1
|
Yang W, White AJP, Crimmin MR. Boron, Aluminum, and Gallium Fluorides as Catalysts for the Defluorofunctionalization of Electron-Deficient Arenes: The Role of NaBAr F4 Promoters. Inorg Chem 2025; 64:6092-6099. [PMID: 40116429 PMCID: PMC11962835 DOI: 10.1021/acs.inorgchem.4c05381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
A series of boron, aluminum, and gallium difluoride complexes [{(ArNCMe)2CH}MF2] (M = B, Al, Ga) are reported as catalysts for the defluorofunctionalization of electron-deficient arenes. Thiodefluorination reactions between TMS-SPh and poly(fluorinated aromatics) proceed under forcing conditions. Evidence is presented for the fluoride entering the catalytic cycle through a metathesis reaction with TMS-SPh to form metal thiolate intermediates, e.g., [{(ArNCMe)2CH}MF(SPh)], which are then nucleophiles for addition to the aromatic substrate, likely through a concerted SNAr mechanism. Attempts to expand the scope of reactivity to include the hydrodefluorination of electron-deficient arenes met with limited success. Activity could, however, be recovered through the addition of NaBArF4 as a catalytic additive (ArF = 3,5-C6H3(CF3)2). NMR titrations suggest that NaBArF4 is capable of coordinating with aluminum and gallium fluoride complexes, most likely through weak M-F---Na interactions (M = Al, Ga), and can play a role in lowering the barrier of metathesis between [{(ArNCMe)2CH}MF2] and Et3SiH to form the group 13 hydrido fluoride [{(ArNCMe)2CH}M(H)F], facilitating catalytic turnover. DFT calculations indicate that this weak interaction leads to a polarization of the M-F bond. The discovery of this additive effect has potentially broad implications in developing new reactivity and applications of thermodynamically stable metal fluorides.
Collapse
Affiliation(s)
- Wenbang Yang
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, U.K.
| | - Andrew J. P. White
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, U.K.
| | - Mark R. Crimmin
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, U.K.
| |
Collapse
|
2
|
Kane DL, Figula BC, Balaraman K, Bertke JA, Wolf C. Cryogenic Organometallic Carbon-Fluoride Bond Functionalization with Broad Functional Group Tolerance. J Am Chem Soc 2025; 147:5764-5774. [PMID: 39912296 PMCID: PMC11848826 DOI: 10.1021/jacs.4c13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The unique properties of fluorinated organic compounds have received intense interest and have conquered a myriad of applications in the chemical and pharmaceutical sciences. Today, an impressive range of alkyl fluorides are commercially available, and there are many practical methods to make them exist. However, the unmatched stability and inertness of the C-F bond have largely limited its synthetic value, which is very different from the widely accepted utility of alkyl chlorides, bromides, and iodides that serve everyday as "workhorse" building blocks in countless carbon-carbon bond forming reactions. This study demonstrates practical and high-yielding functionalization of the C-F bond under mild conditions, i.e., at temperatures as low as -78 °C, in short reaction times and with unconventional chemoselectivity. Cryogenic Csp3-F bond cleavage using fluorophilic organoaluminum compounds together with fast nucleophile transfer of intermediate ate complexes forge carbon-carbon bonds with unactivated primary, secondary, and tertiary alkyl fluorides alike. This method, which exploits the stability of the Al-F bond as the thermodynamic driving force, is highly selective toward Csp3-F bond functionalization, whereas many other functional groups including alkyl chloride, bromide, iodide, aryl halide, alkenyl, alkynyl, difluoroalkyl, trifluoromethyl, ether, ester, hydroxyl, acetal, heteroaryl, nitrile, nitro, and amide groups are tolerated, which is an unexpected reversal of long-standing main group organometallic and alkyl halide cross-coupling reactivity and compatibility patterns. As a result, the strongest single bond in organic chemistry can now be selectively targeted in high-yielding arylation, alkylation, alkenylation, and alkynylation reactions and used in late-stage functionalization applications that are complementary to currently available methods.
Collapse
Affiliation(s)
- D. Lucas Kane
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Bryan C. Figula
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| |
Collapse
|
3
|
Tschopp MS, Tortajada A, Hevia E. Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO. Angew Chem Int Ed Engl 2025:e202421736. [PMID: 39804795 DOI: 10.1002/anie.202421736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Dedicated to Proferssor Robert E. Mulvey on the occasion of his 65th birthday. Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, so expensive, and often exhibit high toxicity. Therefore, alternative transition-metal-free protocols would be a welcome addition to this field. In this report we show how the simple bases NaHMDS (HMDS=hexamethyldisilazide) and NaCH2SiMe3 can efficiently and selectively promote deuteration of a wide range of C(sp2)-H and C(sp3)-H bonds in DMSO-d6, providing an easy and direct access to deuterated compounds. Heterocycles, fluoroarenes, N-heterocyclic carbenes, amides and other aromatic molecules could be deuterated under mild conditions using catalytic amounts of base. Mechanistic studies along with the isolation and characterisation of reaction intermediates have flagged up the importance of the metalated substrate and metalated solvent in solution, establishing an equilibrium between these compounds is crucial for the success of this approach. An alkali-metal effect was observed, with heavier alkali-metal amides being more reactive at room temperature, but their lower stability at higher temperatures made sodium bases the optimal reagents for Hydrogen Isotope Exchange.
Collapse
Affiliation(s)
- Melina S Tschopp
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
4
|
Sun J, Chen F, Liu J, Zhang Y, He D, Dodonov VA, Zhao Y. Reactions of an Anionic Gallylene with Azobenzene or Azide Compounds Through C(sp 2)-H and C(sp 3)-H Activation. Molecules 2024; 29:5021. [PMID: 39519661 PMCID: PMC11547653 DOI: 10.3390/molecules29215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The activation of inert C-H bonds remains a challenge in current chemistry. Here, we report the excellent reactivity of the anionic gallylene species [LGa:][Na(THF)3] (L = [(2,6-iPr2C6H3)NC(CH3)]22-, 1) that allows the selective activation one ortho sp2 C-H bond of several azobenzene and azide derivatives at ambient temperature, with the transfer of the hydrogen atom to one of the nitrogen atoms. The process leads to the formation of the aryl amido products [LGa-κ2N,C-PhNN(H)(p-R-C6H3)][Na(solvent)3] (2, R = H solvent = DME (1,2-Dimethoxyethane); 3, R = -OMe, solvent = DME; 4, R = -NMe2 solvent = THF), [LGa-κ2N,C-(m-CH3-C6H4)NN(H)(m-CH3-C6H3)][Na(15-C-5)2] (5) with new Ga-C and Ga-N bonds. Moreover, 1 is also effective for the C-H activation of two azides RN3 (R = 2,4,6-Me3C6H2 or 2,6-iPr2C6H3), resulting in the formation of gallium amides [LGa(NH-2-(CH2)-4,6-Me2C6H2)][Na(15-C-5)2] (6) and [LGa(NH-2,6-iPr2C6H3)2][Na(THF)5] (7) through intra- or intermolecular sp3 C-H amination. Significantly, these reactions occur for the highly challenging activation of inert C(sp2)-H and C(sp3)-H bonds, thus demonstrating the excellent reactivity of the Ga(I) species 1. The products 2-7 were characterized by X-ray crystallography, 1H and 13C NMR, UV-vis spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Jinfeng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Fangfeng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Juan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Yihu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Dongyu He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Vladimir A. Dodonov
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
- Grigory Alekseevich Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russia
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
5
|
Liu X, Dong S, Zhu J, Inoue S. Dialumene as a Dimeric or Monomeric Al Synthon for C-F Activation in Monofluorobenzene. J Am Chem Soc 2024; 146:23591-23597. [PMID: 39165246 PMCID: PMC11345846 DOI: 10.1021/jacs.4c08171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024]
Abstract
The activation of C-F bonds has long been regarded as the subject of research in organometallic chemistry, given their synthetic relevance and the fact that fluorine is the most abundant halogen in the Earth's crust. However, C-F bond activation remains a largely unsolved challenge due to the high bond dissociation energies, which was historically dominated by transition metal complexes. Main group elements that can cleave unactivated monofluorobenzene are still quite rare and restricted to s-block complexes with a biphilic nature. Herein, we demonstrate an Al-mediated activation of monofluorobenzene using a neutral dialumene, allowing for the synthesis of the formal oxidative addition products at either double or single aluminum centers. This neutral dialumene system introduces a novel methodology for C-F bond activation based on formal oxidative addition and reductive elimination processes around the two aluminum centers, as demonstrated by combined experimental and computational studies. A "masked" alumylene was unprecedentedly synthesized to prove the proposed reductive elimination pathway. Furthermore, the synthetic utility is highlighted by the functionalization of the resulting aryl-aluminum compounds.
Collapse
Affiliation(s)
- Xufang Liu
- TUM
School of Natural Sciences, Department of Chemistry, Institute of
Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching bei München 85748, Germany
| | - Shicheng Dong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials (iChem), Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- School
of Science and Engineering, The Chinese
University of Hong Kong, Shenzhen 518172, China
| | - Shigeyoshi Inoue
- TUM
School of Natural Sciences, Department of Chemistry, Institute of
Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching bei München 85748, Germany
| |
Collapse
|
6
|
Meng T, Liu X, Peng Y, Lei H, Li Z, Chaleawlert-Umpon S, Dai Y, Zhao K, Li L. Fluorine Incorporation for Enhanced Gas Separation Performance in Porous Organic Polymers: Investigating Reaction Pathways and Pore Structure Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40190-40198. [PMID: 39012769 DOI: 10.1021/acsami.4c06250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The precise control of pore structures in porous organic polymer (POP) materials is of paramount importance in addressing a wide range of challenges associated with gas separation processes. In this study, we present a novel approach to optimize the gas separation performance of POPs through the introduction of fluorine groups and figure out an important factor of reaction decision that whether the AlCl3-catalyzed polymerization is Scholl reaction or Friedel-Crafts alkylation. In the chloroform system, the steric hindrance of function groups could make direct coupling between the benzene rings difficult, which would lead to part solvent knitting (Friedel-Crafts alkylation) instead. The fluorinated polymers show enhanced surface area and pore size characteristics. Notably, the fluorinated polymers exhibited significantly improved adsorption and separation performance for SF6, as evidenced by an ideal adsorbed solution theory selectivity (SF6/N2, v: v = 50:50, 273 K) increase of 75.0, 668.8, and 502.8% compared to the nonfluorinated POPs. These findings highlight the potential of fluorination as a strategy for tailoring the properties of POP materials for advanced gas separation applications.
Collapse
Affiliation(s)
- Timur Meng
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xianhao Liu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuyue Peng
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Hongliang Lei
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhiyi Li
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Saowaluk Chaleawlert-Umpon
- National Nanotechnology Center, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Yutong Dai
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Kaige Zhao
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lina Li
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
7
|
Kumar Bisai M, Łosiewicz J, Sotorrios L, Nichol GS, Dominey AP, Cowley MJ, Thomas SP, Macgregor SA, Ingleson MJ. Transition Metal-Free Catalytic C-H Zincation and Alumination. Angew Chem Int Ed Engl 2024; 63:e202404848. [PMID: 38577790 DOI: 10.1002/anie.202404848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
C-H metalation is the most efficient method to prepare aryl-zinc and -aluminium complexes that are ubiquitous nucleophiles. Virtually all C-H metalation routes to form Al/Zn organometallics require stoichiometric, strong Brønsted bases with no base-catalyzed reactions reported. Herein we present a catalytic in amine/ammonium salt (Et3N/[(Et3N)H]+) C-H metalation process to form aryl-zinc and aryl-aluminium complexes. Key to this approach is coupling an endergonic C-H metalation step with a sufficiently exergonic dehydrocoupling step between the ammonium salt by-product of C-H metalation ([(Et3N)H]+) and a Zn-H or Al-Me containing complex. This step, forming H2/MeH, makes the overall cycle exergonic while generating more of the reactive metal electrophile. Mechanistic studies supported by DFT calculations revealed metal-specific dehydrocoupling pathways, with the divergent reactivity due to the different metal valency (which impacts the accessibility of amine-free cationic metal complexes) and steric environment. Notably, dehydrocoupling in the zinc system proceeds through a ligand-mediated pathway involving protonation of the β-diketiminate Cγ position. Given this process is applicable to two disparate metals (Zn and Al), other main group metals and ligand sets are expected to be amenable to this transition metal-free, catalytic C-H metalation.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Justyna Łosiewicz
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Lia Sotorrios
- School of Health Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew P Dominey
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| | - Michael J Cowley
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Stuart A Macgregor
- EaStCHEM School of Chemistry, University of St Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
8
|
Logallo A, Maddock LCH, Mu M, Gravogl L, Jin N, Peñas-Defrutos MN, Meyer K, García-Melchor M, Hevia E. Unlocking the Metalation Applications of TMP-powered Fe and Co(II) bis(amides): Synthesis, Structure and Mechanistic Insights. Angew Chem Int Ed Engl 2024; 63:e202402907. [PMID: 38563772 DOI: 10.1002/anie.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Typified by LiTMP and TMPMgCl.LiCl, (TMP=2,2,6,6-tetramethylpiperidide), s-block metal amides have found widespread applications in arene deprotonative metalation. On the contrary, transition metal amides lack sufficient basicity to activate these substrates. Breaking new ground in this field, here we present the synthesis and full characterisation of earth-abundant transition metals M(TMP)2 (M=Fe, Co). Uncovering a new reactivity profile towards fluoroarenes, these amide complexes can promote direct M-H exchange processes regioselectively using one or two of their basic amide arms. Remarkably, even when using a perfluorinated substrate, selective C-H metalation occurs leaving C-F bonds intact. Their kinetic basicity can be boosted by LiCl or NBu4Cl additives which enables formation of kinetically activated ate species. Combining spectroscopic and structural studies with DFT calculations, mechanistic insights have been gained on how these low polarity metalation processes take place. M(TMP)2 can also be used to access ferrocene and cobaltocene by direct deprotonation of cyclopentadiene and undergo efficient CO2 insertion of both amide groups under mild reaction conditions.
Collapse
Affiliation(s)
- Alessandra Logallo
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Lewis C H Maddock
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Manting Mu
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green, Dublin, Ireland
| | - Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Na Jin
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Marconi N Peñas-Defrutos
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green, Dublin, Ireland
- IU CINQUIMA, Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071, Valladolid, Spain
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green, Dublin, Ireland
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
9
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
10
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
11
|
Borys AM, Vedani L, Hevia E. Stoichiometric and Catalytic Lithium Nickelate-Mediated C-F Bond Alkynylation of Fluoroarenes. J Am Chem Soc 2024; 146:10199-10205. [PMID: 38545862 DOI: 10.1021/jacs.4c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Low-valent nickelates have recently been shown to be key intermediates that facilitate challenging cross-coupling reactions under mild conditions. Expanding the synthetic potential of these heterobimetallic complexes, herein we report the success of trilithium nickelate Li3(TMEDA)3Ni(C≡C-Ph)3 in promoting stoichiometric C-F activation of assorted aryl fluorides furnishing novel mixed Li/Ni(0) or Li/Ni(II) species depending on the substrate and conditions employed. These stoichiometric successes can be upgraded to catalytic regimes to enable the atom-efficient alkynylation of aryl fluorides and polyfluoroarenes with lithium acetylides and precatalyst Ni(COD)2, which operates without the intervention of external ligands, Cu cocatalysts, or additives.
Collapse
Affiliation(s)
- Andryj M Borys
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| | - Luca Vedani
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| |
Collapse
|
12
|
Guan YQ, Qiao JF, Liang YF. Nickel-catalysed chelation-assisted reductive defluorinative sulfenylation of trifluoropropionic acid derivatives. Chem Commun (Camb) 2024; 60:2405-2408. [PMID: 38323634 DOI: 10.1039/d3cc06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein we reported a directing-group assisted strategy for nickel-catalysed reductive defluorinative sulfenylation of trifluoropropionic acid derivatives with disulfides in the presence of Zn, involving triple C-F bond cleavage. This process yielded a diverse array of carbonyl-sulfide di-substituted alkenes in moderate to good yields with good functional group tolerance. Specifically, the reactions exhibited high E-selectivity with E/Z ratio up to >99 : 1.
Collapse
Affiliation(s)
- Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
13
|
Lachguar A, Pichugov AV, Neumann T, Dubrawski Z, Camp C. Cooperative activation of carbon-hydrogen bonds by heterobimetallic systems. Dalton Trans 2024; 53:1393-1409. [PMID: 38126396 PMCID: PMC10804807 DOI: 10.1039/d3dt03571a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The direct activation of C-H bonds has been a rich and active field of organometallic chemistry for many years. Recently, incredible progress has been made and important mechanistic insights have accelerated research. In particular, the use of heterobimetallic complexes to heterolytically activate C-H bonds across the two metal centers has seen a recent surge in interest. This perspective article aims to orient the reader in this fast moving field, highlight recent progress, give design considerations for further research and provide an optimistic outlook on the future of catalytic C-H functionalization with heterobimetallic complexes.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Andrey V Pichugov
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Till Neumann
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Zachary Dubrawski
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Clément Camp
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|