1
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
2
|
Reed A, Ichu TA, Milosevich N, Melillo B, Schafroth MA, Otsuka Y, Scampavia L, Spicer TP, Cravatt BF. LPCAT3 Inhibitors Remodel the Polyunsaturated Phospholipid Content of Human Cells and Protect from Ferroptosis. ACS Chem Biol 2022; 17:1607-1618. [PMID: 35658397 DOI: 10.1021/acschembio.2c00317] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
LPCAT3 is an integral membrane acyltransferase in the Lands cycle responsible for generating C20:4 phospholipids and has been implicated in key biological processes such as intestinal lipid absorption, lipoprotein assembly, and ferroptosis. Small-molecule inhibitors of LPCAT3 have not yet been described and would offer complementary tools to genetic models of LPCAT3 loss, which causes neonatal lethality in mice. Here, we report the discovery by high-throughput screening of a class of potent, selective, and cell-active inhibitors of LPCAT3. We provide evidence that these compounds inhibit LPCAT3 in a biphasic manner, possibly reflecting differential activity at each subunit of the LPCAT3 homodimer. LPCAT3 inhibitors cause rapid rewiring of polyunsaturated phospholipids in human cells that mirrors the changes observed in LPCAT3-null cells. Notably, these changes include not only the suppression of C20:4 phospholipids but also corresponding increases in C22:4 phospholipids, providing a potential mechanistic explanation for the partial but incomplete protection from ferroptosis observed in cells with pharmacological or genetic disruption of LPCAT3.
Collapse
Affiliation(s)
- Alex Reed
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Taka-Aki Ichu
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Natalia Milosevich
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Michael A Schafroth
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| | - Yuka Otsuka
- UF Scripps HTS Facility, UF Scripps, Jupiter, Florida 33458, United States
| | - Louis Scampavia
- UF Scripps HTS Facility, UF Scripps, Jupiter, Florida 33458, United States
| | - Timothy P Spicer
- UF Scripps HTS Facility, UF Scripps, Jupiter, Florida 33458, United States
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, San Diego, California 92037, United States
| |
Collapse
|
3
|
Kim S, Lim B, Cho J, Lee S, Dang CG, Jeon JH, Kim JM, Lee J. Genome-Wide Identification of Candidate Genes for Milk Production Traits in Korean Holstein Cattle. Animals (Basel) 2021; 11:ani11051392. [PMID: 34068321 PMCID: PMC8153329 DOI: 10.3390/ani11051392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Milk production traits that are economically important in the dairy industry have been considered the main selection criteria for breeding. The present genome-wide association study was performed to identify chromosomal loci and candidate genes with potential effects on milk production phenotypes in a Korean Holstein population. A total of eight significant quantitative trait locus regions were identified for milk yield (Bos taurus autosome (BTA) 7 and 14), adjusted 305-d fat yield (BTA 3, 5, and 14), adjusted 305-d protein yield (BTA 8), and somatic cell score (BTA 8 and 23) of milk production traits. Furthermore, we discovered three main candidate genes (diacylglycerol O-acyltransferase 1 (DGAT1), phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) through bioinformatics analysis. These genes may help to understand better the underlying genetic and molecular mechanisms for milk production phenotypes in the Korean Holstein population. Abstract We performed a genome-wide association study and fine mapping using two methods (single marker regression: frequentist approach and Bayesian C (BayesC): fitting selected single nucleotide polymorphisms (SNPs) in a Bayesian framework) through three high-density SNP chip platforms to analyze milk production phenotypes in Korean Holstein cattle (n = 2780). We identified four significant SNPs for each phenotype in the single marker regression model: AX-311625843 and AX-115099068 on Bos taurus autosome (BTA) 14 for milk yield (MY) and adjusted 305-d fat yield (FY), respectively, AX-428357234 on BTA 18 for adjusted 305-d protein yield (PY), and AX-185120896 on BTA 5 for somatic cell score (SCS). Using the BayesC model, we discovered significant 1-Mb window regions that harbored over 0.5% of the additive genetic variance effects for four milk production phenotypes. The concordant significant SNPs and 1-Mb window regions were characterized into quantitative trait loci (QTL). Among the QTL regions, we focused on a well-known gene (diacylglycerol O-acyltransferase 1 (DGAT1)) and newly identified genes (phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) for MY and FY, and observed that DGAT1 is involved in glycerolipid metabolism, fat digestion and absorption, metabolic pathways, and retinol metabolism, and PDE4B is involved in cAMP signaling. Our findings suggest that the candidate genes in QTL are strongly related to physiological mechanisms related to the fat production and consequent total MY in Korean Holstein cattle.
Collapse
Affiliation(s)
- Sangwook Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
| | - Joohyeon Cho
- Dairy Cattle Genetic Improvement Center, Nonghyup, Goyang 10292, Gyeonggi-do, Korea; (J.C.); (S.L.)
| | - Seokhyun Lee
- Dairy Cattle Genetic Improvement Center, Nonghyup, Goyang 10292, Gyeonggi-do, Korea; (J.C.); (S.L.)
| | - Chang-Gwon Dang
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Chungcheongnam-do, Korea;
| | - Jung-Hwan Jeon
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea;
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
- Correspondence: (J.-M.K.); (J.L.); Tel.: +82-31-670-3263 (J.-M.K. & J.L.); Fax: +82-31-675-3108 (J.-M.K. & J.L.)
| | - Jungjae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
- Correspondence: (J.-M.K.); (J.L.); Tel.: +82-31-670-3263 (J.-M.K. & J.L.); Fax: +82-31-675-3108 (J.-M.K. & J.L.)
| |
Collapse
|
4
|
Sui X, Wang K, Gluchowski NL, Elliott SD, Liao M, Walther TC, Farese RV. Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme. Nature 2020; 581:323-328. [PMID: 32433611 PMCID: PMC7398557 DOI: 10.1038/s41586-020-2289-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
Triglycerides (triacylglycerols, TGs) store metabolic energy in organisms and have industrial uses for foods and fuels. Excessive accumulation of TGs in humans causes obesity and is associated with metabolic diseases1. TG synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes2–4 whose structures and catalytic mechanisms are unknown. Here we determined the structure of dimeric human DGAT1, a member of the membrane-bound O-acyltransferase (MBOAT) family, by cryo-electron microscopy at 3.0-Å resolution. DGAT1 forms a homodimer through N-terminal segments and a hydrophobic interface, with putative active sites within the membrane region. A structure obtained with oleoyl-CoA substrate resolved at 3.2-Å shows that the CoA moiety binds DGAT1 on the cytosolic side and the acyl group lies deep within a hydrophobic channel, positioning the acyl-CoA thioester bond near an invariant catalytic histidine residue. The reaction center is located inside a large cavity, which opens laterally to the membrane bilayer, providing lipid access to the active site. A lipid-like density, possibly an acyl-acceptor molecule, is located within the reaction center, orthogonal to acyl-CoA. Insights provided by the DGAT1 structures, together with mutagenesis and functional studies, give rise to a model of catalysis for DGAT’s generation of TGs.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kun Wang
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nina L Gluchowski
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Department of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Shane D Elliott
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Wang L, Qian H, Nian Y, Han Y, Ren Z, Zhang H, Hu L, Prasad BVV, Laganowsky A, Yan N, Zhou M. Structure and mechanism of human diacylglycerol O-acyltransferase 1. Nature 2020; 581:329-332. [PMID: 32433610 PMCID: PMC7255049 DOI: 10.1038/s41586-020-2280-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/17/2020] [Indexed: 12/27/2022]
Abstract
Diacylglycerol O-acyltransferase-1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans1. DGAT1 belongs to the superfamily of membrane-bound O-acyltransferases (MBOAT) that are found in all kingdoms of life and involved in acylation of lipids and proteins2,3. It remains unclear how human DGAT1 (hDGAT1) or other mammalian members of the MBOAT family recognize their substrates and catalyze their reactions. The absence of three-dimensional structures also hampers rational targeting of hDGAT1 for therapeutic purposes. Here we present the structure of hDGAT1 in complex with a substrate oleoyl Coenzyme A solved by cryo-electron microscopy. Each hDGAT1 protomer has nine transmembrane helices and eight of which form a conserved structural fold that we define as the MBOAT fold. The MBOAT fold in hDGAT1 carves out a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for the two substrates fatty acyl Coenzyme A and diacylglycerol. hDGAT1 can exist as either a homodimer or homotetramer and the two forms have similar enzymatic activity. The N-terminus of hDGAT1 interacts with the neighboring protomer and these interactions are required for the enzymatic activity.
Collapse
Affiliation(s)
- Lie Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hongwu Qian
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yin Nian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yimo Han
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.,Department of Material Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Zhenning Ren
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hanzhi Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Xu Y, Caldo KMP, Jayawardhane K, Ozga JA, Weselake RJ, Chen G. A transferase interactome that may facilitate channeling of polyunsaturated fatty acid moieties from phosphatidylcholine to triacylglycerol. J Biol Chem 2019; 294:14838-14844. [PMID: 31481466 DOI: 10.1074/jbc.ac119.010601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/25/2019] [Indexed: 12/23/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) such as α-linolenic acid (ALA, 18:3Δ9 cis ,12 cis ,15 cis ) have high nutritional and industrial values. In oilseed crops, PUFAs are synthesized on phosphatidylcholine (PC) and accumulated in triacylglycerol (TAG). Therefore, exploring the mechanisms that route PC-derived PUFA to TAG is essential for understanding and improving PUFA production. The seed oil of flax (Linum usitatissimum) is enriched in ALA, and this plant has many lipid biosynthetic enzymes that prefer ALA-containing substrates. In this study, using membrane yeast two-hybrid and bimolecular fluorescence complementation assays, we probed recombinant flax transferase enzymes, previously shown to contribute to PUFA enrichment of TAG, for physical interactions with each other under in vivo conditions. We found that diacylglycerol acyltransferases, which catalyze the final reaction in acyl-CoA-dependent TAG biosynthesis, interact with the acyl-editing enzymes phosphatidylcholine: diacylglycerol cholinephosphotransferase, and lysophosphatidylcholine acyltransferase. Physical interactions among the acyl-editing enzymes were also identified. These findings reveal the presence of an assembly of interacting transferases that may facilitate the channeling of PUFA from PC to TAG in flax and possibly also in other oleaginous plants that produce seeds enriched in PC-modified fatty acids.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Kethmi Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jocelyn A Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
7
|
Lee YJ, Kim JW. Monoacylglycerol O-acyltransferase 1 (MGAT1) localizes to the ER and lipid droplets promoting triacylglycerol synthesis. BMB Rep 2018; 50:367-372. [PMID: 28347400 PMCID: PMC5584744 DOI: 10.5483/bmbrep.2017.50.7.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/14/2023] Open
Abstract
Monoacylglycerol acyltransferase 1 (MGAT) is a microsomal enzyme that catalyzes the synthesis of diacylglycerol (DAG) and triacylglycerol (TAG). However, the subcellular localization and catalytic function domain of this enzyme is poorly understood. In this report, we identified that murine MGAT1 localizes to the endoplasmic reticulum (ER) under normal conditions, whereas MGAT1 co-localize to the lipid droplets (LD) under conditions of enriching fatty acids, contributing to TAG synthesis and LD expansion. For the enzyme activity, both the N-terminal transmembrane domain and catalytic HPHG motif are required. We also show that the transmembrane domain of MGAT1 consists of two hydrophobic regions in the N-terminus, and the consensus sequence FLXLXXXn, a putative neutral lipid-binding domain, exists in the first transmembrane domain. Finally, MGAT1 interacts with DGAT2, which serves to synergistically increase the TAG biosynthesis and LD expansion, leading to enhancement of lipid accumulation in the liver and fat.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongju 28159, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
8
|
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids for energy or membrane synthesis and act as hubs for metabolic processes. Cells generate LDs de novo, converting cells to emulsions with LDs constituting the dispersed oil phase in the aqueous cytoplasm. Here we review our current view of LD biogenesis. We present a model of LD formation from the ER in distinct steps and highlight the biology of proteins that govern this biophysical process. Areas of incomplete knowledge are identified, as are connections with physiology and diseases linked to alterations in LD biology.
Collapse
Affiliation(s)
- Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; , .,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142.,Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Jeeyun Chung
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; , .,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; , .,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142
| |
Collapse
|
9
|
Abstract
The heart utilizes large amounts of fatty acids as energy providing substrates. The physiological balance of lipid uptake and oxidation prevents accumulation of excess lipids. Several processes that affect cardiac function, including ischemia, obesity, diabetes mellitus, sepsis, and most forms of heart failure lead to altered fatty acid oxidation and often also to the accumulation of lipids. There is now mounting evidence associating certain species of these lipids with cardiac lipotoxicity and subsequent myocardial dysfunction. Experimental and clinical data are discussed and paths to reduction of toxic lipids as a means to improve cardiac function are suggested.
Collapse
Affiliation(s)
- P Christian Schulze
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.).
| | - Konstantinos Drosatos
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| | - Ira J Goldberg
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| |
Collapse
|
10
|
Haïli N, Louap J, Canonge M, Jagic F, Louis-Mondésir C, Chardot T, Briozzo P. Expression of Soluble Forms of Yeast Diacylglycerol Acyltransferase 2 That Integrate a Broad Range of Saturated Fatty Acids in Triacylglycerols. PLoS One 2016; 11:e0165431. [PMID: 27780240 PMCID: PMC5079557 DOI: 10.1371/journal.pone.0165431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/11/2016] [Indexed: 01/28/2023] Open
Abstract
The membrane proteins acyl-CoA:diacylglycerol acyltransferases (DGAT) are essential actors for triglycerides (TG) biosynthesis in eukaryotic organisms. Microbial production of TG is of interest for producing biofuel and value-added novel oils. In the oleaginous yeast Yarrowia lipolytica, Dga1p enzyme from the DGAT2 family plays a major role in TG biosynthesis. Producing recombinant DGAT enzymes pure and catalytically active is difficult, hampering their detailed functional characterization. In this report, we expressed in Escherichia coli and purified two soluble and active forms of Y. lipolytica Dga1p as fusion proteins: the first one lacking the N-terminal hydrophilic segment (Dga1pΔ19), the second one also devoid of the N-terminal putative transmembrane domain (Dga1pΔ85). Most DGAT assays are performed on membrane fractions or microsomes, using radiolabeled substrates. We implemented a fluorescent assay in order to decipher the substrate specificity of purified Dga1p enzymes. Both enzyme versions prefer acyl-CoA saturated substrates to unsaturated ones. Dga1pΔ85 preferentially uses long-chain saturated substrates. Dga1p activities are inhibited by niacin, a specific DGAT2 inhibitor. The N-terminal transmembrane domain appears important, but not essential, for TG biosynthesis. The soluble and active proteins described here could be useful tools for future functional and structural studies in order to better understand and optimize DGAT enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Nawel Haïli
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Julien Louap
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Michel Canonge
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Franjo Jagic
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Thierry Chardot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
11
|
Roesler K, Shen B, Bermudez E, Li C, Hunt J, Damude HG, Ripp KG, Everard JD, Booth JR, Castaneda L, Feng L, Meyer K. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans. PLANT PHYSIOLOGY 2016; 171:878-93. [PMID: 27208257 PMCID: PMC4902613 DOI: 10.1104/pp.16.00315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/16/2016] [Indexed: 05/05/2023]
Abstract
Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans.
Collapse
Affiliation(s)
| | - Bo Shen
- DuPont Pioneer, Johnston, Iowa 50131-1004
| | | | | | | | | | | | | | | | | | - Lizhi Feng
- DuPont Pioneer, Johnston, Iowa 50131-1004
| | - Knut Meyer
- DuPont Pioneer, Johnston, Iowa 50131-1004
| |
Collapse
|
12
|
Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling. Cell Mol Life Sci 2015; 72:3931-52. [PMID: 26153463 PMCID: PMC4575688 DOI: 10.1007/s00018-015-1982-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.
Collapse
Affiliation(s)
- Thomas Oliver Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| |
Collapse
|
13
|
Pan X, Peng FY, Weselake RJ. Genome-wide analysis of PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs. PLANT PHYSIOLOGY 2015; 167:887-904. [PMID: 25585619 PMCID: PMC4348769 DOI: 10.1104/pp.114.253658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) is an enzyme that catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3-position of sn-1,2-diacylglyerol, thus forming triacylglycerol and a lysophospholipid. Although the importance of PDAT in triacylglycerol biosynthesis has been illustrated in some previous studies, the evolutionary relationship of plant PDATs has not been studied in detail. In this study, we investigated the evolutionary relationship of the PDAT gene family across the green plants using a comparative phylogenetic framework. We found that the PDAT candidate genes are present in all examined green plants, including algae, lowland plants (a moss and a lycophyte), monocots, and eudicots. Phylogenetic analysis revealed the evolutionary division of the PDAT gene family into seven major clades. The separation is supported by the conservation and variation in the gene structure, protein properties, motif patterns, and/or selection constraints. We further demonstrated that there is a eudicot-wide PDAT gene expansion, which appears to have been mainly caused by the eudicot-shared ancient gene duplication and subsequent species-specific segmental duplications. In addition, selection pressure analyses showed that different selection constraints have acted on three core eudicot clades, which might enable paleoduplicated PDAT paralogs to either become nonfunctionalized or develop divergent expression patterns during evolution. Overall, our study provides important insights into the evolution of the plant PDAT gene family and explores the evolutionary mechanism underlying the functional diversification among the core eudicot PDAT paralogs.
Collapse
Affiliation(s)
- Xue Pan
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Fred Y Peng
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Randall J Weselake
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| |
Collapse
|
14
|
Lopes JLS, Beltramini LM, Wallace BA, Araujo APU. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites. PLoS One 2015; 10:e0118407. [PMID: 25719207 PMCID: PMC4342243 DOI: 10.1371/journal.pone.0118407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/16/2015] [Indexed: 12/02/2022] Open
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.
Collapse
Affiliation(s)
| | | | - Bonnie A. Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (APUA); (BAW)
| | - Ana P. U. Araujo
- Instituto de Física de São Carlos, USP, São Carlos, Brazil
- * E-mail: (APUA); (BAW)
| |
Collapse
|
15
|
Yen CLE, Nelson DW, Yen MI. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J Lipid Res 2014; 56:489-501. [PMID: 25231105 DOI: 10.1194/jlr.r052902] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
16
|
Zhang J, Xu D, Nie J, Cao J, Zhai Y, Tong D, Shi Y. Monoacylglycerol acyltransferase-2 is a tetrameric enzyme that selectively heterodimerizes with diacylglycerol acyltransferase-1. J Biol Chem 2014; 289:10909-10918. [PMID: 24573674 DOI: 10.1074/jbc.m113.530022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl-CoA:monoacylglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze the two consecutive steps in the synthesis of triacylglycerol, a key process required for dietary fat absorption into the enterocytes of the small intestine. In this report, we investigated the tendency of MGAT2 to form an enzyme complex with DGAT1 and DGAT2 in intact cells. We demonstrated that in addition to the 38-kDa monomer of the MGAT2 enzyme predicted by its peptide sequence, a 76-kDa moiety was detected in SDS-PAGE without reducing agent and heat inactivation. The 76-kDa MGAT2 moiety was greatly enhanced by treatment with a cross-linking reagent in intact cells. Additionally, the cross-linking reagent dose-dependently yielded a band corresponding to the tetramer (152 kDa) in SDS-PAGE, suggesting that the MGAT2 enzyme primarily functions as a homotetrameric protein and as a tetrameric protein. Likewise, DGAT1 also forms a homodimer under nondenaturing conditions. When co-expressed in COS-7 cells, MGAT2 heterodimerized with DGAT1 without treatment with a cross-linking reagent. MGAT2 also co-eluted with DGAT1 on a gel filtration column, suggesting that the two enzymes form a complex in intact cells. In contrast, MGAT2 did not heterodimerize with DGAT2 when co-expressed in COS-7 cells, despite high sequence homology between the two enzymes. Furthermore, systematic deletion analysis demonstrates that N-terminal amino acids 35-80 of DGAT1, but not a signal peptide at the N terminus of MGAT2, is required for the heterodimerization. Finally, co-expression of MGAT2 with DGAT1 significantly increased lipogenesis in COS-7 cells, indicating the functional importance of the dimerization.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dan Xu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Nie
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Jingsong Cao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Yonggong Zhai
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yuguang Shi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033.
| |
Collapse
|
17
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
18
|
Abstract
Diabetes and obesity are both associated with lipotoxic cardiomyopathy exclusive of coronary artery disease and hypertension. Lipotoxicities have become a public health concern and are responsible for a significant portion of clinical cardiac disease. These abnormalities may be the result of a toxic metabolic shift to more fatty acid and less glucose oxidation with concomitant accumulation of toxic lipids. Lipids can directly alter cellular structures and activate downstream pathways leading to toxicity. Recent data have implicated fatty acids and fatty acyl coenzyme A, diacylglycerol, and ceramide in cellular lipotoxicity, which may be caused by apoptosis, defective insulin signaling, endoplasmic reticulum stress, activation of protein kinase C, MAPK activation, or modulation of PPARs.
Collapse
|
19
|
Uchida A, Slipchenko MN, Eustaquio T, Leary JF, Cheng JX, Buhman KK. Intestinal acyl-CoA:diacylglycerol acyltransferase 2 overexpression enhances postprandial triglyceridemic response and exacerbates high fat diet-induced hepatic triacylglycerol storage. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1377-85. [PMID: 23643496 DOI: 10.1016/j.bbalip.2013.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 02/06/2023]
Abstract
Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine-specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2(Int) mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.
Collapse
Affiliation(s)
- Aki Uchida
- Purdue University, West Lafayette, IN, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Camus G, Herker E, Modi AA, Haas JT, Ramage HR, Farese RV, Ott M. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem 2013; 288:9915-9923. [PMID: 23420847 PMCID: PMC3617291 DOI: 10.1074/jbc.m112.434910] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
The triglyceride-synthesizing enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) plays a critical role in hepatitis C virus (HCV) infection by recruiting the HCV capsid protein core onto the surface of cellular lipid droplets (LDs). Here we find a new interaction between the non-structural protein NS5A and DGAT1 and show that the trafficking of NS5A to LDs depends on DGAT1 activity. DGAT1 forms a complex with NS5A and core and facilitates the interaction between both viral proteins. A catalytically inactive mutant of DGAT1 (H426A) blocks the localization of NS5A, but not core, to LDs in a dominant-negative manner and impairs the release of infectious viral particles, underscoring the importance of DGAT1-mediated translocation of NS5A to LDs in viral particle production. We propose a model whereby DGAT1 serves as a cellular hub for HCV core and NS5A proteins, guiding both onto the surface of the same subset of LDs, those generated by DGAT1. These results highlight the critical role of DGAT1 as a host factor for HCV infection and as a potential drug target for antiviral therapy.
Collapse
Affiliation(s)
- Gregory Camus
- Gladstone Institute of Virology and Immunology, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany
| | - Eva Herker
- Gladstone Institute of Virology and Immunology, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany; UCSF Liver Center, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany; Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany
| | - Ankit A Modi
- Gladstone Institute of Virology and Immunology, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany
| | - Joel T Haas
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158
| | - Holly R Ramage
- Gladstone Institute of Virology and Immunology, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany
| | - Robert V Farese
- UCSF Liver Center, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158; Department of Medicine, University of California, San Francisco, California 94158; Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany; UCSF Liver Center, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany; Department of Medicine, University of California, San Francisco, California 94158.
| |
Collapse
|
21
|
Cao H, Chapital DC, Howard OD, Deterding LJ, Mason CB, Shockey JM, Klasson KT. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2. Appl Microbiol Biotechnol 2012; 96:711-27. [PMID: 22270236 PMCID: PMC11338361 DOI: 10.1007/s00253-012-3869-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/11/2022]
Abstract
Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may be required for its enzymatic activity and/or the E. coli protein is misfolded.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Liu Q, Siloto RMP, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 2012; 51:350-77. [PMID: 22705711 DOI: 10.1016/j.plipres.2012.06.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Triacylglycerol (TG) is a storage lipid which serves as an energy reservoir and a source of signalling molecules and substrates for membrane biogenesis. TG is essential for many physiological processes and its metabolism is widely conserved in nature. Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the final step in the sn-glycerol-3-phosphate pathway leading to TG. DGAT activity resides mainly in two distinct membrane bound polypeptides, known as DGAT1 and DGAT2 which have been identified in numerous organisms. In addition, a few other enzymes also hold DGAT activity, including the DGAT-related acyl-CoA:monoacylglycerol acyltransferases (MGAT). Progress on understanding structure/function in DGATs has been limited by the lack of detailed three-dimensional structural information due to the hydrophobic properties of theses enzymes and difficulties associated with purification. This review examines several aspects of DGAT and MGAT genes and enzymes, including current knowledge on their gene structure, expression pattern, biochemical properties, membrane topology, functional motifs and subcellular localization. Recent progress in probing structural and functional aspects of DGAT1 and DGAT2, using a combination of molecular and biochemical techniques, is emphasized. Biotechnological applications involving DGAT enzymes ranging from obesity therapeutics to oilseed engineering are also discussed.
Collapse
Affiliation(s)
- Qin Liu
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6H 2P5.
| | | | | | | | | |
Collapse
|
23
|
Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 2011; 111:6359-86. [PMID: 21627334 PMCID: PMC3181269 DOI: 10.1021/cr100404w] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
24
|
Cao H, Chapital DC, Shockey JM, Klasson KT. Expression of tung tree diacylglycerol acyltransferase 1 in E. coli. BMC Biotechnol 2011; 11:73. [PMID: 21745386 PMCID: PMC3146824 DOI: 10.1186/1472-6750-11-73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in E. coli had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in E. coli. RESULTS An expression plasmid containing the open reading frame for tung tree (Vernicia fordii) DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in E. coli BL21(DE3). Immunoblotting showed that the recombinant DGAT1 (rDGAT1) was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification. CONCLUSIONS This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, Louisiana 70124, USA
| | - Dorselyn C Chapital
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, Louisiana 70124, USA
| | - Jay M Shockey
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, Louisiana 70124, USA
| | - K Thomas Klasson
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, Louisiana 70124, USA
| |
Collapse
|
25
|
McFie PJ, Banman SL, Kary S, Stone SJ. Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum. J Biol Chem 2011; 286:28235-46. [PMID: 21680734 DOI: 10.1074/jbc.m111.256008] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by two distinct acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Both DGAT enzymes reside in the endoplasmic reticulum (ER), but DGAT2 also co-localizes with mitochondria and lipid droplets. In this report, we demonstrate that murine DGAT2 is part of a multimeric complex consisting of several DGAT2 subunits. We also identified the region of DGAT2 responsible for its localization to the ER. A DGAT2 mutant lacking both its transmembrane domains, although still associated with membranes, was absent from the ER and instead localized to mitochondria. Unexpectedly, this mutant was still active and capable of interacting with lipid droplets to promote TG storage. Additional experiments indicated that the ER targeting signal was present in the first transmembrane domain (TMD1) of DGAT2. When fused to a fluorescent reporter, TMD1, but not TMD2, was sufficient to target mCherry to the ER. Finally, the interaction of DGAT2 with lipid droplets was dependent on the C terminus of DGAT2. DGAT2 mutants, in which regions of the C terminus were either truncated or specific regions were deleted, failed to co-localize with lipid droplets when cells were oleate loaded to stimulate TG synthesis. Our findings demonstrate that DGAT2 is capable of catalyzing TG synthesis and promote its storage in cytosolic lipid droplets independent of its localization in the ER.
Collapse
Affiliation(s)
- Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
26
|
|
27
|
Harris TE, Finck BN. Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol Metab 2011; 22:226-33. [PMID: 21470873 PMCID: PMC3118913 DOI: 10.1016/j.tem.2011.02.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/17/2011] [Accepted: 02/20/2011] [Indexed: 12/11/2022]
Abstract
Lipin family proteins are emerging as crucial regulators of lipid metabolism. In triglyceride synthesis, lipins act as lipid phosphatase enzymes at the endoplasmic reticular membrane, catalyzing the dephosphorylation of phosphatidic acid to form diacylglycerol, which is the penultimate step in this process. However, lipin proteins are not integral membrane proteins, and can rapidly translocate within the cell. In fact, emerging evidence suggests that lipins also play crucial roles in the nucleus as transcriptional regulatory proteins. Thus, lipins are poised to regulate cellular lipid metabolism at multiple regulatory nodal points. This review summarizes the history of lipin proteins, and discusses the current state of our understanding of lipin biology.
Collapse
Affiliation(s)
- Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
28
|
Abstract
Lipin family members (lipin 1, 2 and 3) are bi-functional proteins that dephosphorylate PA (phosphatidic acid) to produce DAG (diacylglycerol) and act in the nucleus to regulate gene expression. Although other components of the triacylglycerol synthesis pathway can form oligomeric complexes, it is unknown whether lipin proteins also exist as oligomers. In the present study, using various approaches, we revealed that lipin 1 formed stable homo-oligomers with itself and hetero-oligomers with lipin 2/3. Both the N- and C-terminal regions of lipin 1 mediate its oligomerization in a head-to-head/tail-to-tail manner. We also show that lipin 1 subcellular localization can be influenced through oligomerization, and the individual lipin 1 monomers in the oligomer function independently in catalysing dephosphorylation of PA. The present study provides evidence that lipin proteins function as oligomeric complexes and that the three mammalian lipin isoforms can form combinatorial units.
Collapse
|
29
|
McFie PJ, Stone SL, Banman SL, Stone SJ. Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the n terminus in dimer/tetramer formation. J Biol Chem 2010; 285:37377-87. [PMID: 20876538 DOI: 10.1074/jbc.m110.163691] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl CoA:diacylglycerol acyltransferase (DGAT) is an integral membrane protein of the endoplasmic reticulum that catalyzes the synthesis of triacylglycerols. Two DGAT enzymes have been identified (DGAT1 and DGAT2) with unique roles in lipid metabolism. DGAT1 is a multifunctional acyltransferase capable of synthesizing diacylglycerol, retinyl, and wax esters in addition to triacylglycerol. Here, we report the membrane topology for murine DGAT1 using protease protections assays and indirect immunofluorescence in conjunction with selective permeabilization of cellular membranes. Topology models based on prediction algorithms suggested that DGAT1 had eight transmembrane domains. In contrast, our data indicate that DGAT1 has three transmembrane domains with the N terminus oriented toward the cytosol. The C-terminal region of DGAT1, which accounts for ∼50% of the protein, is present in the endoplasmic reticulum lumen and contains a highly conserved histidine residue (His-426) that may be part of the active site. Mutagenesis of His-426 to alanine impaired the ability of DGAT1 to synthesize triacylglycerols as well as retinyl and wax esters in an in vitro acyltransferase assay. Finally, we show that the N-terminal domain of DGAT1 is not required for the catalytic activity of DGAT1 but, instead, may be involved in regulating enzyme activity and dimer/tetramer formation.
Collapse
Affiliation(s)
- Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
30
|
Lee B, Fast AM, Zhu J, Cheng JX, Buhman KK. Intestine-specific expression of acyl CoA:diacylglycerol acyltransferase 1 reverses resistance to diet-induced hepatic steatosis and obesity in Dgat1-/- mice. J Lipid Res 2010; 51:1770-80. [PMID: 20147738 DOI: 10.1194/jlr.m002311] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mice deficient in acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in triacylglycerol (TG) biosynthesis, are resistant to high-fat (HF) diet-induced hepatic steatosis and obesity. DGAT1-deficient (Dgat1-/-) mice have no defect in quantitative absorption of dietary fat; however, they have abnormally high levels of TG stored in the cytoplasm of enterocytes, and they have a reduced postprandial triglyceridemic response. We generated mice expressing DGAT1 only in the intestine (Dgat1IntONLY) to determine whether this phenotype contributes to resistance to HF diet-induced hepatic steatosis and obesity in Dgat1-/- mice. Despite lacking DGAT1 in liver and adipose tissue, we found that Dgat1IntONLY mice are not resistant to HF diet-induced hepatic steatosis or obesity. The results presented demonstrate that intestinal DGAT1 stimulates dietary fat secretion out of enterocytes and that altering this cellular function alters the fate of dietary fat in specific tissues.
Collapse
Affiliation(s)
- Bonggi Lee
- Department of Foods and Nutrition, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
31
|
Skinner JR, Shew TM, Schwartz DM, Tzekov A, Lepus CM, Abumrad NA, Wolins NE. Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J Biol Chem 2009; 284:30941-8. [PMID: 19748893 PMCID: PMC2781494 DOI: 10.1074/jbc.m109.013995] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/01/2009] [Indexed: 12/21/2022] Open
Abstract
Fatty acid-induced triacylglycerol synthesis produces triacylglycerol droplets with a protein coat that includes perilipin 3/TIP47 and perilipin 4/S3-12. This study addresses the following two questions. Where do lipid droplets emerge, and how are their coat proteins recruited? We show that perilipin 3- and perilipin 4-coated lipid droplets emerge along the endoplasmic reticulum (ER). Blocking membrane trafficking with AlF(4)(-) during fatty acid-induced triacylglycerol synthesis drove perilipin 3 to the tubular ER. Forskolin, which like AlF(4)(-) activates adenylate cyclase, did not redistribute perilipin 3, but when added together with AlF(4)(-) perilipin 3 was recruited to lipid droplets rather than the ER. Thus inhibiting trafficking with AlF(4)(-) redistributed perilipin 3 differently under conditions of triacylglycerol synthesis (fatty acid addition) versus hydrolysis (forskolin) suggesting a shared acylglycerol-mediated mechanism. We tested whether diacylglycerol (DG), the immediate precursor of triacylglycerol and its first hydrolytic product, affects the distribution of perilipin 3. Stabilizing DG with the DG lipase inhibitor RHC80267 enhanced the perilipin 3 recruited to lipid droplets and raised DG levels in this fraction. Treating cells with a membrane-permeable DG recruited perilipin 3 to the ER. Stabilizing DG, by blocking its hydrolysis with RHC80267 or its acylation with triacsin C, enhanced recruitment of perilipin 3 to the ER. Expressing the ER enzyme DGAT1, which removes DG by converting it to triacylglycerol, attenuated perilipin 3 DG-induced ER recruitment. Membrane-permeable DG also drove perilipin 4 and 5 onto the ER. Together the data suggest that these lipid droplet proteins are recruited to DG-enriched membranes thereby linking lipid coat proteins to the metabolic state of the cell.
Collapse
Affiliation(s)
| | | | | | | | | | - Nada A. Abumrad
- From the Center for Human Nutrition and
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
32
|
Zhang S, Yang Y, Shi Y. Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochem J 2009; 388:135-42. [PMID: 15610069 PMCID: PMC1186701 DOI: 10.1042/bj20041554] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SCD (stearoyl-CoA desaturase) catalyses the conversion of saturated fatty acids into mono-unsaturated fatty acids, a critical step involved in lipid metabolism and various other biological functions. In the present study, we report the identification and characterization of a human gene that encodes a novel SCD enzyme (hSCD2). The hSCD2 gene codes for a 37.5-kDa protein that shares 61% and 57% sequence identity with the human SCD1 and mouse SCD2 enzymes respectively. The recombinant hSCD2 enzyme expressed in mammalian and Sf9 insect cells efficiently catalysed desaturation of both stearoyl- and palmitoyl-CoAs to the corresponding mono-unsaturated fatty acids. In comparison with the hSCD1 gene that is predominantly expressed in liver, hSCD2 is most abundantly expressed in pancreas and brain. Additionally, hSCD2 transcripts from adult and foetal tissues exhibit different sizes because of alternative splicing in the non-coding region, suggesting that hSCD2 expression is developmentally regulated. The recombinant human SCD2 and SCD1 transiently expressed in COS-7 cells exhibited as oligomeric proteins that consist of homodimers and oligomers when resolved by SDS/PAGE. The complex formation was independent of SCD protein expression levels, as supported by a relatively constant ratio of the level of dimers and oligomers to that of the monomers from COS-7 cells transiently transfected with different amounts of SCD expression vectors. Furthermore, treatment of intact COS-7 cells with a cross-linking reagent resulted in dose-dependent increases in the levels of SCD protein and activity, suggesting that oligomerization may play an important role in regulating the stability of SCD enzymes.
Collapse
Affiliation(s)
- Shaobo Zhang
- Endocrine Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, U.S.A
| | - Yanzhu Yang
- Endocrine Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, U.S.A
| | - Yuguang Shi
- Endocrine Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, U.S.A
- To whom correspondences should be addressed (email )
| |
Collapse
|
33
|
Siloto RMP, Truksa M, Brownfield D, Good AG, Weselake RJ. Directed evolution of acyl-CoA:diacylglycerol acyltransferase: development and characterization of Brassica napus DGAT1 mutagenized libraries. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:456-61. [PMID: 19195902 DOI: 10.1016/j.plaphy.2008.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/26/2008] [Accepted: 12/30/2008] [Indexed: 05/09/2023]
Abstract
Metabolic flux to triacylglycerol (TAG) may be limited by the level of acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) activity. In some species, this enzyme also appears to play a role in the channeling of specific fatty acyl moieties into TAG. The objective of this work is to implement a directed evolution approach to enhance the catalytic efficiency of type-1 DGAT from Brassica napus (BnDGAT1). We generated randomly mutagenized libraries of BnDGAT1 in a yeast expression vector using error-prone PCR. The mutagenized libraries were used to transform a Saccharomyces cerevisiae strain devoid of neutral lipid biosynthesis and analyzed using a high-throughput screening (HTS) system. The HTS, recently developed for this purpose, consisted of a positive selection of clones expressing active DGAT mutants followed by quantification of DGAT activity by fluorescence detection of TAG in yeast cells. The initial results indicated that the positive selection system efficiently eliminated DGAT mutants lacking enzyme activity. Screening of 1528 selected mutants revealed that some DGAT clones had enhanced ability to synthesize TAG in yeast. This was confirmed by analysis of individual clones that could carry mutations resulting in an increased catalytic efficiency. The directed evolution approach could lead to the development of an improved plant DGAT1 for increasing seed oil content in oleaginous crops.
Collapse
Affiliation(s)
- Rodrigo M P Siloto
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
34
|
Yen CLE, Stone SJ, Koliwad S, Harris C, Farese RV. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 2008; 49:2283-301. [PMID: 18757836 PMCID: PMC3837458 DOI: 10.1194/jlr.r800018-jlr200] [Citation(s) in RCA: 805] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 08/29/2008] [Indexed: 12/18/2022] Open
Abstract
Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
53706
| | - Scot J. Stone
- Department of Biochemistry, University of Saskatchewan, Saskatoon,
Saskatchewan, Canada
| | - Suneil Koliwad
- Gladstone Institute of Cardiovascular Disease, University of California, San
Francisco, San Francisco, CA 94141
- Cardiovascular Research Institute, University of California, San
Francisco, San Francisco, CA 94141
- Department of Medicine, University of California, San Francisco,
San Francisco, CA 94141
| | - Charles Harris
- Gladstone Institute of Cardiovascular Disease, University of California, San
Francisco, San Francisco, CA 94141
- Cardiovascular Research Institute, University of California, San
Francisco, San Francisco, CA 94141
- Department of Medicine, University of California, San Francisco,
San Francisco, CA 94141
| | - Robert V. Farese
- Gladstone Institute of Cardiovascular Disease, University of California, San
Francisco, San Francisco, CA 94141
- Cardiovascular Research Institute, University of California, San
Francisco, San Francisco, CA 94141
- Department of Medicine, University of California, San Francisco,
San Francisco, CA 94141
- Department of Biochemistry and Biophysics, University of
California, San Francisco, San Francisco, CA 94141
| |
Collapse
|
35
|
Cheng D, Iqbal J, Devenny J, Chu CH, Chen L, Dong J, Seethala R, Keim WJ, Azzara AV, Lawrence RM, Pelleymounter MA, Hussain MM. Acylation of acylglycerols by acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1). Functional importance of DGAT1 in the intestinal fat absorption. J Biol Chem 2008; 283:29802-11. [PMID: 18768481 DOI: 10.1074/jbc.m800494200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of the four intestinal membrane bound acyltransferases implicated in dietary fat absorption. Recently, it was found that, in addition to acylating diacylglycerol (DAG), DGAT1 also possesses robust enzymatic activity for acylating monoacylglycerol (MAG) (Yen, C. L., Monetti, M., Burri, B. J., and Farese, R. V., Jr. (2005) J. Lipid Res. 46, 1502-1511). In the current paper, we have conducted a detailed characterization of this reaction in test tube, intact cell culture, and animal models. Enzymatically, we found that triacylglycerol (TAG) synthesis from MAG by DGAT1 does not behave according to classic Michaelis-Menten kinetics. At low concentrations of 2-MAG (<50 microm), the major acylation product by DGAT1 was TAG; however, increased concentrations of 2-MAG (50-200 microm) resulted in decreased TAG formation. This unique product/substrate relationship is similar to MGAT3 but distinct from DGAT2 and MGAT2. We have also found that XP620 is an inhibitor that selectively inhibits the acylation of MAG by DGAT1 (IC(50) of human DGAT1: 16.6+/-4.0 nM (MAG as substrate) and 1499+/-318 nM (DAG as substrate); IC(50) values of human DGAT2, MGAT2, and MGAT3 are >30,000 nM). Using this pharmacological tool, we have shown that approximately 76 and approximately 89% of the in vitro TAG synthesis initiated from MAG is mediated by DGAT1 in Caco-2 cell and rat intestinal mucosal membranes, respectively. When applied to intact cultured cells, XP620 substantially decreased but did not abolish apoB secretion in differentiated Caco-2 cells. It also decreased TAG and DAG syntheses in primary enterocytes. Last, when delivered orally to rats, XP620 decreased absorption of orally administered lipids by approximately 50%. Based on these data, we conclude that the acylation of acylglycerols by DGAT1 is important for dietary fat absorption in the intestine.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Metabolic Diseases, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-5400, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Weselake RJ, Madhavji M, Szarka SJ, Patterson NA, Wiehler WB, Nykiforuk CL, Burton TL, Boora PS, Mosimann SC, Foroud NA, Thibault BJ, Moloney MM, Laroche A, Furukawa-Stoffer TL. Acyl-CoA-binding and self-associating properties of a recombinant 13.3 kDa N-terminal fragment of diacylglycerol acyltransferase-1 from oilseed rape. BMC BIOCHEMISTRY 2006; 7:24. [PMID: 17192193 PMCID: PMC1764880 DOI: 10.1186/1471-2091-7-24] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 12/27/2006] [Indexed: 12/01/2022]
Abstract
Background Diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to generate triacylglycerol and CoA. The deduced amino acid sequence of cDNAs encoding DGAT1 from plants and mammals exhibit a hydrophilic N-terminal region followed by a number of potential membrane-spanning segments, which is consistent with the membrane-bound nature of this enzyme family. In order to gain insight into the structure/function properties of DGAT1 from Brassica napus (BnDGAT1), we produced and partially characterized a recombinant polyHis-tagged N-terminal fragment of the enzyme, BnDGAT1(1–116)His6, with calculated molecular mass of 13,278 Da. Results BnDGAT1(1–116)His6 was highly purified from bacterial lysate and plate-like monoclinic crystals were grown using this preparation. Lipidex-1000 binding assays and gel electrophoresis indicated that BnDGAT1(1–116)His6 interacts with long chain acyl-CoA. The enzyme fragment displayed enhanced affinity for erucoyl (22:1cisΔ13)-CoA over oleoyl (18:1cisΔ9)-CoA, and the binding process displayed positive cooperativity. Gel filtration chromatography and cross-linking studies indicated that BnDGAT1(1–116)His6 self-associated to form a tetramer. Polyclonal antibodies raised against a peptide of 15 amino acid residues representing a segment of BnDGAT1(1–116)His6 failed to react with protein in microsomal vesicles following treatment with proteinase K, suggesting that the N-terminal fragment of BnDGAT1 was localized to the cytosolic side of the ER. Conclusion Collectively, these results suggest that BnDGAT1 may be allosterically modulated by acyl-CoA through the N-terminal region and that the enzyme self-associates via interactions on the cytosolic side of the ER.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Milan Madhavji
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Steve J Szarka
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Present address : SemBioSys Genetics Inc., 110, 2985 23 Avenue N.E., Calgary, AB T1Y 7L3, Canada
| | - Nii A Patterson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Present address: Metabolix Inc., 21 Erie Street, Cambridge, MA 02139, USA
| | - William B Wiehler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Cory L Nykiforuk
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
- Present address : SemBioSys Genetics Inc., 110, 2985 23 Avenue N.E., Calgary, AB T1Y 7L3, Canada
| | - Tracy L Burton
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Parveen S Boora
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Steven C Mosimann
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Nora A Foroud
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Benjamin J Thibault
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Maurice M Moloney
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - André Laroche
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta P.O. Box 3000 Main, Lethbridge, Alberta, T1J 4B1, Canada
| | - Tara L Furukawa-Stoffer
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
37
|
Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. THE PLANT CELL 2006; 18:2294-313. [PMID: 16920778 PMCID: PMC1560902 DOI: 10.1105/tpc.106.043695] [Citation(s) in RCA: 385] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/14/2006] [Accepted: 07/25/2006] [Indexed: 05/11/2023]
Abstract
Seeds of the tung tree (Vernicia fordii) produce large quantities of triacylglycerols (TAGs) containing approximately 80% eleostearic acid, an unusual conjugated fatty acid. We present a comparative analysis of the genetic, functional, and cellular properties of tung type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2), two unrelated enzymes that catalyze the committed step in TAG biosynthesis. We show that both enzymes are encoded by single genes and that DGAT1 is expressed at similar levels in various organs, whereas DGAT2 is strongly induced in developing seeds at the onset of oil biosynthesis. Expression of DGAT1 and DGAT2 in yeast produced different types and proportions of TAGs containing eleostearic acid, with DGAT2 possessing an enhanced propensity for the synthesis of trieleostearin, the main component of tung oil. Both DGAT1 and DGAT2 are located in distinct, dynamic regions of the endoplasmic reticulum (ER), and surprisingly, these regions do not overlap. Furthermore, although both DGAT1 and DGAT2 contain a similar C-terminal pentapeptide ER retrieval motif, this motif alone is not sufficient for their localization to specific regions of the ER. These data suggest that DGAT1 and DGAT2 have nonredundant functions in plants and that the production of storage oils, including those containing unusual fatty acids, occurs in distinct ER subdomains.
Collapse
Affiliation(s)
- Jay M Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana 70124, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kusunoki J, Kanatani A, Moller DE. Modulation of fatty acid metabolism as a potential approach to the treatment of obesity and the metabolic syndrome. Endocrine 2006; 29:91-100. [PMID: 16622296 DOI: 10.1385/endo:29:1:91] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 11/30/1999] [Accepted: 10/20/2005] [Indexed: 12/21/2022]
Abstract
Increased de novo lipogenesis and reduced fatty acid oxidation are probable contributors to adipose accretion in obesity. Moreover, these perturbations have a role in leading to non-alcoholic steatohepatitis, dyslipidemia, and insulin resistance--via "lipotoxicity"-related mechanisms. Research in this area has prompted an effort to evaluate several discrete enzymes in these pathways as targets for future therapeutic intervention. Acetyl-CoA carboxylase 1 (ACC1) and ACC2 regulate fatty acid synthesis and indirectly control fatty acid oxidation via a key product, malonyl CoA. Based on mouse genetic and preclinical pharmacologic evidence, inhibition of ACC1 and/or ACC2 may be a useful approach to treat obesity and metabolic syndrome. Similarly, available data suggest that inhibition of other enzymes in this pathway, including fatty acid synthase, stearoyl CoA desaturase, and diacylglycerol acytransferase 1, will have beneficial effects. AMP-activated protein kinase is a master regulator of nutrient metabolism, which controls several aspects of lipid metabolism. Activation of AMPK in selected tissues is also a potential therapeutic approach. Inhibition of hormone-sensitive lipase is another possible approach. The rationale for modulating the activity of these enzymes and their relative merits (and downsides) as possible therapeutic targets are further discussed.
Collapse
Affiliation(s)
- Jun Kusunoki
- Department of Metabolic Disorders, Banyu-Tsukuba Research Institute, Tsukuba, Japan
| | | | | |
Collapse
|
39
|
Rohrbach KW, Han S, Gan J, O'Tanyi EJ, Zhang H, Chi CL, Taub R, Largent BL, Cheng D. Disconnection between the early onset anorectic effects by C75 and hypothalamic fatty acid synthase inhibition in rodents. Eur J Pharmacol 2005; 511:31-41. [PMID: 15777777 DOI: 10.1016/j.ejphar.2005.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
In order to explore the relationship between the anorectic effect of 3-carboxy-4-octyl-2-methylenebutyrolactone (C75) and its pharmacokinetic properties, studies of in vivo and in vitro pharmacological characterization of C75 were performed in Fischer rats. In a quantitative measurement of food intake, we determined that appetite suppression by C75 takes place within 4 h. The C(max) for C75 of 2.6+/-1.5 microM was reached within 1-4 h after intraperitoneal administration at 30 mg/kg, a drug level that causes complete blockade of food intake. However, this concentration is substantially lower than the effective concentration used to inhibit rat fatty acid synthase enzyme activity in vitro (IC50: approximately 200 microM) and hypothalamic enzyme activity was found not to be inhibited by intraperitoneal administration of C75 at 30 mg/kg. Instead, a dramatic induction of c-Fos expression was found in area postrema. Collectively, these data indicate that the anorectic effect of C75 is independent of its inhibition of fatty acid synthase in the hypothalamus.
Collapse
Affiliation(s)
- Kenneth W Rohrbach
- Pharmaceutical Research Institute, Department of Metabolic Disease, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, Mni M, Simon P, Frère JM, Coppieters W, Georges M. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci U S A 2004; 101:2398-403. [PMID: 14983021 PMCID: PMC356962 DOI: 10.1073/pnas.0308518100] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently used a positional cloning approach to identify a nonconservative lysine to alanine substitution (K232A) in the bovine DGAT1 gene that was proposed to be the causative quantitative trait nucleotide underlying a quantitative trait locus (QTL) affecting milk fat composition, previously mapped to the centromeric end of bovine chromosome 14. We herein generate genetic and functional data that confirm the causality of the DGAT1 K232A mutation. We have constructed a high-density single-nucleotide polymorphism map of the 3.8-centimorgan BULGE30-BULGE9 interval containing the QTL and show that the association with milk fat percentage maximizes at the DGAT1 gene. We provide evidence that the K allele has undergone a selective sweep. By using a baculovirus expression system, we have expressed both DGAT1 alleles in Sf9 cells and show that the K allele, causing an increase in milk fat percentage in the live animal, is characterized by a higher Vmax in producing triglycerides than the A allele.
Collapse
Affiliation(s)
- Bernard Grisart
- Department of Genetics, Faculty of Veterinary Medicine, University of Liège (B43), 20 Boulevard de Colonster, 4000 Liège (Sart Tilman), Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|