1
|
Berends E, Vangrieken P, Amiri N, van de Waarenburg MPH, Scheijen JLJM, Hermes DJHP, Wouters K, van Oostenbrugge RJ, Schalkwijk CG, Foulquier S. Increased Levels of Circulating Methylglyoxal Have No Consequence for Cerebral Microvascular Integrity and Cognitive Function in Young Healthy Mice. Mol Neurobiol 2025; 62:4190-4202. [PMID: 39414727 PMCID: PMC11880179 DOI: 10.1007/s12035-024-04552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Diabetes and other age-related diseases are associated with an increased risk of cognitive impairment, but the underlying mechanisms remain poorly understood. Methylglyoxal (MGO), a by-product of glycolysis and a major precursor in the formation of advanced glycation end-products (AGEs), is increased in individuals with diabetes and other age-related diseases and is associated with microvascular dysfunction. We now investigated whether increased levels of circulating MGO can lead to cerebral microvascular dysfunction, blood-brain barrier (BBB) dysfunction, and cognitive impairment. Mice were supplemented or not with 50 mM MGO in drinking water for 13 weeks. Plasma and cortical MGO and MGO-derived AGEs were measured with UPLC-MS/MS. Peripheral and cerebral microvascular integrity and inflammation were investigated. Cerebral blood flow and neurovascular coupling were investigated with laser speckle contrast imaging, and cognitive tests were performed. We found a 2-fold increase in plasma MGO and an increase in MGO-derived AGEs in plasma and cortex. Increased plasma MGO did not lead to cerebral microvascular dysfunction, inflammation, or cognitive decline. This study shows that increased concentrations of plasma MGO are not associated with cerebral microvascular dysfunction and cognitive impairment in healthy mice. Future research should focus on the role of endogenously formed MGO in cognitive impairment.
Collapse
Affiliation(s)
- Eline Berends
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Philippe Vangrieken
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Naima Amiri
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Marjo P H van de Waarenburg
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Jean L J M Scheijen
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Denise J H P Hermes
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Kristiaan Wouters
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| | - Sébastien Foulquier
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands.
- Faculty of Health Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Sil R, Chakraborti AS. Major heme proteins hemoglobin and myoglobin with respect to their roles in oxidative stress - a brief review. Front Chem 2025; 13:1543455. [PMID: 40070406 PMCID: PMC11893434 DOI: 10.3389/fchem.2025.1543455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Oxidative stress is considered as the root-cause of different pathological conditions. Transition metals, because of their redox-active states, are capable of free radical generation contributing oxidative stress. Hemoglobin and myoglobin are two major heme proteins, involved in oxygen transport and oxygen storage, respectively. Heme prosthetic group of heme proteins is a good reservoir of iron, the most abundant transition metal in human body. Although iron is tightly bound in the heme pocket of these proteins, it is liberated under specific circumstances yielding free ferrous iron. This active iron can react with H2O2, a secondary metabolite, forming hydroxyl radical via Fenton reaction. Hydroxyl radical is the most harmful free radical among all the reactive oxygen species. It causes oxidative stress by damaging lipid membranes, proteins and nucleic acids, activating inflammatory pathways and altering membrane channels, resulting disease conditions. In this review, we have discussed how heme-irons of hemoglobin and myoglobin can promote oxidative stress under different pathophysiological conditions including metabolic syndrome, diabetes, cardiovascular, neurodegenerative and renal diseases. Understanding the association of heme proteins to oxidative stress may be important for knowing the complications as well as therapeutic management of different pathological conditions.
Collapse
Affiliation(s)
| | - Abhay Sankar Chakraborti
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
3
|
Herraiz T, Salgado A, Peña A. Identification, Occurrence, and Mechanism of Formation of 1-Acetyl-β-carbolines Derived from l-Tryptophan and Methylglyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3044-3055. [PMID: 39846416 DOI: 10.1021/acs.jafc.4c09130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
β-Carbolines (βCs) are bioactive compounds present in foods and biological systems. This work describes the identification, occurrence, and mechanism of formation of 1-acetyl-β-carbolines (1-acetyl-βCs) that result from the reaction of l-tryptophan with the α-dicarbonyl compound methylglyoxal. Two β-carbolines are characterized as 1-acetyl-β-carboline (AβC) and 1-acetyl-β-carboline-3-carboxylic acid (AβC-COOH). Their formation was favored in acidic conditions and with increasing temperature, but 1-acetyl-βCs also formed in moderate temperatures and in a wide range of pH, including physiological conditions, and in human serum. The formation mechanism relies on tautomerism and cyclization to give 1-(1-hydroxyethyl)-3,4-dihydro-β-carboline-3-carboxylic acid intermediates followed by the oxidation of C1'-OH and aromatization to 1-acetyl-βCs. The formation of 1-acetyl-βCs took place in the reactions of fructose or glucose with tryptophan under heating and depended on the methylglyoxal released during carbohydrate degradation. Formation from carbohydrates increased at neutral or basic pH values as more methylglyoxal was released under those conditions. Thus, 1-acetyl-βCs could be advanced glycation end-products (AGEs). 1-Acetyl-βCs were identified and quantified for the first time in many foods. AβC ranged from undetectable to 250 ng/g with the highest amount detected in honey, bread, cookies, soy sauce, and coffee. On average, AβC-COOH generally appeared in lower concentrations than AβC but it ranged from undetectable to 323 ng/g with the highest levels found in soy sauce, honey, cookies, and fried bread. These results indicate that 1-acetyl-βCs could be relevant βCs in foods and in vivo.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish National Research Council (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Jose Antonio Nováis 6 28040, Madrid, Spain
| | - Antonio Salgado
- Centro de Espectroscopía de RMN (CERMN), Universidad de Alcalá (UAH), Campus Universitario, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares 28805, Madrid, Spain
| | - Adriana Peña
- Spanish National Research Council (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Jose Antonio Nováis 6 28040, Madrid, Spain
| |
Collapse
|
4
|
Herraiz T, Salgado A. Formation, Identification, and Occurrence of the Furan-Containing β-Carboline Flazin Derived from l-Tryptophan and Carbohydrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6575-6584. [PMID: 38470992 PMCID: PMC10979450 DOI: 10.1021/acs.jafc.3c07773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
β-Carbolines (βCs) are bioactive indole alkaloids found in foods and in vivo. This work describes the identification, formation, and occurrence in foods of the βC with a furan moiety flazin (1-[5-(hydroxymethyl)furan-2-yl]-9H-pyrido[3,4-b]indole-3-carboxylic acid). Flazin was formed by the reaction of l-tryptophan with 3-deoxyglucosone but not with 5-hydroxymethylfurfural. Its formation was favored in acidic conditions and heating (70-110 °C). The proposed mechanism of formation occurs through the formation of intermediates 3,4-dihydro-β-carboline-3-carboxylic acid (imines), followed by the oxidation to C═O in the carbohydrate chain and aromatization to βC ring with subsequent dehydration steps and cyclization to afford the furan moiety. Flazin is generated in the reactions of tryptophan with carbohydrates. Its formation from fructose was higher than from glucose, whereas sucrose gave flazin under acidic conditions and heating owing to hydrolysis. Flazin was identified in foods by HPLC-MS, and its content was determined by HPLC-fluorescence. It occurred in numerous processed foods, such as tomato products, including crushed tomato puree, fried tomato, ketchup, tomato juices, and jams, but also in soy sauce, beer, balsamic vinegar, fruit juices, dried fruits, fried onions, and honey. Their concentrations ranged from not detected to 22.3 μg/mL, with the highest mean levels found in tomato concentrate (13.9 μg/g) and soy sauce (9.4 μg/mL). Flazin was formed during the heating process, as shown in fresh tomato juice and crushed tomatoes. These results indicate that flazin is widely present in foods and is daily uptaken in the diet.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto
de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Novais 6, Ciudad Universitaria, Madrid 28040, Spain
| | - Antonio Salgado
- Centro
de Espectroscopía de RMN (CERMN), Universidad de Alcalá (UAH), Campus Universitario Ctra. Madrid-Barcelona km
33.6, Alcalá de Henares, Madrid 28805, Spain
| |
Collapse
|
5
|
Berends E, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity. Fluids Barriers CNS 2023; 20:75. [PMID: 37875994 PMCID: PMC10594715 DOI: 10.1186/s12987-023-00477-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The brain is a highly metabolically active organ requiring a large amount of glucose. Methylglyoxal (MGO), a by-product of glucose metabolism, is known to be involved in microvascular dysfunction and is associated with reduced cognitive function. Maintenance of the blood-brain barrier (BBB) is essential to maintain optimal brain function and a large amount of evidence indicates negative effects of MGO on BBB integrity. In this review, we summarized the current literature on the effect of MGO on the different cell types forming the BBB. BBB damage by MGO most likely occurs in brain endothelial cells and mural cells, while astrocytes are most resistant to MGO. Microglia on the other hand appear to be not directly influenced by MGO but rather produce MGO upon activation. Although there is clear evidence that MGO affects components of the BBB, the impact of MGO on the BBB as a multicellular system warrants further investigation. Diminishing MGO stress can potentially form the basis for new treatment strategies for maintaining optimal brain function.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
| | - Robert J van Oostenbrugge
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Maastricht University, Universiteitssingel 50 6229ER, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
| |
Collapse
|
6
|
Qureshi MA, Amir M, Khan RH, Musarrat J, Javed S. Glycation reduces the binding dynamics of aflatoxin B 1 to human serum albumin: a comprehensive spectroscopic and computational investigation. J Biomol Struct Dyn 2023; 41:14797-14811. [PMID: 37021366 DOI: 10.1080/07391102.2023.2194000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/25/2023] [Indexed: 04/07/2023]
Abstract
Aflatoxin B1 (AFB1), a potent mutagen, is synthesized by Aspergillus parasiticus and Aspergillus flavus. Human serum albumin (HSA) is a globular protein with diverse roles. As AFB1 is ingested with food and is transported in the body via blood, it becomes pertinent to comprehend the effect of the binding of this toxin on the structure and conformation of HSA, which may help to get insight into the toxic effect of the exposure of the mycotoxin. In this study, multi-spectroscopic approaches have been used to evaluate the binding efficiency of AFB1 with both the native HSA (nHSA) and the glycated HSA (gHSA). Steady-state fluorescence spectroscopy reveals the static type of fluorescence quenching in the fluorescence emission spectra of nHSA and gHSA in the presence of AFB1. The binding constant (Kb) is calculated to be 6.88 × 104 M-1 for nHSA, while a reduced Kb value of 2.95 × 104 M-1 has been obtained for gHSA. The circular dichroism study confirms the change in the secondary structure of nHSA and gHSA in the presence of AFB1, followed by alterations in the melting temperature (Tm) of nHSA and gHSA. In silico computational findings envisaged the amino acid residues and bonds involved in the binding of nHSA and gHSA with AFB1. The comprehensive study analyzes the binding effectiveness of AFB1 with nHSA and gHSA and shows reduced binding of AFB1 to gHSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Sharma G, Bhattacharya R, Krishna S, Alomar SY, Alkhuriji AF, Warepam M, Kumari K, Rahaman H, Singh LR. Structural and Functional Characterization of Covalently Modified Proteins Formed By a Glycating Agent, Glyoxal. ACS OMEGA 2021; 6:20887-20894. [PMID: 34423196 PMCID: PMC8374913 DOI: 10.1021/acsomega.1c02300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
Glycation, the main consequence of hyperglycemia, is one of the major perpetrators of diabetes and several other conditions, including coronary and neurodegenerative complications. Such a hyperglycemic condition is represented by a large increase in levels of various glycation end products including glyoxal, methylglyoxal, and carboxymethyl-lysine among others. These glycation end products are known to play a crucial role in diabetic complications due to their ability to covalently modify important proteins and enzymes, specifically at lysine residues (a process termed as glycation), making them non-functional. Previous studies have largely paid attention on characterization and identification of these reactive glycating agents. Structural and functional consequences of proteins affected by glycation have not yet been critically investigated. We have made a systematic investigation on the early conformational changes and functional alterations brought about by a glycating agent, glyoxal, on different proteins. We found that the early event in glycation includes an increase in hydrodynamic diameter, followed by minor structural alterations sufficient to impair enzyme activity. The study indicates the importance of glyoxal-induced early structural alteration of proteins toward the pathophysiology of hyperglycemia/diabetes and associated conditions.
Collapse
Affiliation(s)
- Gurumayum
Suraj Sharma
- Department
of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110095, India
| | - Reshmee Bhattacharya
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Snigdha Krishna
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Suliman Y. Alomar
- Doping
Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afrah F. Alkhuriji
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11495, Saudi Arabia
| | - Marina Warepam
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | - Kritika Kumari
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Hamidur Rahaman
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | | |
Collapse
|
8
|
Formation of α-dicarbonyl compounds and glycation products in sesame (Sesamum indicum L.) seeds during roasting: a multiresponse kinetic modelling approach. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03787-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Kovalčíková AG, Tichá Ľ, Šebeková K, Celec P, Čagalová A, Sogutlu F, Podracká Ľ. Oxidative status in plasma, urine and saliva of girls with anorexia nervosa and healthy controls: a cross-sectional study. J Eat Disord 2021; 9:54. [PMID: 33883041 PMCID: PMC8059320 DOI: 10.1186/s40337-021-00408-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anorexia nervosa (AN) is a serious psychosomatic disorder with unclear pathomechanisms. Metabolic dysregulation is associated with disruption of redox homeostasis that might play a pivotal role in the development of AN. The aim of our study was to assess oxidative status and carbonyl stress in plasma, urine and saliva of patients with AN and healthy controls. METHODS Plasma, spot urine, and saliva were collected from 111 girls with AN (aged from 10 to 18 years) and from 29 age-matched controls. Markers of oxidative stress and antioxidant status were measured using spectrophotometric and fluorometric methods. RESULTS Plasma advanced oxidation protein products (AOPP) and advanced glycation end products (AGEs) were significantly higher in patients with AN than in healthy controls (by 96, and 82%, respectively). Accordingly, urinary concentrations of AOPP and fructosamines and salivary concentrations of AGEs were higher in girls with AN compared with controls (by 250, and 41% in urine; by 92% in saliva, respectively). Concentrations of thiobarbituric acid reactive substances (TBARS) in saliva were 3-times higher in the patients with AN than in the controls. Overall antioxidants were lower in plasma of girls with AN compared to the controls, as shown by total antioxidant capacity and ratio of reduced and oxidized glutathione (by 43, and 31%, respectively). CONCLUSIONS This is the first study assessing wide range of markers of oxidative status in plasma, urine and saliva of the patients with AN. We showed that both, higher levels of markers of oxidative stress and lower antioxidants play a role in redox disruption. Restoration of redox homeostasis might be of the clinical relevance.
Collapse
Affiliation(s)
- Alexandra Gaál Kovalčíková
- Department of Paediatrics, The National Institute of Children's Diseases and Faculty of Medicine, Comenius University, Limbová 1, 83340, Bratislava, Slovakia.
| | - Ľubica Tichá
- Department of Paediatrics, The National Institute of Children's Diseases and Faculty of Medicine, Comenius University, Limbová 1, 83340, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Alžbeta Čagalová
- Department of Paediatrics, The National Institute of Children's Diseases and Faculty of Medicine, Comenius University, Limbová 1, 83340, Bratislava, Slovakia
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Ľudmila Podracká
- Department of Paediatrics, The National Institute of Children's Diseases and Faculty of Medicine, Comenius University, Limbová 1, 83340, Bratislava, Slovakia
| |
Collapse
|
10
|
Hernandez-Castillo C, Termini J, Shuck S. DNA Adducts as Biomarkers To Predict, Prevent, and Diagnose Disease-Application of Analytical Chemistry to Clinical Investigations. Chem Res Toxicol 2020; 33:286-307. [PMID: 31638384 DOI: 10.1021/acs.chemrestox.9b00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the chemistry, structure, formation, and metabolism of DNA adducts has been one of the most significant contributions to the field of chemical toxicology. This work provides the foundation to develop analytical methods to measure DNA adducts, define their relationship to disease, and establish clinical tests. Monitoring exposure to environmental and endogenous toxicants can predict, diagnose, and track disease as well as guide therapeutic treatment. DNA adducts are one of the most promising biomarkers of toxicant exposure owing to their stability, appearance in numerous biological matrices, and characteristic analytical properties. In addition, DNA adducts can induce mutations to drive disease onset and progression and can serve as surrogate markers of chemical exposure. In this perspective, we highlight significant advances made within the past decade regarding DNA adduct quantitation using mass spectrometry. We hope to expose a broader audience to this field and encourage analytical chemistry laboratories to explore how specific adducts may be related to various pathologies. One of the limiting factors in developing clinical tests to measure DNA adducts is cohort size; ideally, the cohort would allow for model development and then testing of the model to the remaining cohort. The goals of this perspective article are to (1) provide a summary of analyte levels measured using state-of-the-art analytical methods, (2) foster collaboration, and (3) highlight areas in need of further investigation.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - John Termini
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - Sarah Shuck
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| |
Collapse
|
11
|
Bhat S, Jagadeeshaprasad MG, Venkatasubramani V, Kulkarni MJ. Abundance matters: role of albumin in diabetes, a proteomics perspective. Expert Rev Proteomics 2017; 14:677-689. [PMID: 28689445 DOI: 10.1080/14789450.2017.1352473] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human serum albumin (HSA) is a multifaceted protein with vital physiological functions. It is the most abundant plasma protein with inherent capability to bind to diverse ligands, and thus susceptible to various post-translational modifications (PTMs) which alter its structure and functions. One such PTM is glycation, a non-enzymatic reaction between reducing sugar and protein leading to formation of heterogeneous advanced glycation end products (AGEs). Glycated albumin (GA) concentration increases significantly in diabetes and is implicated in development of secondary complications. Areas covered: In this review, we discuss in depth, formation of GA and its consequences, approaches used for characterization and quantification of GA, milestones in GA proteomics, clinical relevance of GA as a biomarker, significance of maintaining abundant levels of albumin and future perspectives. Expert commentary: Elevated GA levels are associated with development of insulin resistance as well as secondary complications, in healthy and diabetic individuals respectively. Mass spectrometry (MS) based approaches aid in precise characterization and quantification of GA including early and advanced glycated peptides, which can be useful in prediction of the disease status. Thus GA has evolved to be one of the best candidates in the pursuit of diagnostic markers for prediction of prediabetes and diabetic complications.
Collapse
Affiliation(s)
- Shweta Bhat
- a Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Pune , India
| | | | | | - Mahesh J Kulkarni
- a Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Pune , India
| |
Collapse
|
12
|
Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD. Maillard reaction in food allergy: Pros and cons. Crit Rev Food Sci Nutr 2017; 58:208-226. [PMID: 26980434 DOI: 10.1080/10408398.2016.1152949] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food allergens have a notable potential to induce various health concerns in susceptible individuals. The majority of allergenic foods are usually subjected to thermal processing prior to their consumption. However, during thermal processing and long storage of foods, Maillard reaction (MR) often takes place. The MR is a non-enzymatic glycation reaction between the carbonyl group of reducing sugars and compounds having free amino groups. MR may sometimes be beneficial by damaging epitope of allergens and reducing allergenic potential, while exacerbation in allergic reactions may also occur due to changes in the motifs of epitopes or neoallergen generation. Apart from these modulations, non-enzymatic glycation can also modify the food protein(s) with various type of advance glycation end products (AGEs) such as Nϵ-(carboxymethyl-)lysine (CML), pentosidine, pyrraline, and methylglyoxal-H1 derived from MR. These Maillard products may act as immunogen by inducing the activation and proliferation of various immune cells. Literature is available to understand pathogenesis of glycation in the context of various diseases but there is hardly any review that can provide a thorough insight on the impact of glycation in food allergy. Therefore, present review explores the pathogenesis with special reference to food allergy caused by non-enzymatic glycation as well as AGEs.
Collapse
Affiliation(s)
- Rinkesh Kumar Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,b Department of Biosciences , Integral University , Lucknow , India
| | - Kriti Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | - Akanksha Sharma
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,c Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Capmus , Lucknow , India
| | - Mukul Das
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | | | | |
Collapse
|
13
|
Mariño L, Maya-Aguirre CA, Pauwels K, Vilanova B, Ortega-Castro J, Frau J, Donoso J, Adrover M. Glycation of Lysozyme by Glycolaldehyde Provides New Mechanistic Insights in Diabetes-Related Protein Aggregation. ACS Chem Biol 2017; 12:1152-1162. [PMID: 28257177 DOI: 10.1021/acschembio.6b01103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycation occurs in vivo as a result of the nonenzymatic reaction of carbohydrates (and/or their autoxidation products) with proteins, DNA, or lipids. Protein glycation causes loss-of-function and, consequently, the development of diabetic-related diseases. Glycation also boosts protein aggregation, which can be directly related with the higher prevalence of aggregating diseases in diabetic people. However, the molecular mechanism connecting glycation with aggregation still remains unclear. Previously we described mechanistically how glycation of hen egg-white lysozyme (HEWL) with ribose induced its aggregation. Here we address the question of whether the ribose-induced aggregation is a general process or it depends on the chemical nature of the glycating agent. Glycation of HEWL with glycolaldehyde occurs through two different scenarios depending on the HEWL concentration regime (both within the micromolar range). At low HEWL concentration, non-cross-linking fluorescent advanced glycation end-products (AGEs) are formed on Lys side chains, which do not change the protein structure but inhibit its enzymatic activity. These AGEs have little impact on HEWL surface hydrophobicity and, therefore, a negligible effect on its aggregation propensity. Upon increasing HEWL concentration, the glycation mechanism shifts toward the formation of intermolecular cross-links, which triggers a polymerization cascade involving the formation of insoluble spherical-like aggregates. These results notably differ with the aggregation-modulation mechanism of ribosylated HEWL directed by hydrophobic interactions. Additionally, their comparison constitutes the first experimental evidence showing that the mechanism underlying the aggregation of a glycated protein depends on the chemical nature of the glycating agent.
Collapse
Affiliation(s)
- Laura Mariño
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Carlos Andrés Maya-Aguirre
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Kris Pauwels
- Structural
Biology Brussels, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
- VIB
Structural Biology Research Centre, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bartolomé Vilanova
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Joaquin Ortega-Castro
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Juan Frau
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Josefa Donoso
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Miquel Adrover
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| |
Collapse
|
14
|
Liu G, Xia Q, Lu Y, Zheng T, Sang S, Lv L. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2233-2239. [PMID: 28233503 DOI: 10.1021/acs.jafc.6b05811] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increasing evidence has identified α-dicarbonyl compounds, the reactive intermediates generated during Maillard reaction, as the potential factors to cause protein glycation and the development of chronic diseases. Therefore, there is an urgent need to decrease the levels of reactive dicarbonyl compounds in foods. In this study, we investigated the inhibitory effect of quercetin, a major dietary flavonoid, and its major mono- and di-MGO adducts on the formation of dicarbonyl compounds, such as methylglyoxal (MGO) and glyoxal (GO), in a lysine/glucose aqueous system, a model system to reflect the Maillard reaction in food process. Our result indicated that quercetin could efficiently inhibit the formation of MGO and GO in a time-dependent manner. Further mechanistic study was conducted by monitoring the formation of quercetin oxidation and conjugation products using LC-MS/MS. Quercetin MGO adducts, quercetin quinones, and the quinones of quercetin MGO adducts were detected in the system, indicating quercetin plays a dual role in inhibiting the formation of MGO and GO by scavenging free radicals generated in the system and trapping of MGO and GO to form MGO adducts. In addition, we prepared the mono- and di-MGO quercetin adducts and investigated their antioxidant activity and trapping capacity of MGO and GO. Our results indicated that both mono- and di-MGO quercetin adducts could scavenge the DPPH radical in a dose-dependent manner with >40% DPPH scavenged by the MGO adducts at 10 μM, and the di-MGO quercetin adduct could further trap MGO to generate tri-MGO adducts. Therefore, we demonstrate for the first time that quercetin MGO adducts retain the antioxidant activity and trapping capacity of reactive dicarbonyl species.
Collapse
Affiliation(s)
- Guimei Liu
- Department of Food Science and Technology, Nanjing Normal University , 122 Ninghai Road, Nanjing 210097, People's Republic of China
| | - Qiuqin Xia
- Department of Food Science and Technology, Nanjing Normal University , 122 Ninghai Road, Nanjing 210097, People's Republic of China
| | - Yongling Lu
- Department of Food Science and Technology, Nanjing Normal University , 122 Ninghai Road, Nanjing 210097, People's Republic of China
| | - Tiesong Zheng
- Department of Food Science and Technology, Nanjing Normal University , 122 Ninghai Road, Nanjing 210097, People's Republic of China
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Lishuang Lv
- Department of Food Science and Technology, Nanjing Normal University , 122 Ninghai Road, Nanjing 210097, People's Republic of China
| |
Collapse
|
15
|
Kocadağlı T, Gökmen V. Effects of Sodium Chloride, Potassium Chloride, and Calcium Chloride on the Formation of α-Dicarbonyl Compounds and Furfurals and the Development of Browning in Cookies during Baking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7838-7848. [PMID: 27690415 DOI: 10.1021/acs.jafc.6b03870] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effects of NaCl, KCl, CaCl2, NaHCO3, and NH4HCO3 on the formation of glucosone, 1-deoxyglucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, diacetyl, 5-hydroxymethyl-2-furfural, and 2-furfural and browning were investigated in cookies. The presence of 1.5% NaCl, 1% KCl, and 1% CaCl2 on flour basis had no effect on α-dicarbonyl compounds, except 1-deoxyglucosone increased in the presence of KCl and CaCl2. The increase in 5-hydroxymethyl-2-furfural formation in the presence of NaCl, KCl, and CaCl2 did not relate to 3-deoxyglucosone formation and pH changes. NaCl, KCl, and CaCl2 increased browning in cookies. Model reaction systems indicated that NaCl, KCl, and CaCl2 enhance browning by increasing furfurals in caramelization. NaCl, KCl, and CaCl2 decreased browning intensity in a heated glucose-glycine system. Use of CaCl2 in cookies may considerably increase furfurals but not α-dicarbonyl compounds. Sodium reduction can be obtained by replacement with potassium without sacrificing the desired consequences of caramelization in sugar-rich baked goods.
Collapse
Affiliation(s)
- Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University , 06800 Beytepe Campus, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University , 06800 Beytepe Campus, Ankara, Turkey
| |
Collapse
|
16
|
Yokota M, Tokudome Y. The Effect of Glycation on Epidermal Lipid Content, Its Metabolism and Change in Barrier Function. Skin Pharmacol Physiol 2016; 29:231-242. [PMID: 27548800 DOI: 10.1159/000448121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Advanced glycation end products, which are linked to both aging and hyperglycemia, cause marked functional and structural alterations in human skin. Though it is well known that the metabolism of glucose is closely associated with that of fatty acid (FA), sharing the same energy-yielding reaction pathways as glucose, its effect on the epidermis has been unclear so far. METHODS Content of ceramides, cholesterol and FA in a reconstructed epidermal model glycated by glyoxal was analyzed by high-performance thin-layer chromatography. FA species extracted from HaCaT keratinocytes was determined by gas chromatography/mass spectrometry. Regulation of FA synthesis was analyzed by real-time PCR. For physiological analysis, excised mouse skin was glycated using a vertical diffusion cell and used for the evaluation of barrier function by transepidermal water loss measurement and observation of penetration of sodium fluorescein. RESULTS Saturated FA content was significantly increased in glycated epidermis, and glycation upregulated mRNA expression of FA elongases 2 and 3 and FA synthase in HaCaT cells. Further, both inside-out and outside-in barriers were disrupted in glycated excised skin. CONCLUSION Biological and physical change in the epidermis, especially upregulation of FA synthesis by glycation, contributed to barrier disruption, and inhibiting glycation may offer an effective treatment option for aged or glycated skin.
Collapse
Affiliation(s)
- Mami Yokota
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | | |
Collapse
|
17
|
Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. J Drug Target 2016; 25:93-101. [PMID: 27356044 DOI: 10.1080/1061186x.2016.1207650] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxidative stress has been considered as a central mediator in the progression of diabetic complication. The intracellular reactive oxygen species (ROS) leads to oxidative stress and it is raised from the mitochondria as well as by activation of five major pathways: increased polyol pathway flux, activation of protein kinase C (PKC) pathway, increased formation of advanced glycation end products (AGEs), over activity of hexosamine pathway and increased production of angiotensin II. The increased ROS through these pathways leads to β-cell dysfunction and insulin resistance, responsible for cell damage and death. This review not only highlights the sources of ROS production and their involvement in the progression of diabetes, but also emphasizes on pharmacological interventions and targeting of ROS in type 2 diabetes. This review summarizes the ROS as potential therapeutic targets, based on a putative mechanism in the progression of the diabetes. It also summarizes current knowledge of ROS activation in type 2 diabetes as well as ROS as a possible target for its treatment. Eventually, it would be a promising target for various strategies and drugs to modulate ROS levels in diabetes.
Collapse
Affiliation(s)
- Suchitra Kumari Panigrahy
- a Department of Biotechnology , Guru Ghasidas Vishwavidyalaya (a Central University) , Bilaspur , India
| | - Renu Bhatt
- a Department of Biotechnology , Guru Ghasidas Vishwavidyalaya (a Central University) , Bilaspur , India
| | - Awanish Kumar
- b Department of Biotechnology , National Institute of Technology (NIT) , Raipur , India
| |
Collapse
|
18
|
Hrynets Y, Bhattacherjee A, Ndagijimana M, Hincapie Martinez DJ, Betti M. Iron (Fe(2+))-Catalyzed Glucosamine Browning at 50 °C: Identification and Quantification of Major Flavor Compounds for Antibacterial Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3266-3275. [PMID: 27043007 DOI: 10.1021/acs.jafc.6b00761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glucosamine browning at 50 °C with (GlcN/Fe(2+)) or without iron (GlcN) was studied over time from 0 to 48 h. Generation of reactive oxygen species (ROS), H2O2, and (1)O2, along with α-dicarbonyls, fructosazine, and deoxyfructosazine, was evaluated. Singlet oxygen generation increased over time and was greater in GlcN/Fe(2+) caramel solution. The presence of iron significantly increased the concentration of α-dicarbonyls at an early incubation time (3 h). Fructosazine and deoxyfructosazine were the major degradation products at 48 h comprising together up to 37 and 49% in GlcN and GlcN/Fe(2+), respectively. GlcN/Fe(2+) (48 h) exhibited a MIC50 against highly heat-resistant Escherichia coli AW 1.7 at pH 5, but not at pH 7. Despite several antimicrobial compounds being produced during browning, GlcN/Fe(2+) created a synergistic environment for the fructosazine-organic acids to confer their antimicrobial activity. GlcN caramel solutions have the potential to serve as both flavoring compounds and antimicrobial agents in formulated food systems.
Collapse
Affiliation(s)
- Yuliya Hrynets
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| | - Abhishek Bhattacherjee
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| | - Maurice Ndagijimana
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| | - Daylin Johana Hincapie Martinez
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| | - Mirko Betti
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
19
|
Iannuzzi C, Carafa V, Altucci L, Irace G, Borriello M, Vinciguerra R, Sirangelo I. Glycation of Wild-Type Apomyoglobin Induces Formation of Highly Cytotoxic Oligomeric Species. J Cell Physiol 2015; 230:2807-20. [PMID: 25846844 DOI: 10.1002/jcp.25011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/01/2015] [Indexed: 01/03/2023]
Abstract
Protein glycation is a non-enzymatic, irreversible modification of protein amino groups by reactive carbonyl species leading to the formation of advanced glycation end products (AGEs). Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases related to protein misfolding and amyloid aggregation, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. We have recently shown that glycation of the amyloidogenic W7FW14F apomyoglobin mutant significantly accelerates the amyloid fibrils formation providing evidence that glycation actively participates to the process. In the present study, to test if glycation can be considered also a triggering factor in amyloidosis, we evaluated the ability of different glycation agents to induce amyloid aggregation in the soluble wild-type apomyoglobin. Our results show that glycation covalently modifies apomyoglobin and induces conformational changes that lead to the formation of oligomeric species that are not implicated in amyloid aggregation. Thus, AGEs formation does not trigger amyloid aggregation in the wild-type apomyoglobin but only induce the formation of soluble oligomeric species able to affect cell viability. The molecular bases of cell toxicity induced by AGEs formed upon glycation of wild-type apomyoglobin have been also investigated.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Institute of Protein Biochemistry, IBP-CNR, Naples, Italy
| | - Vincenzo Carafa
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Institute of Genetics and Biophysics Adriano Buzzati-Traverso, IGB-CNR, Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Margherita Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Roberto Vinciguerra
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
20
|
Zhu Y, Zhao Y, Wang P, Ahmedna M, Sang S. Bioactive ginger constituents alleviate protein glycation by trapping methylglyoxal. Chem Res Toxicol 2015; 28:1842-9. [PMID: 26247545 DOI: 10.1021/acs.chemrestox.5b00293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Considerable evidence suggests that long-term pathological diabetes is a result of the accumulation of tissue macromolecules that have been progressively modified by nonenzymatic glycation of protein. Methylglyoxal (MGO) is a highly reactive endogenous dicarbonyl metabolite derived from multiple sources such as glucose and lipids and is thought to contribute greatly to protein glycation and the formation of advanced glycation end products (AGEs). In this study, we demonstrated for the first time that both [6]-shogaol (6S) and [6]-gingerol (6G), the major active components in ginger, markedly trapped MGO in vitro and consequently formed mono-MGO adducts, 6S-MGO and 6G-MGO, which were purified from the respective chemical reaction and characterized as novel compounds by NMR experiments and LC-MS/MS approaches. We revealed that the α-carbon of the carbonyl group in the side chain of 6S or 6G is the major active site for trapping MGO. We also demonstrated that 6S and 6G could effectively inhibit the formation of MGO-induced AGEs via trapping MGO in a time-dependent manner in the human serum albumin (HSA)-MGO system. Mono-MGO adducts, 6S-MGO and 6G-MGO, were determined to be the major conjugates in 6S- and 6G-treated HSA-MGO assays, respectively, using LC-ESI-MS techniques. These findings showed the potential effects of 6S and 6G on the prevention of protein glycation, suggesting regular consumption of ginger root extract may attenuate the progression of MGO-associated diabetic complications in patients.
Collapse
Affiliation(s)
- Yingdong Zhu
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus , 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yantao Zhao
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus , 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Pei Wang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus , 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Mohamed Ahmedna
- Department of Health Science, College of Arts & Sciences, Qatar University , Doha 2713, Qatar
| | - Shengmin Sang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus , 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
21
|
Hrynets Y, Ndagijimana M, Betti M. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6249-6261. [PMID: 26114422 DOI: 10.1021/acs.jafc.5b02664] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This experiment compared the in vitro degradation of glucosamine (GlcN), N-acetylglucosamine, and glucose in the presence of NH3 incubated at 37 °C in phosphate buffer from 0.5 to 12 days. The reactions were monitored with UV-vis absorption and fluorescence emission spectroscopies, and the main products of degradation, quinoxaline derivatives of α-dicarbonyl compounds and condensation products, were determined using UHPLC-UV and Orbitrap mass spectrometry. GlcN produced two major dicarbonyl compounds, glucosone and 3-deoxyglucosone, ranging from 709 to 3245 mg/kg GlcN and from 272 to 4535 mg/kg GlcN, respectively. 3,4-Dideoxyglucosone-3-ene, glyoxal, hydroxypyruvaldehyde, methylglyoxal, and diacetyl were also detected in lower amounts compared to glucosone and 3-deoxyglucosone. Several pyrazine condensation products resulting from the reaction between dicarbonyls and GlcN were also identified. This study determined that GlcN is a significantly unstable molecule producing a high level of degradation products at 37 °C.
Collapse
Affiliation(s)
- Yuliya Hrynets
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, Canada T6G 2P5
| | - Maurice Ndagijimana
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, Canada T6G 2P5
| | - Mirko Betti
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, Canada T6G 2P5
| |
Collapse
|
22
|
Milkovska-Stamenova S, Schmidt R, Frolov A, Birkemeyer C. GC-MS Method for the Quantitation of Carbohydrate Intermediates in Glycation Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5911-5919. [PMID: 26043919 DOI: 10.1021/jf505757m] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glycation is a ubiquitous nonenzymatic reaction of carbonyl compounds with amino groups of peptides and proteins, resulting in the formation of advanced glycation end-products (AGEs) and thereby affecting the properties and quality of thermally processed foods. In this context, mechanisms of the Maillard reaction of proteins need to be understood; that is, glycation products and intermediates (α-dicarbonyls and sugars) need to be characterized. Although the chemical analysis of proteins, peptides, and α-dicarbonyls is well established, sensitive and precise determination of multiple sugars in glycation mixtures is still challenging. This paper presents a gas chromatography-mass spectrometry (GC-MS) method for absolute quantitation of 22 carbohydrates in the model of phosphate-buffered glycation systems. The approach relied on the removal of the phosphate component by polymer-based ion exchange solid phase extraction (SPE) followed by derivatization of carbohydrates and subsequent GC-MS analysis. Thereby, baseline separation for most of the analytes and detection limits of up to 10 fmol were achieved. The method was successfully applied to the analysis of in vitro glycation reactions. Thereby, at least seven sugar-related Maillard reaction intermediates could be identified and quantified. The most abundant reaction product was d-fructose, reaching 2.70 ± 0.12 and 2.38 ± 0.66 mmol/L after 120 min of incubation in the absence and presence of the model peptide, respectively.
Collapse
Affiliation(s)
- Sanja Milkovska-Stamenova
- †Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, ‡Center for Biotechnology and Biomedicine (BBZ), and #Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
| | - Rico Schmidt
- †Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, ‡Center for Biotechnology and Biomedicine (BBZ), and #Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
| | - Andrej Frolov
- †Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, ‡Center for Biotechnology and Biomedicine (BBZ), and #Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
| | - Claudia Birkemeyer
- †Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, ‡Center for Biotechnology and Biomedicine (BBZ), and #Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
23
|
Pluskota-Karwatka D, Pawłowska A. Characterization of Adducts Formed in the Reactions of Methylglyoxal and Malonaldehyde with Lysine and Histidine Derivatives. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201400345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond) 2015; 128:839-61. [PMID: 25818485 DOI: 10.1042/cs20140683] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and accumulation of advanced glycation endproducts (AGEs) are related to diabetes and other age-related diseases. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is the major precursor in the formation of AGEs. MGO is mainly formed as a byproduct of glycolysis. Under physiological circumstances, MGO is detoxified by the glyoxalase system into D-lactate, with glyoxalase I (GLO1) as the key enzyme in the anti-glycation defence. New insights indicate that increased levels of MGO and the major MGO-derived AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1), and dysfunctioning of the glyoxalase system are linked to several age-related health problems, such as diabetes, cardiovascular disease, cancer and disorders of the central nervous system. The present review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system and its effect on biochemical pathways in relation to the development of age-related diseases. Although several scavengers of MGO have been developed over the years, therapies to treat MGO-associated complications are not yet available for application in clinical practice. Small bioactive inducers of GLO1 can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.
Collapse
|
25
|
Oxidative stress and adipocyte biology: focus on the role of AGEs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:534873. [PMID: 25878764 PMCID: PMC4386674 DOI: 10.1155/2015/534873] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs) formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE). This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein) undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin) may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.
Collapse
|
26
|
Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015; 5:194-222. [PMID: 25786107 PMCID: PMC4384119 DOI: 10.3390/biom5010194] [Citation(s) in RCA: 748] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease characterized by insulin resistance and β cell failure leading to elevated blood glucose levels. Hyperglycemia is suggested to be the main cause of diabetic complications, which not only decrease life quality and expectancy, but are also becoming a problem regarding the financial burden for health care systems. Therefore, and to counteract the continually increasing prevalence of diabetes, understanding the pathogenesis, the main risk factors, and the underlying molecular mechanisms may establish a basis for prevention and therapy. In this regard, research was performed revealing further evidence that oxidative stress has an important role in hyperglycemia-induced tissue injury as well as in early events relevant for the development of T2DM. The formation of advanced glycation end products (AGEs), a group of modified proteins and/or lipids with damaging potential, is one contributing factor. On the one hand it has been reported that AGEs increase reactive oxygen species formation and impair antioxidant systems, on the other hand the formation of some AGEs is induced per se under oxidative conditions. Thus, AGEs contribute at least partly to chronic stress conditions in diabetes. As AGEs are not only formed endogenously, but also derive from exogenous sources, i.e., food, they have been assumed as risk factors for T2DM. However, the role of AGEs in the pathogenesis of T2DM and diabetic complications—if they are causal or simply an effect—is only partly understood. This review will highlight the involvement of AGEs in the development and progression of T2DM and their role in diabetic complications.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
27
|
Takino JI, Nagamine K, Takeuchi M, Hori T. In vitro identification of nonalcoholic fatty liver disease-related protein hnRNPM. World J Gastroenterol 2015; 21:1784-1793. [PMID: 25684943 PMCID: PMC4323454 DOI: 10.3748/wjg.v21.i6.1784] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/29/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the formation of intracellular glyceraldehyde-derived advanced glycation end products (Glycer-AGEs) in the presence of high concentrations of fructose.
METHODS: Cells of the human hepatocyte cell line Hep3B were incubated with or without fructose for five days, and the corresponding cell lysates were separated by two-dimensional gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Glycer-AGEs were detected with the anti-Glycer-AGEs antibody. Furthermore, the identification of the proteins that are modified by glyceraldehyde in the presence of high concentrations of fructose was conducted using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The protein and mRNA levels were determined by Western blotting and real-time reverse transcription PCR, respectively.
RESULTS: The results of the two-dimensional gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a greater amount of Glycer-AGEs in the sample exposed to high concentrations of fructose than in the control. The detected Glycer-AGEs showed isoelectric points in the range of 8.0-9.0 and molecular weights in the range of 60-80 kDa. The heterogeneous nuclear ribonucleoprotein M (hnRNPM), which plays an important role in regulating gene expression by processing heterogeneous nuclear RNAs to form mature mRNAs, was identified as a modified protein using MALDI-TOF-MS. Increasing the concentration of fructose in the medium induced a concentration-dependent increase in the generated Glycer-AGEs. Furthermore, in an experiment using glyceraldehyde, which is a precursor of Glycer-AGEs, hnRNPM was found to be more easily glycated than the other proteins.
CONCLUSION: The results suggest that glyceraldehyde-modified hnRNPM alters gene expression. This change may cause adverse effects in hepatocytes and may serve as a target for therapeutic intervention.
Collapse
|
28
|
Hu H, Jiang H, Ren H, Hu X, Wang X, Han C. AGEs and chronic subclinical inflammation in diabetes: disorders of immune system. Diabetes Metab Res Rev 2015; 31:127-37. [PMID: 24846076 DOI: 10.1002/dmrr.2560] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 07/16/2012] [Indexed: 01/12/2023]
Abstract
Chronic subclinical inflammation represents a risk factor of type 2 diabetes and several diabetes complications, including neuropathy and atherosclerosis including macro-vasculopathy and micro-vasculopathy. However, the inflammatory response in the diabetic wound was shown to be remarkably hypocellular, unregulated and ineffective. Advanced glycation end products (AGEs) and one of its receptors, RAGE, were involved in inducing chronic immune imbalance in diabetic patients. Such interactions attracts immune cell into diffused glycated tissue and activates these cells to induce inflammatory damage, but disturbs the normal immune rhythm in diabetic wound. Traditional measurements of AGEs are high-performance liquid chromatography and immunohistochemistry staining, but their application faces the limitations including complexity, cost and lack of reproducibility. A new noninvasive method emerged in 2004, using skin autofluorescence as indicator for AGEs accumulation. It had been reported to be informative in evaluating the chronic risk of diabetic patients. Studies have indicated therapeutic potentials of anti-AGE recipes. These recipes can reduce AGE absorption/de novo formation, block AGE-RAGE interaction and arrest downstream signaling after RAGE activation.
Collapse
Affiliation(s)
- Hang Hu
- Department of Burns and Wound Center, Second Affiliated Hospital College of Medicine, Zhejiang University, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Roldan M, Loebner J, Degen J, Henle T, Antequera T, Ruiz-Carrascal J. Advanced glycation end products, physico-chemical and sensory characteristics of cooked lamb loins affected by cooking method and addition of flavour precursors. Food Chem 2015; 168:487-95. [DOI: 10.1016/j.foodchem.2014.07.100] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/21/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
|
30
|
Antiglycation Activity of Iridoids and Their Food Sources. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2014; 2014:276950. [PMID: 26904624 PMCID: PMC4745502 DOI: 10.1155/2014/276950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/16/2023]
Abstract
Iridoids are dietary phytochemicals that may have the ability to inhibit the formation of advanced glycation end products (AGEs). Three studies were conducted to investigate this anti-AGE potential. First, the inhibition of fluorescence intensity by food-derived iridoids, after 4 days of incubation with bovine serum albumin, glucose, and fructose, was used to evaluate in vitro antiglycation activity. Next, an 8-week open-label pilot study used the AGE Reader to measure changes in the skin autofluorescence of 34 overweight adults who consumed daily a beverage containing food sources of iridoids. Finally, a cross-sectional population study with 3913 people analyzed the relationship between daily iridoid intake and AGE accumulation, as measured by skin autofluorescence with the TruAge scanner. In the in vitro test, deacetylasperulosidic acid and loganic acid both inhibited glycation in a concentration-dependent manner, with respective IC50 values of 3.55 and 2.69 mM. In the pilot study, average skin autofluorescence measurements decreased by 0.12 units (P < 0.05). The cross-sectional population survey revealed that, for every mg of iridoids consumed, there is a corresponding decline in AGE associated age of 0.017 years (P < 0.0001). These results suggest that consumption of dietary sources of iridoids may be a useful antiaging strategy.
Collapse
|
31
|
Pavićević ID, Jovanović VB, Takić MM, Penezić AZ, Aćimović JM, Mandić LM. Fatty acids binding to human serum albumin: Changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal. Chem Biol Interact 2014; 224:42-50. [DOI: 10.1016/j.cbi.2014.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 12/24/2022]
|
32
|
van Rooijen C, Bosch G, Wierenga P, Hendriks W, van der Poel A. The effect of steam pelleting of a dry dog food on the Maillard reaction. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
5-O-Demethylnobiletin, a polymethoxylated flavonoid, from Citrus depressa Hayata peel prevents protein glycation. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Ahmad S, Khan MS, Akhter F, Khan MS, Khan A, Ashraf JM, Pandey RP, Shahab U. Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation. Glycobiology 2014; 24:979-990. [PMID: 24946787 DOI: 10.1093/glycob/cwu057] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
Abstract
Glycation is the result of covalent bonding of a free amino group of biological macromolecules with a reducing sugar, which results in the formation of a Schiff base that undergoes rearrangement, dehydration and cyclization to form a more stable Amadori product. The final products of nonenzymatic glycation of biomacromolecules like DNA, proteins and lipids are known as advanced glycation end products (AGEs). AGEs may be generated rapidly or over long times stimulated by distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. Both Schiff base and Amadori glycation products generate free radicals resulting in decline of antioxidant defense mechanisms and can damage cellular organelles and enzymes. This critical review primarily focuses on the mechanistic insight of glycation and the most probable route for the formation of glycation products and their therapeutic interventions. Furthermore, the prevention of glycation reaction using therapeutic drugs such as metformin, pyridoxamine and aminoguanidine (AG) are discussed with special emphasis on the novel concept of the bioconjugation of these drugs like, AG with gold nanoparticles (GNPs). At or above 10 mM concentration, AG is found to be toxic and therefore has serious health concerns, and the study warrants doing this novel bioconjugation of AG with GNPs. This approach might increase the efficacy of the AG at a reduced concentration with low or no toxicity. Using the concept of synthesis of GNPs with abovementioned drugs, it is assumed that toxicity of various drugs which are used at high doses can be minimized more effectively.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - M Salman Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Akhter
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Amir Khan
- Glocal School of Life Sciences, Glocal University, Saharanpur, Uttar Pradesh, India
| | - J M Ashraf
- Department of Biotechnology, School of Biotechnology, Yeungnam University, Yeungnam, Republic of Korea
| | - Ramendra Pati Pandey
- Nano-Biotech Lab, Department of Zoology, Kirorimal College, University of Delhi, Delhi, India
| | - Uzma Shahab
- Department of Biochemistry, Central Drug Research Institute, Lucknow, India
| |
Collapse
|
35
|
Chakraborty S, Karmakar K, Chakravortty D. Cells producing their own nemesis: understanding methylglyoxal metabolism. IUBMB Life 2014; 66:667-678. [PMID: 25380137 DOI: 10.1002/iub.1324] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 01/21/2023]
Abstract
Methylglyoxal, which is technically known as 2-oxopropanal or pyruvaldehyde, shows typical reactions of carbonyl compounds as it has both an aldehyde and a ketone functional group. It is an extremely cytotoxic physiological metabolite, which is generated by both enzymatic and nonenzymatic reactions. The deleterious nature of the compound is due to its ability to glycate and crosslink macromolecules like protein and DNA, respectively. However, despite having toxic effects on cellular processes, methylglyoxal retains its efficacy as an anticancer drug. Indeed, methylglyoxal is one of the well-known anticancer therapeutic agents used in the treatment. Several studies on methylglyoxal biology revolve around the manifestations of its inhibitory effects and toxicity in microbial growth and diabetic complications, respectively. Here, we have revisited the chronology of methylglyoxal research with emphasis on metabolism of methylglyoxal and implications of methylglyoxal production or detoxification on bacterial pathogenesis and disease progression.
Collapse
Affiliation(s)
- Sangeeta Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
36
|
Goodarzi M, Moosavi-Movahedi AA, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F, Farhadi M, Saboury AA, Sheibani N. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:561-567. [PMID: 24813286 DOI: 10.1016/j.saa.2014.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.
Collapse
Affiliation(s)
- M Goodarzi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - A A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| | - M Habibi-Rezaei
- School of Biology, University of Tehran, Tehran, Iran; Center of Excellence in NanoBioMedicine, University of Tehran, Tehran, Iran
| | - M Shourian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - H Ghourchian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - F Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - M Farhadi
- ENT-HNS Research Center, IUMS, Tehran, Iran
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - N Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
37
|
Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 2014; 19:49-63. [PMID: 23404649 DOI: 10.1007/s10741-013-9374-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence demonstrates that advanced glycation end products (AGEs) play a pivotal role in the development and progression of diabetic heart failure, although there are numerous other factors that mediate the disease response. AGEs are generated intra- and extracellularly as a result of chronic hyperglycemia. Then, following the interaction with receptors for advanced glycation end products (RAGEs), a series of events leading to vascular and myocardial damage are elicited and sustained, which include oxidative stress, increased inflammation, and enhanced extracellular matrix accumulation resulting in diastolic and systolic dysfunction. Whereas targeting glycemic control and treating additional risk factors, such as obesity, dyslipidemia, and hypertension, are mandatory to reduce chronic complications and prolong life expectancy in diabetic patients, drug therapy tailored to reducing the deleterious effects of the AGE-RAGE interactions is being actively investigated and showing signs of promise in treating diabetic cardiomyopathy and associated heart failure. This review shall discuss the formation of AGEs in diabetic heart tissue, potential targets of glycation in the myocardium, and underlying mechanisms that lead to diabetic cardiomyopathy and heart failure along with the use of AGE inhibitors and breakers in mitigating myocardial injury.
Collapse
Affiliation(s)
- Vijaya Lakshmi Bodiga
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India
| | | | | |
Collapse
|
38
|
Kandarakis SA, Piperi C, Topouzis F, Papavassiliou AG. Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res 2014; 42:85-102. [PMID: 24905859 DOI: 10.1016/j.preteyeres.2014.05.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/27/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated in vision loss associated with macula degeneration, cataract formation, diabetic retinopathy and glaucoma. This pathogenic potential is mainly attributed to their accumulation in ocular tissues where they mediate aberrant crosslinking of extracellular matrix proteins and disruption of endothelial junctional complexes that affects cell permeability, mediates angiogenesis and breakdown of the inner blood-retinal barrier. Furthermore, AGEs severely affect cellular metabolism by disrupting ATP production, enhancing oxidative stress and modulating gene expression of anti-angiogenic and anti-inflammatory genes. Elucidation of AGE-induced mechanisms of action in different eye compartments will help in the understanding of the complex cellular and molecular processes associated with eye diseases. Several pharmaceutical agents with anti-glycating and anti-oxidant properties as well as AGE crosslink 'breakers' have been currently applied to eye diseases. The role of diet and the beneficial effects of certain nutriceuticals provide an alternative way to manage chronic visual disorders that affect the quality of life of millions of people.
Collapse
Affiliation(s)
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, 'AHEPA' Hospital, Thessaloniki, Greece
| | | |
Collapse
|
39
|
Oxidative Stress Gated by Fenton and Haber Weiss Reactions and Its Association With Alzheimer’s Disease. ARCHIVES OF NEUROSCIENCE 2014. [DOI: 10.5812/archneurosci.20078] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides. Toxicology 2014; 322:1-13. [DOI: 10.1016/j.tox.2014.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 02/06/2023]
|
42
|
Indurthi VS, Leclerc E, Vetter SW. Calorimetric investigation of diclofenac drug binding to a panel of moderately glycated serum albumins. Eur J Pharm Sci 2014; 59:58-68. [DOI: 10.1016/j.ejps.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/27/2023]
|
43
|
Ashraf JM, Ansari MA, Choi I, Khan HM, Alzohairy MA. Antiglycating potential of gum arabic capped-silver nanoparticles. Appl Biochem Biotechnol 2014; 174:398-410. [PMID: 25080376 DOI: 10.1007/s12010-014-1065-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 07/22/2014] [Indexed: 02/02/2023]
Abstract
Advanced glycation end products are major contributors to the pathology of diabetes, Alzheimer's disease, and atherosclerosis; accordingly, identification of antiglycation compounds is attracting considerable interest. In the present study, the inhibitory effect of gum arabic capped-silver nanoparticles on advanced glycation end products formation was monitored by several biophysical techniques. Silver nanoparticles were characterized by ultraviolet-visible, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Bovine serum albumin and methylglyoxal mixtures incubated with increasing concentrations of silver nanoparticles showed significant reductions in advanced glycation end product formation that were confirmed by ultraviolet-visible, fluorescence spectrometry, and high-performance liquid chromatography techniques. High-performance liquid chromatography showed decreased adduct formation of glycated protein in the presence of silver nanoparticles. The structural changes induced by silver nanoparticles were further confirmed by circular dichroism and Fourier transform infrared spectroscopy. Strong inhibition of advanced glycation end product formation was observed in the presence of elevated silver nanoparticles. The results of this study suggest that silver nanoparticles are a potent antiglycating agent.
Collapse
Affiliation(s)
- Jalaluddin M Ashraf
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of South Korea,
| | | | | | | | | |
Collapse
|
44
|
Determination of glyoxal and methylglyoxal in Thai fish sauce and their changes during storage test. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2014. [DOI: 10.1007/s11694-014-9197-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Palsamy P, Bidasee KR, Ayaki M, Augusteyn RC, Chan JY, Shinohara T. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts. Free Radic Biol Med 2014; 72:134-48. [PMID: 24746615 PMCID: PMC4410980 DOI: 10.1016/j.freeradbiomed.2014.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 01/03/2023]
Abstract
Age-related cataracts are a leading cause of blindness. Previously, we have demonstrated the association of the unfolded protein response with various cataractogenic stressors. However, DNA methylation alterations leading to suppression of lenticular antioxidant protection remains unclear. Here, we report the methylglyoxal-mediated sequential events responsible for Keap1 promoter DNA demethylation in human lens epithelial cells, because Keap1 is a negative regulatory protein that regulates the Nrf2 antioxidant protein. Methylglyoxal induces endoplasmic reticulum stress and activates the unfolded protein response leading to overproduction of reactive oxygen species before human lens epithelial cell death. Methylglyoxal also suppresses Nrf2 and DNA methyltransferases but activates the DNA demethylation pathway enzyme TET1. Bisulfite genomic DNA sequencing confirms the methylglyoxal-mediated Keap1 promoter DNA demethylation leading to overexpression of Keap1 mRNA and protein. Similarly, bisulfite genomic DNA sequencing shows that human clear lenses (n = 15) slowly lose 5-methylcytosine in the Keap1 promoter throughout life, at a rate of 1% per year. By contrast, diabetic cataractous lenses (n = 21) lose an average of 90% of the 5-methylcytosine regardless of age. Overexpressed Keap1 protein is responsible for decreasing Nrf2 by proteasomal degradation, thereby suppressing Nrf2-dependent stress protection. This study demonstrates for the first time the associations of unfolded protein response activation, Nrf2-dependent antioxidant system failure, and loss of Keap1 promoter methylation because of altered active and passive DNA demethylation pathway enzymes in human lens epithelial cells by methylglyoxal. As an outcome, the cellular redox balance is altered toward lens oxidation and cataract formation.
Collapse
Affiliation(s)
- Periyasamy Palsamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Keshore R Bidasee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Masahiko Ayaki
- Department of Ophthalmology, Keio University, Tokyo 1698582, Japan
| | - Robert C Augusteyn
- Vision Cooperative Research Centre, Brien Holden Vision Institute, Sydney 2052, Australia; Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
46
|
Nagai R, Shirakawa JI, Fujiwara Y, Ohno RI, Moroishi N, Sakata N, Nagai M. Detection of AGEs as markers for carbohydrate metabolism and protein denaturation. J Clin Biochem Nutr 2014; 55:1-6. [PMID: 25120273 PMCID: PMC4078063 DOI: 10.3164/jcbn.13-112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/01/2014] [Indexed: 01/22/2023] Open
Abstract
Approximately 100 years have passed since the Maillard reaction was first reported in the field of food chemistry as a condensation reaction between reducing sugars and amino acids. This reaction is thought to progress slowly primarily from glucose with proteins in vivo. An early-stage product, called the ”Amadori product”, is converted into advanced glycation end products. Those accumulate in the body in accordance with age, with such accumulation being enhanced by lifestyle-related diseases that result in the denaturation of proteins. Recent studies have demonstrated that intermediate carbonyls are generated by several pathways, and rapidly generate many glycation products. However, accurate quantification of glycation products in vivo is difficult due to instability and differences in physicochemical properties. In this connection, little is known about the relationship between the structure of glycation products and pathology. Furthermore, the interaction between proteins modified by glycation and receptors for advanced glycation end products is also known to induce the production of several inflammatory cytokines. Therefore, those inhibitors have been developed over the world to prevent lifestyle-related diseases. In this review, we describe the process of protein denaturation induced by glycation and discuss the possibility of using the process as a marker of age-related diseases.
Collapse
Affiliation(s)
- Ryoji Nagai
- Laboratory of Food and Regulation Biology Department of Bioscience, School of Agriculture, Tokai University, Kawayou, Minamiaso, Aso-gun, Kumamoto 869-1404, Japan
| | - Jun-Ichi Shirakawa
- Laboratory of Food and Regulation Biology Department of Bioscience, School of Agriculture, Tokai University, Kawayou, Minamiaso, Aso-gun, Kumamoto 869-1404, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Rei-Ichi Ohno
- Laboratory of Food and Regulation Biology Department of Bioscience, School of Agriculture, Tokai University, Kawayou, Minamiaso, Aso-gun, Kumamoto 869-1404, Japan
| | - Narumi Moroishi
- Laboratory of Food and Regulation Biology Department of Bioscience, School of Agriculture, Tokai University, Kawayou, Minamiaso, Aso-gun, Kumamoto 869-1404, Japan
| | - Noriyuki Sakata
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mime Nagai
- Laboratory of Food and Regulation Biology Department of Bioscience, School of Agriculture, Tokai University, Kawayou, Minamiaso, Aso-gun, Kumamoto 869-1404, Japan
| |
Collapse
|
47
|
Shahab U, Tabrez S, Khan MS, Akhter F, Khan MS, Saeed M, Ahmad K, Srivastava AK, Ahmad S. Immunogenicity of DNA-advanced glycation end product fashioned through glyoxal and arginine in the presence of Fe³⁺: its potential role in prompt recognition of diabetes mellitus auto-antibodies. Chem Biol Interact 2014; 219:229-40. [PMID: 24968179 DOI: 10.1016/j.cbi.2014.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/24/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
Glyoxal, methylglyoxal and 3-deoxyglucosones are reactive dicarbonyl compounds, which transform free amino groups of proteins and lipoproteins macromolecule into advanced glycation end-products (AGEs). AGEs play a significant role in the pathophysiology of aging and diabetic complications because of their genotoxic effect. Glyoxal also reacts with free amino group of nucleic acids resulting in the formation of DNA-AGEs. The present study reports the genotoxicity and immunogenicity of AGEs formed by Glyoxal-Arginine-Fe(3+) (G-Arg-Fe(3+)) system as a glycating agent. Immunogenicity of native and G-Arg-Fe(3+)-DNA was probed in female rabbits. Immunofluorescence suggests the presence of immune complex deposition in the kidney section of immunized rabbits. Spectroscopic analysis and melting temperature indicates the structural modification in the human DNA. The modified human DNA is found to be highly immunogenic, whereas unmodified form was simply non-immunogenic. This study shows the presence of auto-antibodies against G-Arg-Fe(3+) modified human DNA in the sera of diabetes type 1 and in few cases type 2 patients due to secondary complications of nephropathy. The glyco-oxidative lesions have also been detected in the lymphocyte DNA isolated from patients having type 1 and type 2 diabetes. The results show structural perturbations generating new epitopes in G-Arg-Fe(3+)-DNA rendering it pretty immunogenic.
Collapse
Affiliation(s)
- Uzma Shahab
- Department of Biochemistry, Central Drug Research Institute, Lucknow, U.P., India; Department of Biochemistry, King George Medical University, Lucknow, U.P., India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Salman Khan
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Firoz Akhter
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Mohd Saeed
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Khurshid Ahmad
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - A K Srivastava
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, U.P., India.
| |
Collapse
|
48
|
Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014; 2014:137919. [PMID: 25019091 PMCID: PMC4082845 DOI: 10.1155/2014/137919] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 02/08/2023] Open
Abstract
Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS) and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH), respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, RES-314E, Fort Worth, TX 76107, USA
| |
Collapse
|
49
|
Structural alterations of hemoglobin and myoglobin by glyoxal: A comparative study. Int J Biol Macromol 2014; 66:311-8. [DOI: 10.1016/j.ijbiomac.2014.02.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/02/2014] [Accepted: 02/17/2014] [Indexed: 11/19/2022]
|
50
|
|