1
|
Sayed MG, Gad-Elkareem MAM, Ishak EA, Kamal El-Dean AM, Saddik AA. The first example of white-light emission based on pyrimido[4',5':4,5]thieno[2,3-d]pyrimidine moiety: Synthesis, photophysical, and antimicrobial studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125897. [PMID: 39961257 DOI: 10.1016/j.saa.2025.125897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
A series of new AIE systems based on the pyrimidothienopyrimidine skeleton were efficiently synthesized and fully characterized. These compounds exhibited weak emission in solution but strong solid-state fluorescence with a red shift. Notably, compound 16 displayed unique white-light emission from a single-component system and tunable emission colors in DMF/water mixtures. This dual emission behavior, arising from AIE and excimer formation, is unprecedented for pyrimidothienopyrimidine derivatives. Although compounds 9a and 9b exhibited AIEE behavior, compounds 15c and 18 demonstrated AIE behavior, with significantly enhanced fluorescence intensity upon water addition. Moreover, most synthesized compounds exhibited moderate to strong antimicrobial activity against various bacterial and fungal strains, suggesting their potential for biological applications.
Collapse
Affiliation(s)
- Mohammed G Sayed
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | | | - Esam A Ishak
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Adel M Kamal El-Dean
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| | - Abdelreheem A Saddik
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
2
|
Tsurusaki A, Kishimoto M, Komura A, Ura R, Kamikawa K. Benzo-Fused Phosphepines: Synthesis by Gold(I)-Catalyzed Intramolecular Hydroarylation and Ring Inversion. Chemistry 2025; 31:e202404731. [PMID: 39854116 DOI: 10.1002/chem.202404731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Gold(I)-catalyzed intramolecular hydroarylation of dialkynyl(biaryl)phosphine oxides provided versatile benzo-fused phosphepine oxides. O-exo adducts were obtained as the major product, and O-endo adducts were the minor product. O-exo and O-endo indicate the position of an oxygen atom with respect to the central phosphepine framework. The isomers of dibenzo[b,d]phosphepine oxides with methyl and phenyl groups in an adjacent position (shown as 2 a and 3 a in the main text) were determined by X-ray crystallographic analysis. O-exo and O-endo adducts are diastereomers owing to the central chirality of the phosphorus atom and the planar chirality of phosphepine, and they are interconverted through a ring inversion of phosphepine via a transition state with a planar structure. The inversion barrier, fully estimated through theoretical calculations, drastically varied depending on the substituents in the phosphepine framework and/or the fusion of benzene and thiophene rings. Furthermore, the kinetics of the thermal isomerization of less stable O-endo product 3 a into O-exo product 2 a was examined.
Collapse
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Marii Kishimoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Akihiro Komura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Rikako Ura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
3
|
Zhang W, Li S, Gong Y, Zhang J, Zhou Y, Kong J, Fu H, Zhou M. Aggregation Enhanced Thermally Activated Delayed Fluorescence through Spin-Orbit Coupling Regulation. Angew Chem Int Ed Engl 2024; 63:e202404978. [PMID: 38697945 DOI: 10.1002/anie.202404978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Integrating aggregation-induced emission (AIE) into thermally activated delayed fluorescence (TADF) emitters holds great promise for the advancement of highly efficient organic light emitting diodes (OLEDs). Despite recent advancements, a thorough comprehension of the underlying mechanisms remains imperative for the practical application of such materials. In this work, we introduce a novel approach aimed at modulating the TADF process by manipulating dynamic processes in excited states through aggregation effect. Our findings reveal that aggregation not only enhances both prompt and delayed fluorescence simultaneously but also imposes constraints on molecular reorientation. This constraint reinforces spin-orbit coupling and reduces the energy gap between singlets and triplets. These insights deepen our understanding of the fundamental mechanisms governing the aggregation effect on TADF materials and provide valuable guidance for the design of high-efficiency photoluminescent materials.
Collapse
Affiliation(s)
- Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuai Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yujie Gong
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jiachen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Schenk M, König N, Hey-Hawkins E, Beck-Sickinger AG. Illuminating the Path to Enhanced Bioimaging by Phosphole-based Fluorophores. Chembiochem 2024; 25:e202300857. [PMID: 38206088 DOI: 10.1002/cbic.202300857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
As the research of biological systems becomes increasingly complex, there is a growing demand for fluorophores with a diverse range of wavelengths. In this study, we introduce phosphole-based fluorophores that surpass existing options like dansyl chloride. The reactive S-Cl bond in chlorosulfonylimino-5-phenylphosphole derivatives allows rapid and direct coupling to peptides making the fluorophores easily introducible to peptides. This coupling process occurs under mild conditions, demonstrated for [F7 ,P34 ]-NPY and its shorter analogues. Peptides linked with our fluorophores exhibit similar receptor activation to the control peptide, while maintaining high stability and low toxicity, making them ideal biolabeling reagents. In fluorescence microscopy experiments, they can be easily visualized even at low concentrations, without suffering from the typical issue of bleaching. These phosphole-based fluorophores represent a significant leap forward in the field. Their versatility, ease of modification, superior performance, and applicability in biological labeling make them a promising choice for researchers seeking advanced tools to unravel the details of complex biological systems.
Collapse
Affiliation(s)
- Mareike Schenk
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Nils König
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Annette G Beck-Sickinger
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Ramazanova K, Müller AK, Lönnecke P, Hollóczki O, Kirchner B, Hey-Hawkins E. Ring-Opening Reaction of 1-Phospha-2-Azanorbornenes via P-N Bond Cleavage and Reversibility Studies. Molecules 2023; 28:7163. [PMID: 37894642 PMCID: PMC10609391 DOI: 10.3390/molecules28207163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The reactive P-N bond in 1-phospha-2-azanorbornenes is readily cleaved by simple alcohols to afford P-chiral 2,3-dihydrophosphole derivatives as a racemic mixture. The isolation of the products was not possible due to the reversibility of the reaction, which could, however, be stopped by sulfurization of the phosphorus atom, thus efficiently blocking the lone pair of electrons, as exemplified for 6b yielding structurally characterized 8b. Additionally, the influence of the substituent in the α position to the phosphorus atom (H, Ph, 2-py, CN) on the reversibility of the reaction was studied. Extensive theoretical calculations for understanding the ring-closing mechanism suggested that a multi-step reaction with one or more intermediates was most probable.
Collapse
Affiliation(s)
- Kyzgaldak Ramazanova
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (K.R.); (P.L.)
| | - Anna Karina Müller
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, 53115 Bonn, Germany; (A.K.M.); (B.K.)
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (K.R.); (P.L.)
| | - Oldamur Hollóczki
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4010 Debrecen, Hungary;
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, 53115 Bonn, Germany; (A.K.M.); (B.K.)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (K.R.); (P.L.)
| |
Collapse
|