1
|
Ren FY, Hu C, Huang WB, Duan LH, Meng YZ, Li XL, Fang Z, Zhao XY, Wang W, Li XS, Zhao J, Zhang XY, Hou SL, Xu H, Shi Y, He LN, Zhao B. Modulated Multicomponent Reaction Pathway by Pore-Confinement Effect in MOFs for Highly Efficient Catalysis of Low-Concentration CO 2. Angew Chem Int Ed Engl 2025; 64:e202503898. [PMID: 39996375 DOI: 10.1002/anie.202503898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The conversion of flue gas CO2 into high-value chemicals via multicomponent reactions (MCRs) offers the advantages of atom economy, bond-formation efficiency and product complexity. However, because of the competition between reaction sequences and pathways among substrates, the efficient synthesize the desired product is a great challenge. Herein, a porous noble-metal-free framework (Cu-TCA) was synthesized, which can highly effectively catalyze the multicomponent conversion of CO2 by modulating reaction pathways. The pores with the size of 6.5 Å×6.5 Å in Cu-TCA selectively permit the entry of propargylamine and CO2 at simulated flue gas concentrations, At the same time, the larger-sized phosphine oxide is hindered outside the pores. Control experiments and NMR spectroscopy revealed that CO2 and propargylamine in the pores preferentially reacted to form oxazolidinones, which further reacted with phosphine oxide outside the pores to produce phosphorylated 2-oxazolidinones. Therefore, the reaction pathways and sequence of the substrates were controlled by the confinement effect of the pores in Cu-TCA. Density functional theory (DFT) calculations supported the coordination of Cu-TCA with the alkyne, significantly reducing the reaction barrier and promoting catalytic reaction. This study developed a new strategy for regulating the reaction pathways to promote MCRs via the confinement effect of MOF.
Collapse
Affiliation(s)
- Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Chaopeng Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wen-Bin Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ling-Hao Duan
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Yun-Zhu Meng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiu-Lan Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Zhi Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Wen Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiang-Yu Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Ying Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
2
|
Jiang X, Cheng J, Yang Z, Wang P. A stable and reusable aluminum-based metal-organic framework for the effective extraction of four aflatoxins from vegetable oils. Food Chem 2025; 472:142964. [PMID: 39848054 DOI: 10.1016/j.foodchem.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
The high specific surface area of metal-organic framework (MOF) materials endows them with efficient adsorption capabilities, thereby facilitating sample purification. In this study, a novel aluminum-based MOF (Al-MOF) was synthesized and employed as a solid-phase extraction (SPE) adsorbent for the purification of aflatoxins B1 (AFB1), AFB2, AFG1, and AFG2 in vegetable oils. It was revealed that Al-MOF adsorbs aflatoxins through hydrogen bonding and π-π interactions. Under optimal SPE conditions, liquid chromatography-tandem mass spectrometry analysis yielded limits of detection ranging from 0.06 to 0.25 μg/kg and limits of quantification from 0.21 to 0.84 μg/kg for the four aflatoxins. Recovery rates at concentrations of 5, 10, and 20 μg/kg ranged from 74 % to 110 %, with coefficients of variation below 11 %. This method achieves efficient and cost-effective purification of aflatoxins in vegetable oils. Compared to national standard methods, this approach offers advantages such as lower material costs, ease of storage, and reusability.
Collapse
Affiliation(s)
- Xianhong Jiang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhihui Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Redwine GEB, Braunecker WA, Gennett T. Polymer Encapsulated Framework Materials for Enhanced Gas Storage and Separations. ACS MATERIALS AU 2025; 5:268-298. [PMID: 40093827 PMCID: PMC11907295 DOI: 10.1021/acsmaterialsau.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 03/19/2025]
Abstract
Within the broader field of energy storage, polymer-encapsulated framework (PEF) materials have witnessed remarkable growth in recent years, with transformative implications for diverse applications. This comprehensive review discusses in detail the latest advancements in the design, synthesis, and applications of PEFs in gas storage and separations. Following a thorough survey of existing literature, the article delves into mechanistic considerations and foundational principles governing PEF synthesis. Emphasis is placed on covalent and coordinative covalent grafting methods, physical blending, nonsolvent utilization, and various vapor deposition techniques. The discussion critically evaluates the advantages and disadvantages of these synthesis approaches, considering factors such as grafting density, coating thickness, and other physical properties relevant to processability and stability in comparison to traditional framework materials. Special attention is given to the impact of polymer coatings on gas adsorption analysis. Finally, notable accomplishments and advancements in the PEF field, including mixed matrix membrane (MMM) technology, improvements in framework form factors, and enhanced chemical and mechanical stability are summarized. This review concludes by offering valuable perspective for researchers, highlighting gaps and challenges that confront the current state-of-the-art in PEF materials, paving the way for future innovations that are poised to help address global energy challenges.
Collapse
Affiliation(s)
- Grace E B Redwine
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
| | - Wade A Braunecker
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Narducci R, Sgreccia E, Montella AV, Ercolani G, Kaciulis S, Syahputra S, Bloch E, Pasquini L, Knauth P, Di Vona ML. One-Component Catalytic Electrodes from Metal-Organic Frameworks Covalently Linked to an Anion Exchange Ionomer. Molecules 2025; 30:1230. [PMID: 40142006 PMCID: PMC11944300 DOI: 10.3390/molecules30061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Anion-conducting organic-inorganic polymers (OIPs), constructed using metal-organic framework (MOF)-like structures with non-toxic, non-rare catalytic metals (Fe3+, Zr4+), have been developed. The incorporation of MOF-like structures imparts porosity to the polymers, classifying them as porous organic polymers (POPs). The combination between catalytic activity, ion conduction, and porosity allows the material to act as one-component catalytic electrodes. A high catalytic activity is expected since the entire surface area contributes to electrocatalysis, rather than being restricted to triple-phase boundaries. The synthesis involved anchoring a synthon onto a commercial polymer, assembling organo-metallic moieties, and functionalizing with quaternary ammonium (QA) groups. Two hybrid materials, Zr-POP-QA and Fe-POP-QA, were thoroughly characterized by NMR, FTIR, XPS, BET surface area (≈200 m2/g), and TGA. The resulting electrodes demonstrated a high electrochemically active surface area and a high efficiency for the oxygen reduction reaction (ORR), a critical process for energy storage and conversion technologies. The performance was characterized by a 4-electron reduction pathway, a high onset potential (≈0.9 V vs. RHE), and a low Tafel slope (≈0.06 V). We attribute this efficiency to the high active surface area, which results from the simultaneous presence of catalytic transition metal ions (Zr or Fe) and ion conducting groups.
Collapse
Affiliation(s)
- Riccardo Narducci
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory-Ionomer Materials for Energy, 00133 Roma, Italy; (E.S.); (A.V.M.)
| | - Emanuela Sgreccia
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory-Ionomer Materials for Energy, 00133 Roma, Italy; (E.S.); (A.V.M.)
| | - Alessio Vincenzo Montella
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory-Ionomer Materials for Energy, 00133 Roma, Italy; (E.S.); (A.V.M.)
| | - Gianfranco Ercolani
- Chemistry Department, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Roma, Italy;
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Monterotondo Stazione, 00015 Roma, Italy;
| | - Suanto Syahputra
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory-Ionomer Materials for Energy, Campus St Jérôme, 13013 Marseille, France; (S.S.); (E.B.); (L.P.); (P.K.)
| | - Emily Bloch
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory-Ionomer Materials for Energy, Campus St Jérôme, 13013 Marseille, France; (S.S.); (E.B.); (L.P.); (P.K.)
| | - Luca Pasquini
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory-Ionomer Materials for Energy, Campus St Jérôme, 13013 Marseille, France; (S.S.); (E.B.); (L.P.); (P.K.)
| | - Philippe Knauth
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory-Ionomer Materials for Energy, Campus St Jérôme, 13013 Marseille, France; (S.S.); (E.B.); (L.P.); (P.K.)
| | - Maria Luisa Di Vona
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory-Ionomer Materials for Energy, 00133 Roma, Italy; (E.S.); (A.V.M.)
| |
Collapse
|
5
|
Du Y, Yang Q, He F. Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework. Anal Chim Acta 2025; 1341:343681. [PMID: 39880498 DOI: 10.1016/j.aca.2025.343681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC. RESULTS Herein, a novel Zn (II) Functionalized magnetic covalent organic framework (Fe3O4@COF@Zn) was created. As the role of a fluorescent probe, it had excellent characteristics of ratiometric (F529/F436), ultrafast response (1 min), and ultra-low detection limit (16 nM). As the role of an adsorbent, it demonstrated a high capacity of adsorption (414.94 mg/g) in the pH-neutral range, fast kinetics (10 min), desirable regeneration capability, and convenient magnetic separation. By theoretical and experimental analysis, the detection and adsorption mechanism for TC was systematically revealed. Moreover, as an attempt, Fe3O4@COF@Zn showed it potential for crop remediation by adsorbing TC-contaminated water. SIGNIFICANCE This work demonstrates the exceptional performance of Zn-functionalized fluorescent COF for ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of TC, thereby illustrating its significant potential for the rapid monitoring and treatment of TC contamination.
Collapse
Affiliation(s)
- Yuanchun Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Qingxin Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
6
|
Qi Z, Bujold KE, Wylie RG. Graft-then-Shrink Polymer Coatings for Localized Surface Plasmon Resonance Active Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4834-4843. [PMID: 39932231 DOI: 10.1021/acs.langmuir.4c04929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Increasing the polymer content on biosensors is important to improve sensor function by altering surface properties and increasing the number of capture sites for analytes. Grafting-to methods are often employed but may be limited by insufficient polymer immobilization. Herein, we have utilized Graft-then-Shrink (GtS) to simultaneously increase polymer content on grafting-to surfaces and produce low-cost, local surface plasmon resonance (LSPR) Au biosensors. The biosensors were incorporated within microwell plates, where the translocation of materials across biological barriers can be tracked by visible light absorbance shifts as a platform for biological barrier crossing molecules. Biosensors were constructed by coating a flat Au layer on stretched polystyrene (PS) with thiol-terminated polymers that, upon heating, produced LSPR active wrinkled Au layers with ∼78% greater polymer content and lower water contact angles (WCA; ∼15°) compared to Shrink-then-Graft (StG) controls (∼55°) for PEG2MA coatings. To demonstrate translocation detection, 48-well microplates were 3D printed for GtS biosensor incorporation in the presence of a phospholipid bilayer. Using visible light to track LSPR peak shifts, cell penetrating peptides (CPPs) were screened for bilayer translocation and rate kinetics. GtS offers a simple method to increase the polymer content within coatings and an LSPR fabrication platform to track biomolecule translocation.
Collapse
|
7
|
Magadla A. Hybrid Nanoplatforms Based on Photosensitizers and Metal/Covalent Organic Frameworks for Improved Cancer Synergistic Treatment Nano-Delivery Systems. Molecules 2025; 30:884. [PMID: 40005193 PMCID: PMC11858586 DOI: 10.3390/molecules30040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Researchers have extensively investigated photosensitizer (PS) derivatives for various applications due to their superior photophysical and electrochemical properties. However, inherent problems, such as instability and self-quenching under physiological conditions, limit their biological applications. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) represent two relatively new material types. These materials have high surface areas and permanent porosity, and they show a tremendous deal of potential for applications like these. This review summarizes key synthesis processes and highlights recent advancements in integrating PS-based COF and MOF nanocarriers for biomedical applications while addressing potential obstacles and prospects.
Collapse
Affiliation(s)
- Aviwe Magadla
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa
| |
Collapse
|
8
|
He YQ, Tang JH. Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy. Adv Healthc Mater 2025; 14:e2403009. [PMID: 39506461 DOI: 10.1002/adhm.202403009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.
Collapse
Affiliation(s)
- Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jian-Hong Tang
- School of Future technology, University of Chinese Academy of Sciences (UCAS), Beijing, 101408, P. R. China
| |
Collapse
|
9
|
Han X, Li W, Yang B, Jiang C, Qu Z, Xu H, Liu Y, Cui Y. Reticulating Crystalline Porous Materials for Asymmetric Heterogeneous Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2415574. [PMID: 39740186 DOI: 10.1002/adma.202415574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Asymmetric catalysis is essential for addressing the increasing demand for enantiopure compounds. Recent advances in reticular chemistry have demonstrated that metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) possess highly regular porous architectures, exceptional tunability, and the ability to incorporate chiral functionalities through their open channels or cavities. These characteristics make them highly effective and enantioselective catalysts for a wide range of asymmetric transformations. The chiral microenvironments within these frameworks facilitate precise control over reactant orientation and transition states, enhancing both catalytic activity and enantioselectivity, thereby offering significant advantages over traditional systems. This review overviews recent developments in chiral MOFs (CMOFs) and chiral COFs (CCOFs), focusing on their design strategies, and synthetic methods, and highlights the structure-property relationships that connect key structural features to asymmetric catalytic performance. Additionally, the current challenges and future prospects in this field are addressed, highlighting the pivotal role of reticular chemistry in the creation of chiral porous materials. It is anticipated that this review will inspire further research into the application of crystalline porous materials in asymmetric catalysis and promote the rational design of novel chiral heterogeneous catalysts for industrial use.
Collapse
Affiliation(s)
- Xing Han
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwei Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bolinyishi Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Liu Y, Xiang L, Li Y, Zhang S, Zhang Y, Shi H, Liu H, Du D, Zhou B, Ye B, Li S, Yin H, Xu H, Zhang Y. Bacteria-Mediated Tumor-Targeting Delivery of Multienzyme-Mimicking Covalent Organic Frameworks Promoting Pyroptosis for Combinatorial Sono-Catalytic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407133. [PMID: 39494618 PMCID: PMC11653599 DOI: 10.1002/advs.202407133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Pyroptosis, an inflammatory cell death, has attracted great attention for potentiating a strong immune response against tumor cells. However, developing powerful pyroptosis inducers and then activating specific pyroptosis still remains challenging. Herein, a PEG-CuP-COF@∆St nanosystem is rationally designed, consisting of PEG-CuP-COF nanozyme pyroptosis inducers and tumor-targeting bacteria of the Salmonella Typhimurium strain VNP20009 (ΔSt), with an affinity for the tumor hypoxic microenvironment. The PEG-CuP-COF nanozymes possessed excellent sonodynamic performance and multienzyme-mimicking activities to generate reactive oxygen species (ROS) and then induce potent pyroptosis. The superoxide dismutase- and peroxidase-mimicking activities of PEG-CuP-COF catalytically produced hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) which have important value in triggering acute inflammatory responses and pyroptosis. Moreover, PEG-CuP-COF showed outstanding glutathione peroxidase-mimicking activities, impairing the antioxidant defense in tumor cells and enhancing sonodynamic efficiency by making them more vulnerable to ROS-induced damage. During in vivo studies, PEG-CuP-COF@∆St nanosystem with its self-driven property exhibited impressive tumor-targeting capability and activated Caspase-3/gasdermin E-dependent pyroptosis to inhibit tumor growth. More importantly, it induced a powerful immune memory effect to prevent bone metastasis. In summary, this study introduces an innovative approach for combinatorial sono-catalytic immunotherapy using bacteria-mediated tumor-targeting delivery of nanozymes as specific pyroptosis inducers.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Lihua Xiang
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Yitong Li
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Shen Zhang
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Ying Zhang
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Hui Shi
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Hui Liu
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Dou Du
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Bangguo Zhou
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Beibei Ye
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Shaoyue Li
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| | - Haohao Yin
- Department of UltrasoundZhongshan HospitalInstitute of Ultrasound in Medicine and EngineeringFudan UniversityShanghai200032P. R. China
| | - Huixiong Xu
- Department of UltrasoundZhongshan HospitalInstitute of Ultrasound in Medicine and EngineeringFudan UniversityShanghai200032P. R. China
| | - Yifeng Zhang
- Department of Medical UltrasoundCenter of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Ultrasound Research and Education InstituteClinical Research Center for Interventional MedicineShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentShanghai200072P. R. China
| |
Collapse
|
11
|
Liu W, Li X, He P, Li B, Liu N, Li Y, Ma L. Synthesis of Carboxyl-Functionalized COFs with Alternate Stable β-Ketoenamine and Benzimidazole Linkages: Unraveling Exceptional Solvent Effects for Efficient Uranium Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403684. [PMID: 39096108 DOI: 10.1002/smll.202403684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Indexed: 08/04/2024]
Abstract
The prevalent π-π interactions in 2D covalent organic frameworks (COFs) impart a certain flexibility to the structures, making the stacking of COF layers susceptible to external stimuli and introducing some structural disorder. Recent research indicates that the flexibility between COF layers and the associated disorder significantly influence their selective adsorption performance toward gas molecules. However, the adsorption process in a solution environment is more complex compared to gas-phase adsorption, involving interactions between adsorbents and adsorbates, as well as the solvation effects of flexible 2D COFs. Therefore, the inherent flexibility and disorder in 2D COFs under solution conditions and their impact on the adsorption performance of metal ions have not been observed yet. Herein, the synthesis of a novel carboxyl-functionalized COF featuring stable β-ketoenamine and benzimidazole linkages, named DMTP-COOH, is presented. DMTP-COOH exhibits excellent selective adsorption capability for uranium, with significantly different adsorption capacities observed after treatment with different solvents. This notable difference in adsorption capacity is observed under varying pH, concentration, time, and even in the presence of multiple competing ions. This work represents the first observation of the significant impact of solvent soaking treatment on the selective adsorption performance of COFs for uranium under liquid conditions.
Collapse
Affiliation(s)
- Weijian Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaofeng Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Pan He
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo Li
- Nuclear Power Institute of China, Chengdu, 610213, China
- National Engineering Research Center of Isotope and Medicine, Chengdu, 610213, China
- Radioisotope Engineering Technology Research Center of Sichuan, Chengdu, 610213, China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology, Sichuan University, Chengdu, 610064, China
| | - Yang Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
12
|
Zhao W, Liang Y, He Q, Deng Y, Zhang Y, Lin B. Surface Molding Hydrogel Film Initiated by ZIF-8 with Ethylene Adsorption Performance for Preserving Perishable Fruits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57724-57737. [PMID: 39387491 DOI: 10.1021/acsami.4c13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The quality deterioration of postharvest fruits is greatly influenced by ethylene, leading to food wastage worldwide. Therefore, it is urgent to develop an efficient packaging strategy to reduce ethylene concentration and prolong the shelf life of perishable fruits. In this work, a surface-molding hydrogel film was created using ZIF-8 in combination with carboxymethyl starch (CMS) and carboxymethyl chitosan (CMCS). Specifically, ZIF-8 is first anchored on CMS and then rapidly cross-linked in situ with CMCS, forming ZIF-8@CC on the fruit surface (within 10 s). The perfect tight-fitting effects of ZIF-8@CC were observed on various fruit surfaces with different roughness (Ra: ranges from 102 to 308 nm). ZIF-8@CC could absorb 57.3% endogenous ethylene from bananas, and the interaction mechanism between ethylene and ZIF-8 was studied by molecular dynamics simulations, providing insights into the ethylene adsorption capacity of ZIF-8@CC. Moreover, ZIF-8@CC presented excellent antibacterial properties and achieved satisfactory ultralong preservation effects on both nonclimatic and climatic fruits (12 days for strawberries and 14 days for bananas) at room temperature. Importantly, ZIF-8@CC is easily removed, washed, and degradable. These findings offer an efficient and potential food packing material with multifunctional properties for preserving perishable fruits.
Collapse
Affiliation(s)
- Wenxin Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qiuwen He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
13
|
Cao C, Xue XR, Ge Y, Liu D, Braunstein P, Lang JP. Photodimerization-Triggered Photopolymerization of Triene Coordination Polymers Enables Macroscopic Photomechanical Movements. J Am Chem Soc 2024; 146:25028-25034. [PMID: 39213504 DOI: 10.1021/jacs.4c07453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Controlling the packing of olefinic molecules in crystals is essential for triggering solid-state [2 + 2] photocycloaddition reactions and the synthesis of photocontrolled smart materials. Herein, we report the stepwise photodimerization-triggered photopolymerization of two triene coordination polymers (CPs), {[Zn(2-BBA)2(tpeb)]·0.5CH3CN}n (1, 2-HBBA = 2-bromobenzoic acid, tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene) and {[Zn(3-BBA)2(tpeb)]·CH3CN)}n (2, 3-HBBA = 3-bromobenzoic acid). Upon irradiation with 420 nm light, each pair of closely packed and parallel olefinic bonds in 1 undergoes a [2 + 2] cycloaddition reaction, which connects two adjacent Z-shaped chains into a ladder-like coordination chain [Zn(2-BBA)2(bpbdpvpcb)0.5]n (1a, bpbdpvpcb = 1,3-bis(4-pyridyl)-2,4-bis(3,5-di(2-(4-pyridyl)vinyl)phenyl]cyclobutene) through single-crystal to single-crystal (SCSC) transformation. After photodimerization from 1 to 1a has occurred, the olefinic bonds that were initially distant are brought in close enough proximity to meet the requirements for a subsequent [2 + 2] cycloaddition reaction. Upon further light irradiation, the neighboring bpbdpvpcb ligands in 1a experience a SCSC photopolymerization based on [2 + 2] photocycloaddition and transform into poly-3b,4,5,5a,8b,9,10a-octahydro-4,5,9,10-tetrapyridyl-2,7-di(2-(4-pyridyl)vinyl)dicyclobuta[e,l]-pyren (poly-otpdpvdcbp). 2 showed similar structural changes under UV light illumination. Under light exposure, single crystals of 1 and 2 with different morphologies exhibit bending, cracking, and jumping photomechanical motions. The composite film (1-PVA) engineered by dispersing crystalline particles of 1 in poly(vinyl alcohol) (PVA) displays interesting light-wavelength-dependent photomechanical motions and can perform photodriven swimming on a liquid surface. This work provides a useful and promising approach to enable photodimerization of those photoinactive olefin pairs embedded in CPs and opens a new route to synthesize organic polymers by using olefinic CP platforms.
Collapse
Affiliation(s)
- Chen Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xin-Ran Xue
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yu Ge
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Dong Liu
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
14
|
Li Y, Li S, Huang Z, Zhang D, Jia Q. Research progress of fluorescent composites based on cyclodextrins: Preparation strategies, fluorescence properties and applications in sensing and bioimaging. Anal Chim Acta 2024; 1316:342878. [PMID: 38969399 DOI: 10.1016/j.aca.2024.342878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
Fluorescence analysis has been regarded as one of the commonly used analytical methods because of its advantages of simple operation, fast response, low cost and high sensitivity. So far, various fluorescent probes, with noble metal nanoclusters, quantum dots, organic dyes and metal organic frameworks as representatives, have been widely reported. However, single fluorescent probe often suffers from some deficiencies, such as low quantum yield, poor chemical stability, low water solubility and toxicity. To overcome these disadvantages, the introduction of cyclodextrins into fluorescent probes has become a fascinating approach. This review (with 218 references) systematically covers the research progress of fluorescent composites based on cyclodextrins in recent years. Preparation strategies, fluorescence properties, response mechanisms and applications in sensing (ions, organic pollutants, bio-related molecules, temperature, pH) and bioimaging of fluorescent composites based on cyclodextrins are summarized in detail. Finally, the current challenges and future perspectives of these composites in relative research fields are discussed.
Collapse
Affiliation(s)
- Yiqi Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songrui Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Wu M, Lin G, Li R, Liu X, Liu S, Zhao J, Xie W. Molecular-caged metal-organic frameworks for energy management. SCIENCE ADVANCES 2024; 10:eadl4449. [PMID: 38718124 PMCID: PMC11078190 DOI: 10.1126/sciadv.adl4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Metal-organic frameworks (MOFs) hold great promise for diverse applications when combined with polymers. However, a persistent challenge lies in the susceptibility of exposed MOF pores to molecule and polymer penetration, compromising the porosity and overall performance. Here, we design a molecular-caged MOF (MC-MOF) to achieve contracted window without sacrificing the MOF porosity by torsional conjugated ligands. These molecular cages effectively shield against the undesired molecule penetration during polymerization, thereby preserving the pristine porosity of MC-MOF and providing outstanding light and thermal management to the composites. The polymer containing 0.5 wt % MC-MOF achieves an 83% transmittance and an exceptional haze of 93% at 550 nanometers, coupled with remarkable thermal insulation. These MC-MOF/polymer composites offer the potential for more uniform daylighting and reduced energy consumption in sustainable buildings when compared to traditional glass materials. This work delivers a general method to uphold MOF porosity in polymers through molecular cage design, advancing MOF-polymer applications in energy and sustainability.
Collapse
Affiliation(s)
- Minghong Wu
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gengye Lin
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Li
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xing Liu
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shumei Liu
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianqing Zhao
- School of Materials Science and Engineering, Key Laboratory Guangdong High Property and Functional Polymer Materials, Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weiqi Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
16
|
Shan Z, Xiao JZ, Wu M, Wang J, Su J, Yao MS, Lu M, Wang R, Zhang G. Topologically Tunable Conjugated Metal-Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH 3 Sensing. Angew Chem Int Ed Engl 2024; 63:e202401679. [PMID: 38389160 DOI: 10.1002/anie.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian-Ze Xiao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ming-Shui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Kim JY, Kang J, Cha S, Kim H, Kim D, Kang H, Choi I, Kim M. Stability of Zr-Based UiO-66 Metal-Organic Frameworks in Basic Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:110. [PMID: 38202565 PMCID: PMC10780619 DOI: 10.3390/nano14010110] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Although Zr-based metal-organic frameworks (MOFs) exhibit robust chemical and physical stability in the presence of moisture and acidic conditions, their susceptibility to nucleophilic attacks from bases poses a critical challenge to their overall stability. Herein, we systematically investigate the stability of Zr-based UiO-66 (UiO = University of Oslo) MOFs in basic solutions. The impact of 11 standard bases, including inorganic salts and organic bases, on the stability of these MOFs is examined. The destruction of the framework is confirmed through powder X-ray diffraction (PXRD) patterns, and the monitored dissolution of ligands from the framework is assessed using nuclear magnetic resonance (NMR) spectroscopy. Our key findings reveal a direct correlation between the strength and concentration of the base and the destruction of the MOFs. The summarized data provide valuable insights that can guide the practical application of Zr-based UiO-66 MOFs under basic conditions, offering essential information for their optimal utilization in various settings.
Collapse
Affiliation(s)
- Jun Yeong Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Jiwon Kang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Seungheon Cha
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Haein Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Dopil Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Houng Kang
- Department of Chemistry Education, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Isaac Choi
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| |
Collapse
|