1
|
Anthrax toxin requires ZDHHC5-mediated palmitoylation of its surface-processing host enzymes. Proc Natl Acad Sci U S A 2019; 116:1279-1288. [PMID: 30610172 PMCID: PMC6347675 DOI: 10.1073/pnas.1812588116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toxins exploit numerous pathways of their host cells to gain cellular entry and promote intoxication. Therefore, studying the action of toxins allows us to better understand basic mechanisms in cell biology. In this study, we found that ZDHHC5, an enzyme that adds a lipid posttranslational modification to cysteines of proteins, is responsible for allowing anthrax toxin to enter cells. This enzyme acts on proprotein convertases that are needed to cleave these toxins to their active forms. ZDHHC5 does not affect the enzymatic activity of these proteases, but allows them to encounter the toxin by favoring their partitioning in microdomains on the cell surface, domains where the toxin has previously been shown to preferentially reside. The protein acyl transferase ZDHHC5 was recently proposed to regulate trafficking in the endocytic pathway. Therefore, we explored the function of this enzyme in controlling the action of bacterial toxins. We found that ZDHHC5 activity is required for two very different toxins: the anthrax lethal toxin and the pore-forming toxin aerolysin. Both of these toxins have precursor forms, the protoxins, which can use the proprotein convertases Furin and PC7 for activation. We show that ZDHHC5 indeed affects the processing of the protoxins to their active forms. We found that Furin and PC7 can both be S-palmitoylated and are substrates of ZDHHC5. The impact of ZDHHC5 on Furin/PC7-mediated anthrax toxin cleavage is dual, having an indirect and a direct component. First, ZDHHC5 affects the homeostasis and trafficking of a subset of cellular proteins, including Furin and PC7, presumably by affecting the endocytic/recycling pathway. Second, while not inhibiting the protease activity per se, ZDHHC5-mediated Furin/PC7 palmitoylation is required for the cleavage of the anthrax toxin. Finally, we show that palmitoylation of Furin and PC7 promotes their association with plasma membrane microdomains. Both the receptor-bound toxin and the convertases are of very low abundance at the cell surface. Their encounter is unlikely on reasonable time scales. This work indicates that palmitoylation drives their encounter in specific domains, allowing processing and thereby intoxication of the cell.
Collapse
|
2
|
Guillemot J, Canuel M, Essalmani R, Prat A, Seidah NG. Implication of the proprotein convertases in iron homeostasis: proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin. Hepatology 2013; 57:2514-24. [PMID: 23390091 DOI: 10.1002/hep.26297] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/15/2013] [Indexed: 02/01/2023]
Abstract
UNLABELLED The first seven members of the proprotein convertase (PC) family activate protein precursors by cleavage after basic residues. While PC7 has no known specific substrates, it shows redundancy with other PCs. A genome-wide association study suggested that circulating levels of shed human transferrin receptor 1 (hTfR1) are regulated by PC7. We thus examined whether hTfR1 constitutes a specific substrate for PC7. Coexpression of hTfR1 with PCs in several cell lines indicated that PC7 is the only convertase that sheds this receptor into the medium. Site-directed mutagenesis showed that cleavage occurs at the unusual site KTECER100 ↓LA, in which the P1 Arg100 and P6 Lys95 are critical. Pharmacological treatments revealed that shedding of hTfR1 by PC7 requires endocytosis into acidic clathrin-coated vesicles. A PC7 chimera, in which the transmembrane domain and the cytosolic tail of PC7 were replaced by that of the convertase furin, lost its ability to cleave the receptor, demonstrating the importance of these domains in the regulation of PC7 function. Analysis of primary hepatocytes from mice lacking furin, PC5, PACE4, or PC7 revealed that hepcidin, which limits iron availability in the circulation, is specifically generated by furin and not by PC7. Finally, depletion of iron in the medium of hepatoma cell lines incubated with the iron chelator desferrioxamine resulted in PC7 down-regulation. CONCLUSION Among the PC family members, only furin activates hepcidin in hepatocytes, and uniquely the full-length membrane-bound PC7 can directly shed hTfR1 by cleavage at Arg100 ↓. Our results support the notion that, when iron is limiting, hTfR1 levels increase at least in part by way of the down-regulation of PC7 expression. (HEPATOLOGY 2013;).
Collapse
Affiliation(s)
- Johann Guillemot
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
3
|
Declercq J, Meulemans S, Plets E, Creemers JWM. Internalization of proprotein convertase PC7 from plasma membrane is mediated by a novel motif. J Biol Chem 2012; 287:9052-60. [PMID: 22294700 DOI: 10.1074/jbc.m111.306407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proprotein convertase 7 (PC7) is a member of the subtilisin-like proprotein convertase family, which is involved in the endoproteolysis of a variety of precursor proteins. Under steady state conditions, PC7 is mainly localized in the trans-Golgi network, but a small fraction is found at the cell surface. So far, no sorting signals for membrane trafficking have been identified in PC7. In this study, we have examined the internalization of PC7 from the plasma membrane. Our results show that internalization of PC7 is mediated by clathrin-coated vesicles. After inhibition of clathrin-mediated endocytosis using hypertonic conditions or the small molecule inhibitor, Pitstop 2, PC7 accumulated at the plasma membrane. Furthermore, PC7 was present in isolated clathrin-coated vesicles. To determine the internalization motif, constructs were generated in which parts of the N and C terminus of the cytoplasmic tail of PC7 were deleted, and chimeric proteins were constructed consisting of the luminal and transmembrane domains of Tac (CD25) and parts of the cytoplasmic domain of PC7. Antibody uptake experiments as well as surface biotinylation experiments demonstrated that the region between Ala(713) and Cys(726) in the cytoplasmic domain of PC7 is essential and sufficient for the internalization of PC7 but not for trans-Golgi network localization. Individual amino acids in this region were substituted with alanine, which identified Pro, Leu, and Cys as the essential amino acids. In conclusion, internalization of PC7 depends on a short transferable sequence in the cytoplasmic tail, which contains the three crucial amino acids PLC.
Collapse
Affiliation(s)
- Jeroen Declercq
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
4
|
Rousselet E, Benjannet S, Hamelin J, Canuel M, Seidah NG. The proprotein convertase PC7: unique zymogen activation and trafficking pathways. J Biol Chem 2011; 286:2728-38. [PMID: 21075846 PMCID: PMC3024769 DOI: 10.1074/jbc.m110.192344] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/09/2010] [Indexed: 01/04/2023] Open
Abstract
The zymogen activation mechanism and physiological functions of the most ancient and highly conserved basic amino acid-specific proprotein convertase 7 (PC7) are not known. Herein, we characterized the biosynthesis, subcellular localization, and trafficking of the membrane-bound full-length rat and human PC7. The prosegment of PC7 is primarily secreted alone as a non-inhibitory protein via the conventional, Golgi-dependent, secretory pathway. Mature PC7 is partially sulfated and thus reaches the cell surface via the conventional route. However, a fraction of PC7 reaches the cell surface through a brefeldin A- and COPII-independent unconventional secretory pathway. The latter trafficking may explain the rapid (<10 min) transit of a fraction of PC7 from the ER to the cell surface. Electron microscopy further confirmed the localization of PC7 to the cell surface of HEK293 cells. Within the cytosolic tail, only two cysteines (Cys(699) and Cys(704)) are palmitoylated, but this modification does not affect the choice of trafficking pathway. Swapping the transmembrane-cytosolic tail (TMCT) sequences of the convertases Furin and PC7 revealed that PC7(TMCT-Furin) is much more sulfated and hence traffics more efficiently through the conventional secretory pathway. In contrast, the Furin(TMCT-PC7) is no longer sulfated and thus reaches the cell surface by the unconventional pathway. Because trafficking of PC7(CT-Furin) and Furin(CT-PC7) resemble their wild type counterparts, we deduce that the transmembrane domain of PC7 regulates the sorting of PC7 toward the unconventional secretory pathway. In conclusion, PC7 is distinct from other proprotein convertases in its zymogen activation, subcellular localization, and trafficking.
Collapse
Affiliation(s)
- Estelle Rousselet
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Suzanne Benjannet
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Josée Hamelin
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Maryssa Canuel
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G. Seidah
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| |
Collapse
|
5
|
Rousselet E, Benjannet S, Marcinkiewicz E, Asselin MC, Lazure C, Seidah NG. Proprotein convertase PC7 enhances the activation of the EGF receptor pathway through processing of the EGF precursor. J Biol Chem 2011; 286:9185-95. [PMID: 21209099 DOI: 10.1074/jbc.m110.189936] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although the processing profile of the membrane-bound epidermal growth factor precursor (pro-EGF) is tissue-specific, it has not been investigated at the cellular level nor have the cognate proteinases been defined. Among the proprotein convertases (PCs), only the membrane-bound PC7, the most ancient and conserved basic amino acid-specific PC family member, induces the processing of pro-EGF into an ∼115-kDa transmembrane form (EGF-115) at an unusual VHPR(290)↓A motif. Because site-directed mutagenesis revealed that Arg(290) is not critical, the generation of EGF-115 by PC7 is likely indirect. This was confirmed by testing a wide range of protease inhibitors, which revealed that the production of EGF-115 is most probably achieved via the activation by PC7 of a latent serine and/or cysteine protease(s). EGF-115 is more abundant at the cell surface than pro-EGF and is associated with a stronger EGF receptor (EGFR) activation, as evidenced by higher levels of phosphorylated ERK1/2. This suggests that the generation of EGF-115 represents a regulatory mechanism of juxtacrine EGFR activation. Thus, PC7 is distinct from the other PCs in its ability to enhance the activation of the cell surface EGFR.
Collapse
Affiliation(s)
- Estelle Rousselet
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Cheung JC, Reithmeier RAF. Palmitoylation is not required for trafficking of human anion exchanger 1 to the cell surface. Biochem J 2004; 378:1015-21. [PMID: 14640982 PMCID: PMC1224004 DOI: 10.1042/bj20030847] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 11/25/2003] [Accepted: 11/27/2003] [Indexed: 01/12/2023]
Abstract
AE1 (anion exchanger 1) is a glycoprotein found in the plasma membrane of erythrocytes, where it mediates the electroneutral exchange of chloride and bicarbonate, a process important in CO2 removal from tissues. It had been previously shown that human AE1 purified from erythrocytes is covalently modified at Cys-843 in the membrane domain with palmitic acid. In this study, the role of Cys-843 in human AE1 trafficking was investigated by expressing various AE1 and Cys-843Ala (C843A) mutant constructs in transiently transfected HEK-293 cells. The AE1 C843A mutant was expressed to a similar level to AE1. The rate of N-glycan conversion from high-mannose into complex form in a glycosylation mutant (N555) of AE1 C843A, and thus the rate of trafficking from the endoplasmic reticulum to the Golgi, were comparable with that of AE1 (N555). Like AE1, AE1 C843A could be biotinylated at the cell surface, indicating that a cysteine residue at position 843 is not required for cell-surface expression of the protein. The turnover rate of AE1 C843A was not significantly different from AE1. While other proteins could be palmitoylated, labelling of transiently transfected HEK-293 cells or COS7 cells with [3H]palmitic acid failed to produce any detectable AE1 palmitoylation. These results suggest that AE1 is not palmitoylated in HEK-293 or COS7 cells and can traffic to the plasma membrane.
Collapse
Affiliation(s)
- Joanne C Cheung
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | | |
Collapse
|
7
|
Nozawa N, Daikoku T, Koshizuka T, Yamauchi Y, Yoshikawa T, Nishiyama Y. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J Virol 2003; 77:3204-16. [PMID: 12584344 PMCID: PMC149782 DOI: 10.1128/jvi.77.5.3204-3216.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL51 gene products are virion-associated phosphoproteins with apparent molecular masses of 27, 29, and 30 kDa in HSV-1-infected cells. In this study, we have investigated the intracellular localization and distribution of UL51 protein both in infected cells and in transfected cells expressing only UL51. We found that this protein colocalized closely with Golgi marker proteins such as the Golgi-58K protein and GM130 in transfected cells expressing only UL51. However, in infected cells, the UL51 protein localized to the juxtanuclear region but only partially colocalized with the Golgi maker proteins. Mutant protein analysis revealed that the N-terminal 15 amino acid residues of the UL51 protein sufficed for this Golgi localization property. The UL51 protein redistributed on addition of brefeldin A. This was prevented by pretreatment with 2-deoxyglucose and sodium azide, which results in ATP depletion, but not by pretreatment with NaF and AlCl(3), which activates heterotrimeric G proteins. Moreover, we found that palmitoylation of the UL51 protein through the N-terminal cysteine at position 9 was necessary for its Golgi localization. Protease digestion analysis suggested that the UL51 protein localized on the cytoplasmic face of the membrane in UL51-transfected cells, while in infected cells it localized mainly to the inside of cytoplasmic vesicles and/or the viral envelope. Transmission immunoelectron microscopy revealed an association of UL51 protein-specific labeling with cytoplasmic virions and also with some membranous structure. We infer from these observations that internalization of UL51 protein into the cytoplasmic vesicle and/or virion may occur in association with viral envelopment in HSV-infected cells.
Collapse
Affiliation(s)
- Naoki Nozawa
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
9
|
DeJesus G, Bizzozero OA. Effect of 2-fluoropalmitate, cerulenin and tunicamycin on the palmitoylation and intracellular translocation of myelin proteolipid protein. Neurochem Res 2002; 27:1669-75. [PMID: 12515321 DOI: 10.1023/a:1021643229028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have investigated the effect of documented protein palmitoylation inhibitors on the fatty acylation and intracellular transport of myelin proteolipid protein (PLP). To this end, brain slices from 20-day-old rats were incubated with either [3H]palmitate or [3H]leucine in the presence or absence of various concentrations of 2-fluoropalmitate (FP), cerulenin (CER), or tunicamycin (TM). FP (> or = 10 microM) decreased the cellular uptake of [3H]palmitate and consequently reduced the labeling of palmitoyl-CoA, glycerolipids and PLP. CER (> or = 1 mM) reduced the palmitoylation of PLP with a concomitant decline in protein thiols. Consistent with being a fatty acyl-CoA analogue, TM (> or = 200 microM) diminished the palmitoylation of PLP and lipids while increasing the amount of [3H]palmitoyl-CoA. Although both CER and TM decreased protein palmitoylation, only the latter affected the appearance of newly synthesized PLP into myelin. Because TM, but not CER, also reduced the formation of lipids, it is concluded that palmitoylation is not required for intracellular transport. Finally, comparison of the effect of TM in brain slices and in a cell-free system suggests that palmitoylation of PLP in whole cells may be an enzymatic process.
Collapse
Affiliation(s)
- Gisela DeJesus
- Department of Cell Biology and Physiology, University of New Mexico-School of Medicine, Albuquerque, New Mexico 87131-5218, USA
| | | |
Collapse
|
10
|
Kanaani J, el-Husseini AED, Aguilera-Moreno A, Diacovo JM, Bredt DS, Baekkeskov S. A combination of three distinct trafficking signals mediates axonal targeting and presynaptic clustering of GAD65. J Cell Biol 2002; 158:1229-38. [PMID: 12356867 PMCID: PMC2173248 DOI: 10.1083/jcb.200205053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The signals involved in axonal trafficking and presynaptic clustering are poorly defined. Here we show that targeting of the gamma-aminobutyric acid-synthesizing enzyme glutamate decarboxylase 65 (GAD65) to presynaptic clusters is mediated by its palmitoylated 60-aa NH(2)-terminal domain and that this region can target other soluble proteins and their associated partners to presynaptic termini. A Golgi localization signal in aa 1-23 followed by a membrane anchoring signal upstream of the palmitoylation motif are required for this process and mediate targeting of GAD65 to the cytosolic leaflet of Golgi membranes, an obligatory first step in axonal sorting. Palmitoylation of a third trafficking signal downstream of the membrane anchoring signal is not required for Golgi targeting. However, palmitoylation of cysteines 30 and 45 is critical for post-Golgi trafficking of GAD65 to presynaptic sites and for its relative dendritic exclusion. Reduction of cellular cholesterol levels resulted in the inhibition of presynaptic clustering of palmitoylated GAD65, suggesting that the selective targeting of the protein to presynaptic termini is dependent on sorting to cholesterol-rich membrane microdomains. The palmitoylated NH(2)-terminal region of GAD65 is the first identified protein region that can target other proteins to presynaptic clusters.
Collapse
Affiliation(s)
- Jamil Kanaani
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
11
|
Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 2002; 13:767-81. [PMID: 11907260 PMCID: PMC99597 DOI: 10.1091/mbc.01-05-0275] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here we demonstrate that multiple tetraspanin (transmembrane 4 superfamily) proteins are palmitoylated, in either the Golgi or a post-Golgi compartment. Using CD151 as a model tetraspanin, we identified and mutated intracellular N-terminal and C-terminal cysteine palmitoylation sites. Simultaneous mutations of C11, C15, C242, and C243 (each to serine) eliminated >90% of CD151 palmitoylation. Notably, palmitoylation had minimal influence on the density of tetraspanin protein complexes, did not promote tetraspanin localization into detergent-resistant microdomains, and was not required for CD151-alpha 3 beta 1 integrin association. However, the CD151 tetra mutant showed markedly diminished associations with other cell surface proteins, including other transmembrane 4 superfamily proteins (CD9, CD63). Thus, palmitoylation may be critical for assembly of the large network of cell surface tetraspanin-protein interactions, sometimes called the "tetraspanin web." Also, compared with wild-type CD151, the tetra mutant was much more diffusely distributed and showed markedly diminished stability during biosynthesis. Finally, expression of the tetra-CD151 mutant profoundly altered alpha 3 integrin-deficient kidney epithelial cells, such that they converted from a dispersed, elongated morphology to an epithelium-like cobblestone clustering. These results point to novel biochemical and biological functions for tetraspanin palmitoylation.
Collapse
Affiliation(s)
- Xiuwei Yang
- Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
ten Brinke A, Batenburg JJ, Haagsman HP, van Golde LMG, Vaandrager AB. Differential effect of brefeldin A on the palmitoylation of surfactant protein C proprotein mutants. Biochem Biophys Res Commun 2002; 290:532-8. [PMID: 11779204 DOI: 10.1006/bbrc.2001.6223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The surfactant protein C precursor (proSP-C) is palmitoylated on two cysteines adjacent to its transmembrane domain. We showed previously that palmitoylation of proSP-C occurs in a postendoplasmic reticulum compartment and is not affected by the Golgi-disturbing agent brefeldin A (BFA). In contrast, the investigations presented here showed that BFA almost completely abolished palmitoylation of proSP-C mutants that contained alterations in the region between the palmitoylated cysteines and the transmembrane domain, including a Pro 30 to Leu mutant associated with interstitial lung disease. This differential effect of BFA was not caused by differences in the palmitoylation kinetics between wild-type proSP-C and the mutants and was not mimicked by nocodazole and monensin. However, differences between the mutants and wild-type proSP-C in the relative degree of processing suggest that BFA may unmask a difference in routing. This would imply that the amino acids just N-terminal of the transmembrane domain may be important for a proper sorting of proSP-C.
Collapse
Affiliation(s)
- Anja ten Brinke
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|