are explored in detail. These innovations not only promise to improve therapeutic outcomes but also minimize side effects, marking a significant step forward in the treatment of ovarian, cervical, and uterine cancers. By providing a comprehensive analysis of current advancements and their implications for clinical applications, this review sheds light on the potential of lysosomal escape strategies to revolutionize gynecological cancer treatment, setting the stage for future research and development in this vital area.
Collapse
Affiliation(s)
| | | | | | - Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 117004, China
| | - Chong Feng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 117004, China
| | - Chen Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 117004, China
| |
Collapse
|
7
|
Saadh MJ, Mustafa MA, Kumar S, Gupta P, Pramanik A, Rizaev JA, Shareef HK, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Alaraj M, Alzubaidi LH. Advancing therapeutic efficacy: nanovesicular delivery systems for medicinal plant-based therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7229-7254. [PMID: 38700796 DOI: 10.1007/s00210-024-03104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 10/04/2024]
Abstract
The utilization of medicinal plant extracts in therapeutics has been hindered by various challenges, including poor bioavailability and stability issues. Nanovesicular delivery systems have emerged as promising tools to overcome these limitations by enhancing the solubility, bioavailability, and targeted delivery of bioactive compounds from medicinal plants. This review explores the applications of nanovesicular delivery systems in antibacterial and anticancer therapeutics using medicinal plant extracts. We provide an overview of the bioactive compounds present in medicinal plants and their therapeutic properties, emphasizing the challenges associated with their utilization. Various types of nanovesicular delivery systems, including liposomes, niosomes, ethosomes, and solid lipid nanoparticles, among others, are discussed in detail, along with their potential applications in combating bacterial infections and cancer. The review highlights specific examples of antibacterial and anticancer activities demonstrated by these delivery systems against a range of pathogens and cancer types. Furthermore, we address the challenges and limitations associated with the scale-up, stability, toxicity, and regulatory considerations of nanovesicular delivery systems. Finally, future perspectives are outlined, focusing on emerging technologies, integration with personalized medicine, and potential collaborations to drive forward research in this field. Overall, this review underscores the potential of nanovesicular delivery systems for enhancing the therapeutic efficacy of medicinal plant extracts in antibacterial and anticancer applications, while identifying avenues for further research and development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Sanjay Kumar
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Pooja Gupta
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18, Amir Temur Street, Rector, Samarkand, Uzbekistan
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | - Mohd Alaraj
- Faculty of Pharmacy, Jerash Private University, Jerash, Jordan
| | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
8
|
Hameed H, Khan MA, Paiva-Santos AC, Faheem S, Khalid A, Majid MS, Adnan A, Rana F. Liposomes like advanced drug carriers: from fundamentals to pharmaceutical applications. J Microencapsul 2024; 41:456-478. [PMID: 38990129 DOI: 10.1080/02652048.2024.2376116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
AIMS There are around 24 distinct lipid vesicles described in the literature that are similar to vesicular systems such as liposomes. Liposome-like structures are formed by combining certain amphiphilic lipids with a suitable stabiliser. Since their discovery and classification, self-assembled liposome-like structures as active drug delivery vehicles captured researchers' curiosity. METHODOLOGY This comprehensive study included an in-depth literature search using electronic databases such as PubMed, ScienceDirect and Google Scholar, focusing on studies on liposome and liposomes like structure, discussed in literature till 2024, their sizes, benefits, drawback, method of preparation, characterisation and pharmaceutical applications. RESULTS Pharmacosomes, cubosomes, ethosomes, transethosomes, and genosomes, all liposome-like structures, have the most potential due to their smaller size with high loading capacity, ease of absorption, and ability to treat inflammatory illnesses. Genosomes are futuristic because of its affinity for DNA/gene transport, which is an area of focus in today's treatments. CONCLUSION This review will critically analyse the composition, preparation procedures, drug encapsulating technologies, drug loading, release mechanism, and related applications of all liposome-like structures, highlighting their potential benefits with enhanced efficacy over each other and over traditional carriers by paving the way for exploring novel drug delivery systems in the Pharma industry.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Aleena Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Aiman Adnan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Fizza Rana
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Al-Roujayee AS, Hilaj E, Deepak A, Jyothi SR, Hamid JA, Ariffin IA, Saraswat V, Garg A. Alginate-based systems: advancements in drug delivery and wound healing. INT J POLYM MATER PO 2024:1-29. [DOI: 10.1080/00914037.2024.2375343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Abdulaziz S. Al-Roujayee
- Department of Dermatology and Venereology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Erina Hilaj
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Tirana, Albania
| | - A. Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu, India
| | - S. Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - I. A. Ariffin
- Management and Science University, Shah Alam, Malaysia
| | - Vivek Saraswat
- Institute of Engineering and Technology, GLA University, Mathura, Uttar Pradesh, India
| | - Avni Garg
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| |
Collapse
|
10
|
Nath AG, Dubey P, Kumar A, Vaiphei KK, Rosenholm JM, Bansal KK, Gulbake A. Recent Advances in the Use of Cubosomes as Drug Carriers with Special Emphasis on Topical Applications. J Lipids 2024; 2024:2683466. [PMID: 39022452 PMCID: PMC11254465 DOI: 10.1155/2024/2683466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/24/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Topical drug delivery employing drug nanocarriers has shown prominent results in treating topical ailments, especially those confined to the skin and eyes. Conventional topical formulations persist with drug and disease-related challenges during treatment. Various nanotechnology-driven approaches have been adopted to mitigate the issues associated with conventional formulations. Among these, cubosomes have shown potential applications owing to their liquid crystalline structure, which aids in bioadhesion, retention, sustained release, and loading hydrophilic and hydrophobic moieties. The phase transition behavior of glyceryl monooleate, the concentration of stabilizers, and critical packing parameters are crucial parameters that affect the formation of cubosomes. Microfluidics-based approaches constitute a recent advance in technologies for generating stable cubosomes. This review covers the recent topical applications of cubosomes for treating skin (psoriasis, skin cancer, cutaneous candidiasis, acne, and alopecia) and eye (fungal keratitis, glaucoma, conjunctivitis, and uveitis) diseases. The article summarizes the manufacturing and biological challenges (skin and ocular barriers) that must be considered and encountered for successful clinical outcomes. The patented products are successful examples of technological advancements within cosmeceuticals that support various topical applications with cubosomes in the pharmaceutical field.
Collapse
Affiliation(s)
- A. Gowri Nath
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Prashant Dubey
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Ankaj Kumar
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Klaudi K. Vaiphei
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi University, Turku 20520, Finland
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi University, Turku 20520, Finland
| | - Arvind Gulbake
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| |
Collapse
|
11
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
12
|
Pushpa Ragini S, Dyett BP, Sarkar S, Zhai J, White JF, Banerjee R, Drummond CJ, Conn CE. A systematic study of the effect of lipid architecture on cytotoxicity and cellular uptake of cationic cubosomes. J Colloid Interface Sci 2024; 663:82-93. [PMID: 38394820 DOI: 10.1016/j.jcis.2024.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
HYPOTHESIS Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Brendan P Dyett
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Sampa Sarkar
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jiali Zhai
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Calum J Drummond
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Charlotte E Conn
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
13
|
Thapa Magar K, Boucetta H, Zhao Z, Xu Y, Liu Z, He W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin Drug Deliv 2024; 21:881-904. [PMID: 38953767 DOI: 10.1080/17425247.2024.2374807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.
Collapse
Affiliation(s)
- Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ying Xu
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
A Vahab S, Nair A, Raj D, G P A, P P S, S Kumar V. Cubosomes as versatile lipid nanocarriers for neurological disorder therapeutics: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3729-3746. [PMID: 38095651 DOI: 10.1007/s00210-023-02879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/29/2023] [Indexed: 05/23/2024]
Abstract
Cubosomes are novel vesicular drug delivery systems with lipidic liquid crystal nanoparticles formed of predetermined proportions of amphiphilic lipids. They have a honeycomb-like structure and are thermodynamically stable. These bicontinuous lipid layers are separated into two water-based channels internally that can be used by various bioactive substances, including drugs, proteins, and peptides. This complex structure is responsible for its high drug-loading capacity. Cubosomes are thought to be promising vehicles for various routes of administration because of their extraordinary characteristics, including bioadhesion, the capacity to encapsulate hydrophilic, and hydrophobic, as well as amphiphilic substances, high resistance to environmental stress, and their ability to achieve controlled release through modification. One of the essential elements for improving patient compliance is the ability of these well-defined nano-drug delivery systems to boost the effectiveness of targeting while lowering the side effects/toxicities of payloads. The large internal surface area, a sufficiently uncomplicated fabrication procedure, and biodegradability make it an attractive nano lipid carrier for drug delivery. This review outlines the recent advancement of cubosomes for managing various neurological disorders, highlighting their potential in this field.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ayushi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Devika Raj
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Akhil G P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Sreelakshmi P P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
15
|
Faisal MM, Gomaa E, Ibrahim AE, El Deeb S, Al-Harrasi A, Ibrahim TM. Verapamil-Loaded Cubosomes for Enhancing Intranasal Drug Delivery: Development, Characterization, Ex Vivo Permeation, and Brain Biodistribution Studies. AAPS PharmSciTech 2024; 25:95. [PMID: 38710921 DOI: 10.1208/s12249-024-02814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.
Collapse
Affiliation(s)
- Mennatullah M Faisal
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman.
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Brunswick, Germany.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
16
|
El-Marakby EM, Fayez H, Motaleb MA, Mansour M. Atorvastatin-loaded cubosome: a repurposed targeted delivery systems for enhanced targeting against breast cancer. Pharm Dev Technol 2024; 29:236-247. [PMID: 38451055 DOI: 10.1080/10837450.2024.2323620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cancer ranks as one of the most challenging illnesses to deal with because progressive phenotypic and genotypic alterations in cancer cells result in resistance and recurrence. Thus, the creation of novel medications or alternative therapy approaches is mandatory. Repurposing of old drugs is an attractive approach over the traditional drug discovery process in terms of shorter drug development duration, low-cost, highly efficient and minimum risk of failure. In this study Atorvastatin, a statin drug used to treat abnormal cholesterol levels and prevent cardiovascular disease in people at high risk, was introduced and encapsulated in cubic liquid crystals as anticancer candidate aiming at sustaining its release and achieving better cellular uptake in cancer cells. The cubic liquid crystals were successfully prepared and optimized with an entrapment effieciency of 73.57% ±1.35 and particle size around 200 nm. The selected formulae were effectively doped with radioactive iodine 131I to enable the noninvasive visualization and trafficking of the new formulae. The in vivo evaluation in solid tumor bearing mice was conducted for comparing131I-Atorvastatin solution,131I-Atorvastatin loaded cubosome and 131I-Atorvastatin chitosan coated cubosome. The in vivo biodistribution study revealed that tumor radioactivity uptake of 131I-Atorvastatin cubosome and chitosan coated cubosome exhibited high accumulation in tumor tissues (target organ) scoring ID%/g of 5.67 ± 0.2 and 5.03 ± 0.1, respectively 1h post injection compared to drug solution which recorded 3.09 ± 0.05% 1h post injection. Concerning the targeting efficiency, the target/non target ratio for 131I-Atorvastatin chitosan coated cubosome was higher than that of 131I-Atorvastatin solution and 131I ATV-loaded cubosome at all time intervals and recorded T/NT ratio of 2.908 2h post injection.
Collapse
Affiliation(s)
- Eman M El-Marakby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hend Fayez
- Labeled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - M A Motaleb
- Labeled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
El Mohamad M, Han Q, Clulow AJ, Cao C, Safdar A, Stenzel M, Drummond CJ, Greaves TL, Zhai J. Regulating the structural polymorphism and protein corona composition of phytantriol-based lipid nanoparticles using choline ionic liquids. J Colloid Interface Sci 2024; 657:841-852. [PMID: 38091907 DOI: 10.1016/j.jcis.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Lipid-based lyotropic liquid crystalline nanoparticles (LCNPs) face stability challenges in biological fluids during clinical translation. Ionic Liquids (ILs) have emerged as effective solvent additives for tuning the structure of LCNP's and enhancing their stability. We investigated the effect of a library of 21 choline-based biocompatible ILs with 9 amino acid anions as well as 10 other organic/inorganic anions during the preparation of phytantriol (PHY)-based LCNPs, followed by incubation in human serum and serum proteins. Small angle X-ray scattering (SAXS) results show that the phase behaviour of the LCNPs depends on the IL concentration and anion structure. Incubation with human serum led to a phase transition from the inverse bicontinuous cubic (Q2) to the inverse hexagonal (H2) mesophase, influenced by the specific IL present. Liquid chromatography-mass spectrometry (LC-MS) and proteomics analysis of selected samples, including PHY control and those with choline glutamate, choline hexanoate, and choline geranate, identified abundant proteins in the protein corona, including albumin, apolipoproteins, and serotransferrin. The composition of the protein corona varied among samples, shedding light on the intricate interplay between ILs, internal structure and surface chemistry of LCNPs, and biological fluids.
Collapse
Affiliation(s)
- Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aneeqa Safdar
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
18
|
Sallam NG, Boraie NA, Sheta E, El-Habashy SE. Targeted delivery of genistein for pancreatic cancer treatment using hyaluronic-coated cubosomes bioactivated with frankincense oil. Int J Pharm 2024; 649:123637. [PMID: 38008234 DOI: 10.1016/j.ijpharm.2023.123637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Pancreatic cancer is an aggressive malignancy that remains a major cause of cancer-related deaths. Research for innovative anticancer therapeutic options is thus imperative. In this regard, phytotherapeutics offer great promise as efficient treatment modalities, especially leveraging nanodrug delivery. Herein, we innovatively coloaded the flavonoid genistein (Gen) and frankincense essential oil (FO) within cubosomes, which were then coated with the bioactive ligand hyaluronic acid (HA/Gen-FO-Cub) for active-targeting of pancreatic cancer. The novel HA/Gen-FO-Cub displayed optimum nanosize (198.2 ± 4.5 nm), PDI (0.27 ± 0.01), zeta-potential (-34.7 ± 1.2 mV), Gen entrapment (99.3 ± 0.01 %), and controlled Gen release (43.7 ± 1.2 % after 120 h). HA/Gen-FO-Cub exerted selective anticancer activity on pancreatic cancer cells (PANC-1; 8-fold drop in IC50), cellular uptake and anti-migratory effect compared to Gen solution. HA/Gen-FO-Cub revealed prominent cytocompatibility (100 ± 5.9 % viability of human dermal fibroblast). Moreover, HA/Gen-FO-Cub boosted the in vivo anticancer activity of Gen in an orthotopic cancer model, affording tumor growth suppression (2.5-fold drop) and downregulation of NFκB and VEGF (2.9- and 1.8-fold decrease, respectively), compared to Gen suspension. Antimetastatic efficacy and Bcl-2-downexpression was histologically confirmed. Our findings demonstrate the promising anticancer aptitude of HA/Gen-FO-Cub as an effective phytotherapeutic nanodelivery system for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Nourhan G Sallam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Nabila A Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
19
|
Omran S, Elnaggar YSR, Abdallah OY. Controlled release, chitosan-tethered luteolin phytocubosomes; Formulation optimization to in-vivo antiglaucoma and anti-inflammatory ocular evaluation. Int J Biol Macromol 2024; 254:127930. [PMID: 37944733 DOI: 10.1016/j.ijbiomac.2023.127930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
A chitosan-coated luteolin-loaded phytocubosomal system was prepared to improve the pharmacodynamic performance of luteolin in the treatment of glaucoma and ocular inflammation after topical ocular administration. Luteolin, a potent anti-oxidant herbal drug with poor aqueous solubility, was complexed with phospholipid. The prepared phytocubosomes were coated with chitosan, producing homogenously distributed nanosized particles (258 ± 9.05 nm) with a positive charge (+49 ± 6.09 mV), improved EE% (96 %), and increased concentration of encapsulated drug to 288 μg/ml. Polarized light microscopy revealed a cubic phase. Chitosan-coated phytocubosomes showed a sustained drug release profile (38 % over 24 h) and improved anti-oxidant activity (IC50 of 32 μg/ml). Ex vivo transcorneal permeation was higher by 3.60 folds compared to luteolin suspension. Irritancy tests confirmed their safety in ocular tissues after single and multiple administrations. The pharmacodynamic studies on glaucomatous rabbit eyes demonstrated 6.46-, 3.88-, and 1.89-fold reductions in IOP of chitosan-coated phytocubosomes compared to luteolin suspension, cubosomes, and phytocubosomes, respectively. Pharmacodynamic anti-inflammatory studies revealed faster recovery capabilities of chitosan-coated phytocubosomes over other formulations. Thus, chitosan-coated phytocubosomes could be a promising ocular hybrid system for delivering herbal lipophilic drugs such as luteolin.
Collapse
Affiliation(s)
- Sarah Omran
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication & Nanotechnology Consultation Center (INCC), Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
20
|
Lin T, Wei Q, Zhang H, Yang Y, Jiang B, Wang Z, Li S, Wang Q, Hu M, Chen W, Wang L, Ding B. Novel dual targeting cubosomes modified with angiopep-2 for co-delivery GNA and PLHSpT to brain glioma. J Biomater Appl 2024; 38:743-757. [PMID: 38000075 DOI: 10.1177/08853282231217753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
3Glioblastoma multiforme is the most aggressive malignant brain tumor. However, the treatment of glioblastoma multiforme faces great challenges owing to difficult penetration of the blood-brain barrier. Therefore, more effective treatment strategies are desired quite urgently. In our study, a dual-targeting drug delivery system for co-loading with hydrophobic Gambogenic acid and hydrophilic PLHSpT was developed by cubosomes with angiopep-2 decorating. The Ang-cubs-(GNA + PLHSpT) was prepared by high-temperature emulsification-low-temperature solidification demonstrating excellent physical properties.Transmission electron microscopy revealed that Ang-cubs-(GNA + PLHSpT) was nearly spherical with a "core-shell" double-layer structure. Differential scanning calorimetry suggested that a new phase was formed. Small-angle X-ray scattering also verified that Ang-cubs-(GNA + PLHSpT) retains the Pn3m cubic. Moreover, laser confocal indicated that Ang-cubs-(GNA + PLHSpT) was capable of crossing BBB via binding to lipoprotein receptor-related protein-1, likely suggesting the potential tumor-specific targeting characteristic. Compared to free drug and cubs-(GNA + PLHSpT), Ang-cubs-(GNA + PLHSpT) was easily taken up by C6 cell and exhibited better anti-glioma effects in vitro. Importantly, GNA and PLHSpT co-loaded Ang-cubs could suppress tumor growth and significantly prolong survival in vivo. In conclusion, Ang-cubs-(GNA + PLHSpT) acts as a new dual-targeting drug delivery system for the treatment of GBM.
Collapse
Affiliation(s)
- Tongyuan Lin
- The Science and Education Department, The First People's Hospital of Wuhu, Wuhu, China
- The Department of Gastroenterology, The First People's Hospital of Wuhu, Wuhu, China
| | - Qing Wei
- The College of Pharmacy, Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Huamin Zhang
- Health services policy and management, Harbin Medical University, Harbin, China
| | - Yong Yang
- The Department of Gastroenterology, The First People's Hospital of Wuhu, Wuhu, China
| | - Bo Jiang
- The Department of Gastroenterology, The First People's Hospital of Wuhu, Wuhu, China
| | - Zhangyi Wang
- The School of Integrated Chinese and Western Medicine, Clinical Medicine of Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Siyuan Li
- Postgraduate School, Wannan Medical College, Wuhu, China
| | - Qiang Wang
- The College of Pharmacy, Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Mengru Hu
- The College of Pharmacy, Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- The College of Pharmacy, Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- The College of Pharmacy, Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Baijing Ding
- The Department of Gastroenterology, The First People's Hospital of Wuhu, Wuhu, China
| |
Collapse
|
21
|
Amisha, Singh D, Kurmi BD, Singh A. Recent Advances in Nanocarrier-based Approaches to Atopic Dermatitis and Emerging Trends in Drug Development and Design. Curr Drug Deliv 2024; 21:932-960. [PMID: 37157192 DOI: 10.2174/1567201820666230508121716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
Atopic dermatitis (AD), commonly known as Eczema, is a non-communicable skin condition that tends to become chronic. The deteriorating immunological abnormalities are marked by mild to severe erythema, severe itching, and recurrent eczematous lesions. Different pharmacological approaches are used to treat AD. The problem with commercial topical preparations lies in the limitation of skin atrophy, systemic side effects, and burning sensation that decreases patient compliance. The carrier-based system promises to eliminate these shortcomings; thus, a novel approach to treating AD is required. Liposomes, microemulsions, solid lipid nanoparticles (SLNs), nanoemulsions, etc., have been developed recently to address this ailment. Despite extensive research in the development method and various techniques, it has been challenging to demonstrate the commercial feasibility of these carrier- based systems, which illustrates a gap among the different research areas. Further, different soft wares and other tools have proliferated among biochemists as part of a cooperative approach to drug discovery. It is crucial in designing, developing, and analyzing processes in the pharmaceutical industry and is widely used to reduce costs, accelerate the development of biologically innovative active ingredients, and shorten the development time. This review sheds light on the compilation of extensive efforts to combat this disease, the product development processes, commercial products along with patents in this regard, numerous options for each step of computer-aided drug design, including in silico pharmacokinetics, pharmacodynamics, and toxicity screening or predictions that are important in finding the drug-like compounds.
Collapse
Affiliation(s)
- Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| |
Collapse
|
22
|
Chavda VP, Dyawanapelly S, Dawre S, Ferreira-Faria I, Bezbaruah R, Rani Gogoi N, Kolimi P, Dave DJ, Paiva-Santos AC, Vora LK. Lyotropic liquid crystalline phases: Drug delivery and biomedical applications. Int J Pharm 2023; 647:123546. [PMID: 37884213 DOI: 10.1016/j.ijpharm.2023.123546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Liquid crystal (LC)-based nanoformulations may efficiently deliver drugs and therapeutics to targeted biological sites. Lyotropic liquid crystalline phases (LLCPs) have received much interest in recent years due to their unique structural characteristics of both isotropic liquids and crystalline solids. These LLCPs can be utilized as promising drug delivery systems to deliver drugs, proteins, peptides and vaccines because of their improved drug loading, stabilization, and controlled drug release. The effects of molecule shape, microsegregation, and chirality are very important in the formation of liquid crystalline phases (LCPs). Homogenization of self-assembled amphiphilic lipids, water and stabilizers produces LLCPs with different types of mesophases, bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes). Moreover, many studies have also shown higher bioadhesivity and biocompatibility of LCs due to their structural resemblance to biological membranes, thus making them more efficient for targeted drug delivery. In this review, an outline of the engineering aspects of LLCPs and polymer-based LLCPs is summarized. Moreover, it covers parenteral, oral, transdermal delivery and medical imaging of LC in targeting various tissues and is discussed with a scope to design more efficient next-generation novel nanosystems. In addition, a detailed overview of advanced liquid crystal-based drug delivery for vaccines and biomedical applications is reviewed.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India; Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India.
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Shilpa Dawre
- Department of Pharmaceutics, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, India
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| |
Collapse
|
23
|
Gowda BHJ, Ahmed MG, Alshehri SA, Wahab S, Vora LK, Singh Thakur RR, Kesharwani P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. ENVIRONMENTAL RESEARCH 2023; 237:116894. [PMID: 37586450 DOI: 10.1016/j.envres.2023.116894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Lyotropic liquid crystals are self-assembled, non-lamellar, and mesophase nanostructured materials that have garnered significant attention as drug carriers. Cubosomes, a subtype of lyotropic liquid crystalline nanoparticles, possess three-dimensional structures that display bicontinuous cubic liquid-crystalline patterns. These patterns are formed through the self-organization of unsaturated monoglycerides (amphphilic lipids such as glyceryl monooleate or phytantriol), followed by stabilization using steric polymers (poloxamers). Owing to their bicontinuous structure and steric polymer-based stabilization, cubosomes have been demonstrated to possess greater entrapment efficiency for hydrophobic drugs compared to liposomes, while also exhibiting high stability. In the past decade, there has been significant interest in cubosomes due to their ability to deliver therapeutic and contrast agents for cancer treatment and imaging with minimal side effects, establishing them as a safe and effective approach. Concerning these advantages, the present review elaborates on the general aspects, composition, and preparation techniques of cubosomes, followed by explanations of their mechanisms of drug loading and release patterns. Furthermore, the review provides meticulous discussions on the use of cubosomes in the treatment and imaging of various types of cancer, culminating in the enumeration of patents related to cubosome-based drug delivery systems.
Collapse
Affiliation(s)
- B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
24
|
Omran S, Elnaggar YSR, Abdallah OY. Carrageenan tethered ion sensitive smart nanogel containing oleophytocubosomes for improved ocular luteolin delivery. Int J Pharm 2023; 646:123482. [PMID: 37802260 DOI: 10.1016/j.ijpharm.2023.123482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Ophthalmic delivery of luteolin (LU) was studied after formulating a carrageenan-based novel ion-sensitive in situ gel (ISG) incorporating oleophytocubosomes for prolonged ocular residence time and improved ocular bioavailability of the poorly absorbed herbal drug luteolin. The prepared oleophytocubosomes and ISG were compared with LU suspension. Optimized oleophytocubosomes possessed small, homogenously distributed negatively charged particles with high entrapment efficiency. Polarized light microscope revealed a cubic phase. Optimized ISG matrix composed of 0.4% kappa carrageenan (KC), and 2% hydroxypropylmethylcellulose (HPMC) demonstrated rapid gelation, high resistance to dilution, increased viscosity after gelation, and strong mucoadhesive properties. oleophytocubosomes exerted improved drug release, while a more sustained release was observed for ISG oleophytocubosomes. The antioxidant activity of both formulations was significantly higher than that of LU suspension. Oleophytocubosome and ISG oleophytocubosome revealed significantly higher apparent permeability coefficients of 3.62 and 2.90 folds, respectively, compared to LU suspension. Irritation tests showed the safety of both formulations for single- and multiple-ocular administration. In-vivo studies demonstrated that the ISG system showed prolonged antiglaucoma effects and a faster anti-inflammatory effect, followed by oleophytocubosomes.
Collapse
Affiliation(s)
- Sarah Omran
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International-Publishing and Nanotechnology Consultation Center INCC, Pharos University in Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
25
|
Dhule KD, Nandgude TD. Lipid Nano-System Based Topical Drug Delivery for Management of Rheumatoid Arthritis: An Overview. Adv Pharm Bull 2023; 13:663-677. [PMID: 38022817 PMCID: PMC10676558 DOI: 10.34172/apb.2023.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
The overall purpose of rheumatoid arthritis (RA) treatment is to give symptomatic alleviation; there is no recognized cure for RA. Frequent use of potent drugs like non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs (DMARDs), lead to various adverse effects and patient compliance suffers. On the other hand, there are many drawbacks associated with traditional methods, such as high first pass, high clearance rate, and low bioavailability. Drug administration through the skin can be a promising alternative to cope with these drawbacks, increasing patient compliance and providing site-specific action. The stratum corneum, the uppermost non-viable epidermal layer, is one of the primary limiting barriers to skin penetration. Various nanocarrier technologies come into play as drug vehicles to help overcome these barriers. The nanocarrier systems are biocompatible, stable, and have a lower cytotoxic impact. The review discusses several lipid-based nanocarrier systems for anti-rheumatic medicines for topical administration it also discusses in-vivo animal models for RA and provides information on patents granted.
Collapse
Affiliation(s)
| | - Tanaji Dilip Nandgude
- Dr. D. Y. Patil Institute of Pharmaceutical Science and Research, Pimpri, Pune 411018, Department of Pharmaceutics, Pune, Maharashtra, India
| |
Collapse
|
26
|
Xia MQ, Chen J, Liu L, Tian CL, Cheng WK, Zheng Z, Chu XQ. Transdermal administration of ibuprofen-loaded hexagonal liquid crystal gel for enhancement of drug concentration in the uterus: in vitro and in vivo evaluation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2021-2039. [PMID: 37089114 DOI: 10.1080/09205063.2023.2205728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
Primary dysmenorrhea is a common disease in women, and oral administration of Ibuprofen (IBU) is associated with first-pass effects and gastrointestinal irritation. Here, we developed ibuprofen-loaded hexagonal liquid crystal (IBU HLC) gel for transdermal administration. In this study, the structure of prepared IBU HLC was characterized using polarizing microscopey (PLM) and small angle X ray diffraction (SAXS). In vitro drug release behavior and percutaneous penetration were investigated, and drug transdermal behavior was observed by confocal laser scanning microscope (CLSM). Finally, the pharmacokinetic profile and tissue distribution were investigated after transdermal administration. The PLM and SAXS results showed that the inner structure of IBU HLC was hexagonal phase. Moreover, in vitro release, skin permeation and CLSM demonstrated that IBU HLC had an excellent sustained-release effect, and a good transdermal penetration effect accompanied by the combination of multiple percutaneous routes. Pharmacokinetic studies indicated that IBU entered the blood circulation through abdominal transdermal administration in small amounts, mainly entering the uterus, and had a certain targeting ability. In conclusion, the IBU HLC gel would be a promising sustained-release preparation for transdermal administration to relieve dysmenorrhea with a significant drug concentration in the uterus.
Collapse
Affiliation(s)
- Meng-Qiu Xia
- School of Pharmacy, Wuhu Institute of Technology, Wuhu, Anhui, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Life and Health Engineering Research Center of Wuhu, Wuhu Institute of Technology, Wuhu, Anhui, China
| | - Jingbao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chun-Ling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wang-Kai Cheng
- School of Pharmacy, Wuhu Institute of Technology, Wuhu, Anhui, China
- Life and Health Engineering Research Center of Wuhu, Wuhu Institute of Technology, Wuhu, Anhui, China
| | - Zhiyun Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao-Qin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui, PR China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, PR China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| |
Collapse
|
27
|
Awad M, Barnes TJ, Prestidge CA. Lyophilized Lipid Liquid Crystalline Nanoparticles as an Antimicrobial Delivery System. Antibiotics (Basel) 2023; 12:1405. [PMID: 37760702 PMCID: PMC10525386 DOI: 10.3390/antibiotics12091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid liquid crystalline nanoparticles (LCNPs) are unique nanocarriers that efficiently deliver antimicrobials through biological barriers. Yet, their wide application as an antimicrobial delivery system is hindered by their poor stability in aqueous dispersions. The production of dried LCNP powder via lyophilization is a promising approach to promote the stability of LCNPs. However, the impact of the process on the functionality of the loaded hydrophobic cargoes has not been reported yet. Herein, we investigated the potential of lyophilization to produce dispersible dry LCNPs loaded with a hydrophobic antimicrobial compound, gallium protoporphyrin (GaPP). The effect of lyophilization on the physicochemical characteristics and the antimicrobial activity of rehydrated GaPP-LCNPs was studied. The rehydrated GaPP-LCNPs retained the liquid crystalline structure and were monodisperse (PDI: 0.27 ± 0.02), with no significant change in nanoparticle concentration despite the minor increase in hydrodynamic diameter (193 ± 6.5 compared to 173 ± 4.2 prior to freeze-drying). Most importantly, the efficacy of the loaded GaPP as an antimicrobial agent and a photosensitizer was not affected as similar MIC values were obtained against S. aureus (0.125 µg/mL), with a singlet oxygen quantum yield of 0.72. These findings indicate the suitability of lyophilization to produce a dry form of LCNPs and pave the way for future studies to promote the application of LCNPs as an antimicrobial delivery system.
Collapse
Affiliation(s)
- Muhammed Awad
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (M.A.); (T.J.B.)
- Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Azhar University, Assiut 71524, Egypt
| | - Timothy J. Barnes
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (M.A.); (T.J.B.)
| | - Clive A. Prestidge
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (M.A.); (T.J.B.)
| |
Collapse
|
28
|
Zeng Y, Liu H, Ma J, Li K, Chang P, Wang C, Li L, Chen D, Liu C, Li N, Zhan W, Zhan Y. Cobalt Ferrite-Gossypol Coordination Nanoagents with High Photothermal Conversion Efficiency Sensitizing Chemotherapy against Bcl-2 to Induce Tumor Apoptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300104. [PMID: 37186509 DOI: 10.1002/smll.202300104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Gossypol is a chemotherapeutic drug that can inhibit the anti-apoptotic protein Bcl-2, but the existing gossypol-related nanocarriers cannot well solve the problem of chemotherapy resistance. Based on the observation that gossypol becomes black upon Fe3+ coordination, it is hypothesized that encasing gossypol in glyceryl monooleate (GMO) and making it coordinate cobalt ferrite will not only improve its photothermal conversion efficiency (PCE) but also help it enter tumor cells. As the drug loading content and drug encapsulation efficiency of gossypol are 10.67% (w/w) and 96.20%, the PCE of cobalt ferrite rises from 14.71% to 36.00%. The synergistic therapeutic effect finally induces tumor apoptosis with a tumor inhibition rate of 96.56%, which is 2.99 and 1.47 times higher than chemotherapy or photothermal therapy (PTT) alone. PTT generated by the GMO nanocarriers under the irradiation of 808 nm laser can weaken tumor hypoxia, thereby assisting gossypol to inhibit Bcl-2. In addition, the efficacy of nanocarriers is also evaluated through T2 -weighted magnetic resonance imaging. Observations of gossypol-induced apoptosis in tissue slices provide definitive proof of chemotherapy sensitization, indicating that such coordination nanocarriers can be used as an effective preclinical agent to enhance chemotherapy.
Collapse
Affiliation(s)
- Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Huifang Liu
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, P. R. China
| | - Peng Chang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Chenying Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Lei Li
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Dan Chen
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Changhu Liu
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, P. R. China
| | - Na Li
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, P. R. China
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| |
Collapse
|
29
|
Walvekar P, Kumar P, Choonara YE. Long-acting vaccine delivery systems. Adv Drug Deliv Rev 2023; 198:114897. [PMID: 37225091 DOI: 10.1016/j.addr.2023.114897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Bolus vaccines are often administered multiple times due to rapid clearance and reduced transportation to draining lymph nodes resulting in inadequate activation of T and B lymphocytes. In order to achieve adaptive immunity, prolonged exposure of antigens to these immune cells is crucial. Recent research has been focusing on developing long-acting biomaterial-based vaccine delivery systems, which can modulate the release of encapsulated antigens or epitopes to facilitate enhanced antigen presentation in lymph nodes and subsequently achieve robust T and B cell responses. Over the past few years, various polymers and lipids have been extensively explored to develop effective biomaterial-based vaccine strategies. The article reviews relevant polymer and lipid-based strategies used to prepare long-acting vaccine carriers and discusses their results concerning immune responses.
Collapse
Affiliation(s)
- Pavan Walvekar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa.
| |
Collapse
|
30
|
Zhou W, Feng Y, Li M, Zhang C, Qi H. Tracking the Dissolution Surface Kinetics of a Single Fluorescent Cyclodextrin Metal-Organic Framework by Confocal Laser Scanning Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6681-6690. [PMID: 37140168 DOI: 10.1021/acs.langmuir.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The understanding of the dissolution processes of solids is important for the design and synthesis of solids in a controlled and precise manner and for predicting their fate in the aquatic environment. We report herein single-particle-based confocal laser scanning microscopy (CLSM) for tracking the dissolution surface kinetics of a single fluorescent cyclodextrin metal-organic framework (CD-MOF). As a proof of concept, CD-MOF containing fluorescein, named as CD-MOF⊃FL, was synthesized by encapsulating fluorescein into the interior of CD-MOF via a vapor diffusion method and used as a single-particle dissolution model because of its high FL efficiency and unique structure. The morphology of CD-MOF⊃FL and the distribution of fluorescein within CD-MOF⊃FL were characterized. The growth and dissolution processes of CD-MOF⊃FL at the single-particle level were visualized and quantified for the first time by recording the change of the fluorescence emission. Three processes, including nucleation, germination growth, and saturation stage, were found in the growth of CD-MOF⊃FL, and the growth kinetics followed Avrami's model. The dissolution rate at the face of a single CD-MOF⊃FL crystal was slower than that of its arris, and the dissolution rate of the CD-MOF⊃FL crystal was increased with the increase of the water amount in methanol solution. The dissolution process of the CD-MOF⊃FL crystal was a competitive process of erosion and diffusion in different methanol aqueous solutions, and the dissolution kinetics followed the Korsmeyer-Peppas model. These results offer new insights into the nature of dissolution kinetics of CD-MOF⊃FL and provide new venues for the quantitative analysis of solid dissolution and growth at the single-particle level.
Collapse
Affiliation(s)
- Wenshuai Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Yanlong Feng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Meng Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| |
Collapse
|
31
|
Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in Drug Delivery-A Comprehensive Review on Its Structural Components, Preparation Techniques and Therapeutic Applications. Biomedicines 2023; 11:biomedicines11041114. [PMID: 37189732 DOI: 10.3390/biomedicines11041114] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Cubosomes are lipid vesicles that are comparable to vesicular systems like liposomes. Cubosomes are created with certain amphiphilic lipids in the presence of a suitable stabiliser. Since its discovery and designation, self-assembled cubosomes as active drug delivery vehicles have drawn much attention and interest. Oral, ocular, transdermal, and chemotherapeutic are just a few of the drug delivery methods in which they are used. Cubosomes show tremendous potential in drug nanoformulations for cancer therapeutics because of their prospective advantages, which include high drug dispersal due to the structure of the cubic, large surface area, a relatively simple manufacturing process, biodegradability, ability to encapsulate hydrophobic, hydrophilic, and amphiphilic compounds, targeted and controlled release of bioactive agents, and biodegradability of lipids. The most typical technique of preparation is the simple emulsification of a monoglyceride with a polymer, followed by sonication and homogenisation. Top-down and bottom-up are two different sorts of preparation techniques. This review will critically analyse the composition, preparation techniques, drug encapsulation approaches, drug loading, release mechanism and applications relevant to cubosomes. Furthermore, the challenges faced in optimising various parameters to enhance the loading capacities and future potentialities are also addressed.
Collapse
Affiliation(s)
- Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
32
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
33
|
Khodaverdi E, Hadizadeh F, Hoseini N, Eisvand F, Tayebi M, Kamali H, Oroojalian F. In-vitro and in-vivo evaluation of sustained-release buprenorphine using in-situ forming lipid-liquid crystal gels. Life Sci 2023; 314:121324. [PMID: 36574944 DOI: 10.1016/j.lfs.2022.121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
AIMS Sustained-release systems reduce the incidence of drug side effects and the need for frequent drug consumption, thus increasing patient compliance with treatment. In this study, we aimed to produce sustained-release buprenorphine (BP) using lipid-liquid crystal gels. MAIN METHODS The three experimental groups in this study included: group I: lipid-liquid crystal formulation 5 (F5) containing BP, group II: BP-free F5, group III: BP solution in NMP, and group IV: control (no treatment). The formulations were injected subcutaneously into the rabbits' back neck. KEY FINDINGS The results showed that the time required to reach the drug's maximum concentration (Tmax) was longer in group I than in group III. The maximum BP concentration (Cmax) and the constants of the drug removal rate and drug absorption rate (Ka) were significantly higher in group III compared to group I. The half-life (t1/2) of the drug in blood circulation was significantly longer in group I than in group III. Histopathological analysis revealed no histological abnormalities in the skin and heart in group I (BP-containing F5); however, mild hyperemia was observed in interstitial vessels in group III (BP-containing NMP). The kidney and liver tissues showed normal structure in the control group, as well as groups I and II. However, in the group receiving BP-containing NMP, significant congestion, tissue damage, necrosis, and fibrosis were observed in the kidney and liver. SIGNIFICANCE The results showed that the lipid-liquid crystal system can be used to design slow-release platforms for BP, minimizing the side effects associated with the use of its conventional forms.
Collapse
Affiliation(s)
- Elham Khodaverdi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nilofarsadat Hoseini
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Tayebi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
34
|
Lipid Liquid Crystal Nanoparticles: Promising Photosensitizer Carriers for the Treatment of Infected Cutaneous Wounds. Pharmaceutics 2023; 15:pharmaceutics15020305. [PMID: 36839628 PMCID: PMC9964009 DOI: 10.3390/pharmaceutics15020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Cutaneous chronic wounds impose a silent pandemic that affects the lives of millions worldwide. The delayed healing process is usually complicated by opportunistic bacteria that infect wounds. Staphylococcus aureus is one of the most prevalent bacteria in infected cutaneous wounds, with the ability to form antibiotic-resistant biofilms. Recently, we have demonstrated the potential of gallium protoporphyrin lipid liquid crystalline nanoparticles (GaPP-LCNP) as a photosensitizer against S. aureus biofilms in vitro. Herein, we investigate the potential of GaPP-LCNP using a pre-clinical model of infected cutaneous wounds. GaPP-LCNP showed superior antibacterial activity compared to unformulated GaPP, reducing biofilm bacterial viability by 5.5 log10 compared to 2.5 log10 in an ex vivo model, and reducing bacterial viability by 1 log10 in vivo, while unformulated GaPP failed to reduce bacterial burden. Furthermore, GaPP-LCNP significantly promoted wound healing through reduction in the bacterial burden and improved early collagen deposition. These findings pave the way for future pre-clinical investigation and treatment optimizations to translate GaPP-LCNP towards clinical application.
Collapse
|
35
|
Zhai BT, Sun J, Shi YJ, Zhang XF, Zou JB, Cheng JX, Fan Y, Guo DY, Tian H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J Nanobiotechnology 2022; 20:509. [DOI: 10.1186/s12951-022-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractNorcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.
Graphical Abstract
Collapse
|
36
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
37
|
Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. Int J Pharm 2022; 628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
38
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
39
|
Javaid A, Imran M, Latif S, Hussain N, Iqbal HMN, Bilal M. Multifunctional attributes of nanostructured materials, toxicology, safety considerations, and regulations. JOURNAL OF MATERIALS SCIENCE 2022; 57:17021-17051. [DOI: 10.1007/s10853-022-07679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/22/2022] [Indexed: 12/17/2024]
|
40
|
Structuring and De-Structuring of Nanovectors from Algal Lipids: Simulated Digestion, Preliminary Antioxidant Capacity and In Vitro Tests. Pharmaceutics 2022; 14:pharmaceutics14091847. [PMID: 36145594 PMCID: PMC9500752 DOI: 10.3390/pharmaceutics14091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Biocompatible nanocarriers can be obtained by lipid extraction from natural sources such as algal biomasses, which accumulate different lipid classes depending on the employed culture media. Lipid aggregates can be distinguished according to supramolecular architecture into lamellar and nonlamellar structures. This distinction is mainly influenced by the lipid class and molecular packing parameter, which determine the possible values of interfacial curvature and thus the supramolecular symmetries that can be obtained. The nanosystems prepared from bio-sources are able to self-assemble into different compartmentalized structures due to their complex composition. They also present the advantage of increased carrier-target biocompatibility and are suitable to encapsulate and vehiculate poorly water-soluble compounds, e.g., natural antioxidants. Their functional properties stem from the interplay of several parameters. Following previous work, here the functionality of two series of structurally distinct lipid nanocarriers, namely liposomes and cubosomes deriving from algal biomasses with different lipid composition, is characterized. In the view of their possible use as pharmaceutical or nutraceutical formulations, both types of nanovectors were loaded with three well-known antioxidants, i.e., curcumin, α-tocopherol and piperine, and their carrier efficacy was compared considering their different structures. Firstly, carrier stability in biorelevant conditions was assessed by simulating a gastrointestinal tract model. Then, by using an integrated chemical and pharmacological approach, the functionality in terms of encapsulation efficiency, cargo bioaccessibility and kinetics of antioxidant capacity by UV-Visible spectroscopy was evaluated. Subsequently, in vitro cytotoxicity and viability tests after administration to model cell lines were performed. As a consequence of this investigation, it is possible to conclude that nanovectors from algal lipids, i.e., cubosomes and liposomes, can be efficient delivery agents for lipophilic antioxidants, being able to preserve and enhance their activity toward different targets while promoting sustained release.
Collapse
|
41
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
42
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
43
|
Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-Santos P, Botelho CM. A Versatile Nanocarrier-Cubosomes, Characterization, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2224. [PMID: 35808060 PMCID: PMC9268278 DOI: 10.3390/nano12132224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023]
Abstract
The impact of nanotechnology on the exponential growth of several research areas, particularly nanomedicine, is undeniable. The ability to deliver active molecules to the desired site could significantly improve the efficiency of medical treatments. One of the nanocarriers developed which has drawn researchers' attention are cubosomes, which are nanosized dispersions of lipid bicontinuous cubic phases in water, consisting of a lipidic interior and aqueous domains folded in a cubic lattice. They stand out due to their ability to incorporate hydrophobic, hydrophilic, and amphiphilic compounds, their tortuous internal configuration that provides a sustained release, and the capacity to protect and safely deliver molecules. Several approaches can be taken to prepare this structure, as well as different lipids like monoolein or phytantriol. This review paper describes the different methods to prepare nanocarriers. As it is known, the physicochemical properties of nanocarriers are very important, as they influence their pharmacokinetics and their ability to incorporate and deliver active molecules. Therefore, an extensive characterization is essential to obtain the desired effect. As a result, we have extensively described the most common techniques to characterize cubosomes, particularly nanocarriers. The exceptional properties of the cubosomes make them suitable to be used in several applications in the biomedical field, from cancer therapeutics to imaging, which will be described. Taking in consideration the outstanding properties of cubosomes, their application in several research fields is envisaged.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Celso J. O. Ferreira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
- CF-UM_UP Department of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain
| | - Ricardo Gaspar
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - Bruno F. B. Silva
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
44
|
Targeted and biocompatible NMOF as efficient nanocomposite for delivery of methotrexate to colon cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|