1
|
Sperling AL, Glover DM. Parthenogenesis in dipterans: a genetic perspective. Proc Biol Sci 2023; 290:20230261. [PMID: 36946111 PMCID: PMC10031431 DOI: 10.1098/rspb.2023.0261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Parthenogenesis has been documented in almost every phylum of animals, and yet this phenomenon is largely understudied. It has particular importance in dipterans since some parthenogenetic species are also disease vectors and agricultural pests. Here, we present a catalogue of parthenogenetic dipterans, although it is likely that many more remain to be identified, and we discuss how their developmental biology and interactions with diverse environments may be linked to different types of parthenogenetic reproduction. We discuss how the advances in genetics and genomics have identified chromosomal loci associated with parthenogenesis. In particular, a polygenic cause of facultative parthenogenesis has been uncovered in Drosophila mercatorum, allowing the corresponding genetic variants to be tested for their ability to promote parthenogenesis in another species, Drosophila melanogaster. This study probably identifies just one of many routes that could be followed in the evolution of parthenogenesis. We attempt to account for why the phenomenon has evolved so many times in the dipteran order and why facultative parthenogenesis appears particularly prevalent. We also discuss the significance of coarse genomic changes, including non-disjunction, aneuploidy, and polyploidy and how, together with changes to specific genes, these might relate to both facultative and obligate parthenogenesis in dipterans and other parthenogenetic animals.
Collapse
Affiliation(s)
- A. L. Sperling
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - D. M. Glover
- Department of Genetics, University of Cambridge, Cambridge, UK
- California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
2
|
Paterson C, Bozic I, Smith MJ, Hoad X, Evans DGR. A mechanistic mathematical model of initiation and malignant transformation in sporadic vestibular schwannoma. Br J Cancer 2022; 127:1843-1857. [PMID: 36097176 PMCID: PMC9643471 DOI: 10.1038/s41416-022-01955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND A vestibular schwannoma (VS) is a relatively rare, benign tumour of the eighth cranial nerve, often involving alterations to the gene NF2. Previous mathematical models of schwannoma incidence have not attempted to account for alterations in specific genes, and could not distinguish between nonsense mutations and loss of heterozygosity (LOH). METHODS Here, we present a mechanistic approach to modelling initiation and malignant transformation in schwannoma. Each parameter is associated with a specific gene or mechanism operative in Schwann cells, and can be determined by combining incidence data with empirical frequencies of pathogenic variants and LOH. RESULTS This results in new estimates for the base-pair mutation rate u = 4.48 × 10-10 and the rate of LOH = 2.03 × 10-6/yr in Schwann cells. In addition to new parameter estimates, we extend the approach to estimate the risk of both spontaneous and radiation-induced malignant transformation. DISCUSSION We conclude that radiotherapy is likely to have a negligible excess risk of malignancy for sporadic VS, with a possible exception of rapidly growing tumours.
Collapse
Affiliation(s)
- Chay Paterson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Miriam J Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Xanthe Hoad
- Radiation Protection Group, Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - D Gareth R Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
3
|
Prenatal Diagnosis of Talipes Equinovarus by Ultrasound and Chromosomal Microarray Analysis: A Chinese Single-Center Retrospective Study. Genes (Basel) 2022; 13:genes13091573. [PMID: 36140741 PMCID: PMC9498837 DOI: 10.3390/genes13091573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background: There are few studies on the detection rate by chromosomal microarray analysis (CMA) of the prenatal diagnosis of talipes equinovarus (TE) compared to conventional karyotyping. We aimed to explore the molecular etiology of fetal TE and examine the detection rate by CMA, which provides more information for the clinical screening and genetic counseling of TE. Methods: In this retrospective study, pregnancies diagnosed with fetal TE were enrolled and clinical data for all cases were retrieved from our medical record database, including demographic data for pregnancies, ultrasound findings, karyotype/CMA results, and pregnant and perinatal outcomes. Results: Among the 164 patients, 17 (10.4%) clinically significant variants were detected by CMA. In 148 singleton pregnancies, the diagnostic rate of clinically significant variants was significantly higher in the non-isolated TE group than in the isolated TE group (10/37, 27.0% vs. 6/111, 5.4%, P < 0.001). In twin pregnancies, 1 (6.3%) pathogenic copy number variant was present in the other 16 twin pregnancies. Conclusions: This study demonstrates that CMA is useful for the prenatal genetic diagnosis of fetal TE. Fetal TE with the associated structural malformation correlates with a higher probability of clinically significant variants. This data may aid prenatal diagnosis and genetic counseling for fetal TE.
Collapse
|
4
|
Tan YR, Tan HK. A Rare Case of Hemoglobin Bart's Hydrops Fetalis due to Uniparental Disomy of Chromosome 16. J Med Cases 2021; 12:275-279. [PMID: 34434471 PMCID: PMC8383697 DOI: 10.14740/jmc3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
Hemoglobin (Hb) Bart’s hydrops fetalis is the most severe form of α-thalassemia and is usually inherited in an autosomal recessive manner. We report a case of Hb Bart’s hydrops fetalis due to uniparental disomy of chromosome 16. Antenatal screening showed a low maternal mean corpuscular volume (MCV), while paternal MCV was normal. The fetus was found to have a thickened nuchal translucency during first trimester screening for Down’s syndrome. Mid-trimester fetal anomaly ultrasound scan showed fetal cardiomegaly with pericardial effusion, scalp edema, ascites and an elevated middle cerebral arterial peak systolic velocity (MCA PSV). Multiplex polymerase chain reaction (PCR) on DNA from amniocentesis showed that the fetus was homozygous for South East Asian (SEA) type 2 α-globin gene deletion. Chromosome microarray (CMA) showed two regions of absence of heterozygosity (AOH) on the terminal p and q arm of chromosome 16. The rare occurrence of Hb Bart’s hydrops fetalis caused by maternal uniparental disomy should be considered in cases of fetal hydrops even in cases where paternal MCV is normal.
Collapse
Affiliation(s)
- Yin Ru Tan
- Department of Obstetrics and Gynaecology, Singapore General Hospital, Outram Rd, Singapore 169608, Singapore
| | - Hak Koon Tan
- Department of Obstetrics and Gynaecology, Singapore General Hospital, Outram Rd, Singapore 169608, Singapore
| |
Collapse
|
5
|
Papenhausen PR, Kelly CA, Harris S, Caldwell S, Schwartz S, Penton A. Clinical significance and mechanisms associated with segmental UPD. Mol Cytogenet 2021; 14:38. [PMID: 34284807 PMCID: PMC8290618 DOI: 10.1186/s13039-021-00555-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Whole chromosome uniparental disomy (UPD) has been well documented with mechanisms largely understood. However, the etiology of segmental limited UPD (segUPD) is not as clear. In a 10-year period of confirming (> 300) cases of whole chromosome UPD, we identified 86 segmental cases in both prenatal and postnatal samples. Thirty-two of these cases showed mosaic segmental UPD at 11p due to somatic selection associated with Beckwith–Wiedemann syndrome. This study focuses on apparent mechanisms associated with the remaining cases, many of which appear to represent corrections of genomic imbalance such as deletions and derivative chromosomes. In some cases, segmental UPD was associated with the generation of additional genomic imbalance while in others it apparently resulted in restoration of euploidy. Multiple tests utilizing noninvasive prenatal testing (NIPT), chorionic villus sampling (CVS) and amniotic fluid samples from the same pregnancy revealed temporal evidence of correction and a “hotspot” at 1p. Although in many cases the genomic imbalance was dosage “repaired” in the analyzed tissue, clinical effects could be sustained due to early developmental effects of the original imbalance or due to its continued existence in other tissues. In addition, if correction did not occur in the gametes there would be recurrence risks for the offspring of those individuals. Familial microarray allele patterns are presented that differentiate lack of gamete correction from somatic derived gonadal mosaicism. These results suggest that the incidence of segUPD mediated correction is underestimated and may explain the etiology of some clinical phenotypes which are undetected by routine microarray analysis and many exome sequencing studies.
Collapse
Affiliation(s)
- Peter R Papenhausen
- Cytogenetics Department, Laboratory Corporation of America, Research Triangle Park, NC, 27709, USA
| | - Carla A Kelly
- Cytogenetics Department, Laboratory Corporation of America, Research Triangle Park, NC, 27709, USA
| | - Samuel Harris
- Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Samantha Caldwell
- Cytogenetics Department, Laboratory Corporation of America, Research Triangle Park, NC, 27709, USA
| | - Stuart Schwartz
- Cytogenetics Department, Laboratory Corporation of America, Research Triangle Park, NC, 27709, USA
| | - Andrea Penton
- Cytogenetics Department, Laboratory Corporation of America, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
6
|
Boluda-Navarro M, Ibáñez M, Liquori A, Franco-Jarava C, Martínez-Gallo M, Rodríguez-Vega H, Teresa J, Carreras C, Such E, Zúñiga Á, Colobran R, Cervera JV. Case Report: Partial Uniparental Disomy Unmasks a Novel Recessive Mutation in the LYST Gene in a Patient With a Severe Phenotype of Chédiak-Higashi Syndrome. Front Immunol 2021; 12:625591. [PMID: 33868243 PMCID: PMC8044466 DOI: 10.3389/fimmu.2021.625591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Chédiak-Higashi syndrome (CHS) is a rare autosomal recessive (AR) immune disorder that has usually been associated to missense, nonsense or indels mutations in the LYST gene. In this study, we describe for the first time the case of a CHS patient carrying a homozygous mutation in the LYST gene inherited as a result of a partial uniparental isodisomy (UPiD) of maternal origin. Sanger sequencing of the LYST cDNA and single nucleotide polymorphism (SNP)-arrays were performed to identify the causative mutation and to explain the molecular mechanism of inheritance, respectively. Partial-UPiD leads to a copy neutral loss of heterozygosity (CN-LOH) of the telomeric region of chromosome 1 (1q41q44), unmasking the potential effect of the mutation detected. The mutation (c.8380dupT) is an insertion located in exon 32 of the LYST gene resulting in a premature stop codon and leading to the loss of all the conserved domains at the C-terminal of the LYST protein. This would account for the severe phenotype observed. We also reviewed the only two previously reported cases of CHS as a result of a uniparental disomy. In this study, we show that the combination of different strategies, including the use of SNP-arrays, is pivotal to fine-tune the diagnosis of rare AR disorders, such as CHS. Moreover, this case highlights the relevance of uniparental disomy as a potential mechanism of CHS expression in non-consanguineous families.
Collapse
Affiliation(s)
- Mireia Boluda-Navarro
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Mariam Ibáñez
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Department of Hematology, Hospital Universitario y Politécnico La Fe, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Alessandro Liquori
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Clara Franco-Jarava
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Héctor Rodríguez-Vega
- Pediatric Hematology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jaijo Teresa
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Carreras
- Pediatric Hematology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Esperanza Such
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ángel Zúñiga
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Roger Colobran
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - José Vicente Cervera
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Barcelona, Spain.,Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
7
|
Liu J, He Z, Lin S, Wang Y, Huang L, Huang X, Luo Y. Absence of heterozygosity detected by single-nucleotide polymorphism array in prenatal diagnosis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:314-323. [PMID: 31840905 DOI: 10.1002/uog.21951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/19/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES To investigate the general occurrence and clinical significance of absence of heterozygosity (AOH), detected by single-nucleotide polymorphism (SNP) array on prenatal diagnosis. METHODS We recruited pregnancies undergoing invasive prenatal diagnosis at our fetal medicine center over a 6-year period. All fetuses underwent SNP array using the Affymetrix CytoScan HD array platform. AOH was defined as a chromosomal homozygosity segment with neutral copy number. Cases with AOH over 10 Mb in size or with suspected pathogenicity were further analyzed, and the clinical features and outcome were reviewed. RESULTS Of 10 294 recruited fetuses, 100 (0.97%) with AOH were identified; in 81 (81.0%) of these, AOH occurred in a single chromosome, while 19 (19.0%) patients had multiple AOHs in different chromosomes. AOH was observed in all chromosomes, chromosomes X, 2 and 16 being the most frequently involved. The length of AOH ranged from partial chromosome (9.002-80.222 Mb) to the entire chromosome. Similar AOH regions displayed varied clinical manifestations. In total, 55 patients presented with concomitant ultrasound abnormalities, the most common being multiple abnormalities (14/55 (25.5%)), genitourinary malformations (8/55 (14.5%)), skeletal malformations (5/55 (9.1%)) and small-for-gestational age (5/55 (9.1%)). Notably, the rate of adverse perinatal outcome (including termination of pregnancy, neonatal death, fetal death, selective reduction and miscarriage) in fetuses with AOH and ultrasound abnormalities (30/48 (62.5%)) was higher than in those without ultrasound abnormalities (6/40 (15.0%)) (P < 0.001). Further non-invasive prenatal testing using cell-free fetal DNA from maternal blood indicated chromosomal copy number abnormalities in 11 patients; however, they were confirmed as AOH by SNP array of the amniotic fluid. CONCLUSIONS Genetic counseling regarding a prenatal diagnosis of AOH remains challenging. To evaluate comprehensively its significance, we propose a management strategy involving further serial ultrasound examinations, parental verification, whole-exome sequencing, placental study and effective follow-up. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J Liu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Z He
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - S Lin
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Y Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - L Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - X Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Y Luo
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Establishment and Preliminary Characterization of Three Astrocytic Cells Lines Obtained from Primary Rat Astrocytes by Sub-Cloning. Genes (Basel) 2020; 11:genes11121502. [PMID: 33322092 PMCID: PMC7764261 DOI: 10.3390/genes11121502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023] Open
Abstract
Gliomas are complex and heterogeneous tumors that originate from the glial cells of the brain. The malignant cells undergo deep modifications of their metabolism, and acquire the capacity to invade the brain parenchyma and to induce epigenetic modifications in the other brain cell types. In spite of the efforts made to define the pathology at the molecular level, and to set novel approaches to reach the infiltrating cells, gliomas are still fatal. In order to gain a better knowledge of the cellular events that accompany astrocyte transformation, we developed three increasingly transformed astrocyte cell lines, starting from primary rat cortical astrocytes, and analyzed them at the cytogenetic and epigenetic level. In parallel, we also studied the expression of the differentiation-related H1.0 linker histone variant to evaluate its possible modification in relation with transformation. We found that the most modified astrocytes (A-FC6) have epigenetic and chromosomal alterations typical of cancer, and that the other two clones (A-GS1 and A-VV5) have intermediate properties. Surprisingly, the differentiation-specific somatic histone H1.0 steadily increases from the normal astrocytes to the most transformed ones. As a whole, our results suggest that these three cell lines, together with the starting primary cells, constitute a potential model for studying glioma development.
Collapse
|
9
|
Oster S, Aqeilan RI. Programmed DNA Damage and Physiological DSBs: Mapping, Biological Significance and Perturbations in Disease States. Cells 2020; 9:cells9081870. [PMID: 32785139 PMCID: PMC7463922 DOI: 10.3390/cells9081870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are known to be the most toxic and threatening of the various types of breaks that may occur to the DNA. However, growing evidence continuously sheds light on the regulatory roles of programmed DSBs. Emerging studies demonstrate the roles of DSBs in processes such as T and B cell development, meiosis, transcription and replication. A significant recent progress in the last few years has contributed to our advanced knowledge regarding the functions of DSBs is the development of many next generation sequencing (NGS) methods, which have considerably advanced our capabilities. Other studies have focused on the implications of programmed DSBs on chromosomal aberrations and tumorigenesis. This review aims to summarize what is known about DNA damage in its physiological context. In addition, we will examine the advancements of the past several years, which have made an impact on the study of genome landscape and its organization.
Collapse
Affiliation(s)
- Sara Oster
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel;
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
10
|
Vaes L, Tiller GE, Pérez B, Boyer SW, Berry SA, Sarafoglou K, Morava E. PMM2-CDG caused by uniparental disomy: Case report and literature review. JIMD Rep 2020; 54:16-21. [PMID: 32685345 PMCID: PMC7358672 DOI: 10.1002/jmd2.12122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Phosphomannomutase 2 deficiency (PMM2-CDG) affects glycosylation pathways such as the N-glycosylation pathway, resulting in loss of function of multiple proteins. This disorder causes multisystem involvement with a high variability among patients. PMM2-CDG is an autosomal recessive disorder, which can be caused by inheriting two pathogenic variants, de novo mutations or uniparental disomy. CASE PRESENTATION Our patient presented with multisystem symptoms at an early age including developmental delay, ataxia, and seizures. No diagnosis was obtained till the age of 31 years, when genetic testing was reinitiated. The patient was diagnosed with a complete maternal mixed hetero/isodisomy of chromosome 16, with a homozygous pathogenic PMM2 variant (p.Phe119Leu) causing PMM2-CDG.A literature review revealed eight cases of uniparental disomy as an underlying cause of CDG, four of which are PMM2-CDG. CONCLUSION Since the incidence of homozygosity for PMM2 variants is rare, we suggest further investigations for every homozygous PMM2-CDG patient where the segregation does not fit. These investigations include testing for UPD or a deletion in one of the two alleles, as this will have an impact on recurrence risk in genetic counseling.
Collapse
Affiliation(s)
| | | | - Belén Pérez
- Center of Molecular Biology‐Severo OchoaUniversity Autonomous of Madrid, La Paz Institute for Health Research, Center for Biomedical Research on Rare DiseasesMadridSpain
| | | | - Susan A. Berry
- Division of Genetics and Metabolism, Department of PediatricsUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Kyriakie Sarafoglou
- Department of PediatricsUniversity of Minnesota Masonic Children's HospitalMinneapolisMinnesotaUSA
| | - Eva Morava
- Department of Clinical Genomics, and Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
11
|
Sanders AD, Meiers S, Ghareghani M, Porubsky D, Jeong H, van Vliet MACC, Rausch T, Richter-Pechańska P, Kunz JB, Jenni S, Bolognini D, Longo GMC, Raeder B, Kinanen V, Zimmermann J, Benes V, Schrappe M, Mardin BR, Kulozik AE, Bornhauser B, Bourquin JP, Marschall T, Korbel JO. Single-cell analysis of structural variations and complex rearrangements with tri-channel processing. Nat Biotechnol 2020; 38:343-354. [PMID: 31873213 PMCID: PMC7612647 DOI: 10.1038/s41587-019-0366-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Structural variation (SV), involving deletions, duplications, inversions and translocations of DNA segments, is a major source of genetic variability in somatic cells and can dysregulate cancer-related pathways. However, discovering somatic SVs in single cells has been challenging, with copy-number-neutral and complex variants typically escaping detection. Here we describe single-cell tri-channel processing (scTRIP), a computational framework that integrates read depth, template strand and haplotype phase to comprehensively discover SVs in individual cells. We surveyed SV landscapes of 565 single cells, including transformed epithelial cells and patient-derived leukemic samples, to discover abundant SV classes, including inversions, translocations and complex DNA rearrangements. Analysis of the leukemic samples revealed four times more somatic SVs than cytogenetic karyotyping, submicroscopic copy-number alterations, oncogenic copy-neutral rearrangements and a subclonal chromothripsis event. Advancing current methods, single-cell tri-channel processing can directly measure SV mutational processes in individual cells, such as breakage-fusion-bridge cycles, facilitating studies of clonal evolution, genetic mosaicism and SV formation mechanisms, which could improve disease classification for precision medicine.
Collapse
Affiliation(s)
- Ashley D Sanders
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sascha Meiers
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maryam Ghareghani
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- Max Planck Institute for Informatics, Saarbrücken, Germany
- Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - David Porubsky
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Hyobin Jeong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Tobias Rausch
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children's Cancer Center, Heidelberg, Germany
| | - Joachim B Kunz
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children's Cancer Center, Heidelberg, Germany
| | - Silvia Jenni
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Davide Bolognini
- European Molecular Biology Laboratory, Genomics Core Facility, Heidelberg, Germany
| | - Gabriel M C Longo
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Venla Kinanen
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jürgen Zimmermann
- European Molecular Biology Laboratory, Genomics Core Facility, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory, Genomics Core Facility, Heidelberg, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Balca R Mardin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- BioMed X Innovation Center, Heidelberg, Germany
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children's Cancer Center, Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Tobias Marschall
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.
- Max Planck Institute for Informatics, Saarbrücken, Germany.
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
Kwon SM, Budhu A, Woo HG, Chaisaingmongkol J, Dang H, Forgues M, Harris CC, Zhang G, Auslander N, Ruppin E, Mahidol C, Ruchirawat M, Wang XW. Functional Genomic Complexity Defines Intratumor Heterogeneity and Tumor Aggressiveness in Liver Cancer. Sci Rep 2019; 9:16930. [PMID: 31729408 PMCID: PMC6858353 DOI: 10.1038/s41598-019-52578-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation and chromosome aneuploidy are major traits of primary liver cancer (PLC), which represent the second most common cause of cancer-related death worldwide. Increased cancer fitness and aggressiveness of PLC may be achieved by enhancing tumoral genomic complexity that alters tumor biology. Here, we developed a scoring method, namely functional genomic complexity (FGC), to determine the degree of molecular heterogeneity among 580 liver tumors with diverse ethnicities and etiologies by assessing integrated genomic and transcriptomic data. We found that tumors with higher FGC scores are associated with chromosome instability and TP53 mutations, and a worse prognosis, while tumors with lower FGC scores have elevated infiltrating lymphocytes and a better prognosis. These results indicate that FGC scores may serve as a surrogate to define genomic heterogeneity of PLC linked to chromosomal instability and evasion of immune surveillance. Our findings demonstrate an ability to define genomic heterogeneity and corresponding tumor biology of liver cancer based only on bulk genomic and transcriptomic data. Our data also provide a rationale for applying this approach to survey liver tumor immunity and to stratify patients for immune-based therapy.
Collapse
Affiliation(s)
- So Mee Kwon
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Hyun Goo Woo
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| | - Jittiporn Chaisaingmongkol
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of the Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand
| | - Hien Dang
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Noam Auslander
- Cancer Data Science Lab, National Cancer Institute, National Institute of health, MD, 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institute of health, MD, 20892, USA
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of the Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
13
|
Begemann M, Waszak SM, Robinson GW, Jäger N, Sharma T, Knopp C, Kraft F, Moser O, Mynarek M, Guerrini-Rousseau L, Brugieres L, Varlet P, Pietsch T, Bowers DC, Chintagumpala M, Sahm F, Korbel JO, Rutkowski S, Eggermann T, Gajjar A, Northcott P, Elbracht M, Pfister SM, Kontny U, Kurth I. Germline GPR161 Mutations Predispose to Pediatric Medulloblastoma. J Clin Oncol 2019; 38:43-50. [PMID: 31609649 PMCID: PMC6943973 DOI: 10.1200/jco.19.00577] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The identification of a heritable tumor predisposition often leads to changes in management and increased surveillance of individuals who are at risk; however, for many rare entities, our knowledge of heritable predisposition is incomplete. METHODS Families with childhood medulloblastoma, one of the most prevalent childhood malignant brain tumors, were investigated to identify predisposing germline mutations. Initial findings were extended to genomes and epigenomes of 1,044 medulloblastoma cases from international multicenter cohorts, including retrospective and prospective clinical studies and patient series. RESULTS We identified heterozygous germline mutations in the G protein-coupled receptor 161 (GPR161) gene in six patients with infant-onset medulloblastoma (median age, 1.5 years). GPR161 mutations were exclusively associated with the sonic hedgehog medulloblastoma (MBSHH) subgroup and accounted for 5% of infant MBSHH cases in our cohorts. Molecular tumor profiling revealed a loss of heterozygosity at GPR161 in all affected MBSHH tumors, atypical somatic copy number landscapes, and no additional somatic driver events. Analysis of 226 MBSHH tumors revealed somatic copy-neutral loss of heterozygosity of chromosome 1q as the hallmark characteristic of GPR161 deficiency and the primary mechanism for biallelic inactivation of GPR161 in affected MBSHH tumors. CONCLUSION Here, we describe a novel brain tumor predisposition syndrome that is caused by germline GPR161 mutations and characterized by MBSHH in infants. Additional studies are needed to identify a potential broader tumor spectrum associated with germline GPR161 mutations.
Collapse
Affiliation(s)
| | | | | | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany
| | - Tanvi Sharma
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany
| | | | | | | | - Martin Mynarek
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | - Felix Sahm
- German Cancer Research Centre, Heidelberg, Germany.,University Hospital Heidelberg, Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Amar Gajjar
- St Jude Children's Research Hospital, Memphis, TN
| | | | | | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany.,University Hospital Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Distinct Imprinting Signatures and Biased Differentiation of Human Androgenetic and Parthenogenetic Embryonic Stem Cells. Cell Stem Cell 2019; 25:419-432.e9. [DOI: 10.1016/j.stem.2019.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
|
15
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
16
|
Postema FAM, Bliek J, van Noesel CJM, van Zutven LJCM, Oosterwijk JC, Hopman SMJ, Merks JHM, Hennekam RC. Multiple tumors due to mosaic genome-wide paternal uniparental disomy. Pediatr Blood Cancer 2019; 66:e27715. [PMID: 30882989 DOI: 10.1002/pbc.27715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Mosaic genome-wide paternal uniparental disomy is an infrequently described disorder in which affected individuals have signs and symptoms that may resemble Beckwith-Wiedemann syndrome. In addition, they can develop multiple benign and malignant tumors throughout life. Routine molecular diagnostics may not detect the (characteristic) low level of mosaicism, and the diagnosis is likely to be missed. Genetic counseling and a life-long alertness for the development of tumors is indicated. We describe the long diagnostic process of a patient who already had a tumor at birth and developed multiple tumors in childhood and adulthood. Furthermore, we offer clues to recognize the entity.
Collapse
Affiliation(s)
- Floor A M Postema
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric oncology, Utrecht, the Netherlands
| | - Jet Bliek
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Jan C Oosterwijk
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Saskia M J Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Torabi K, Erola P, Alvarez-Mora MI, Díaz-Gay M, Ferrer Q, Castells A, Castellví-Bel S, Milà M, Lozano JJ, Miró R, Ried T, Ponsa I, Camps J. Quantitative analysis of somatically acquired and constitutive uniparental disomy in gastrointestinal cancers. Int J Cancer 2018; 144:513-524. [PMID: 30350313 PMCID: PMC6635747 DOI: 10.1002/ijc.31936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Somatically acquired uniparental disomies (aUPDs) are frequent events in solid tumors and have been associated with cancer‐related genes. Studies assessing their functional consequences across several cancer types are therefore necessary. Here, we aimed at integrating aUPD profiles with the mutational status of cancer‐related genes in a tumor‐type specific manner. Using TCGA datasets for 1,032 gastrointestinal cancers, including colon (COAD), rectum (READ), stomach (STAD), esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), we show a non‐random distribution of aUPD, suggesting the existence of a cancer‐specific landscape of aUPD events. Our analysis indicates that aUPD acts as a “second hit” in Knudson's model in order to achieve biallelic inactivation of tumor suppressor genes. In particular, APC, ARID1A and NOTCH1 were recurrently inactivated by the presence of homozygous mutation as a consequence of aUPD in COAD and READ, STAD and ESCC, respectively. Furthermore, while TP53 showed inactivation caused by aUPD at chromosome arm 17p across all tumor types, copy number losses at this genomic position were also frequent. By experimental and computationally inferring genome ploidy, we demonstrate that an increased number of aUPD events, both affecting the whole chromosome or segments of it, were present in highly aneuploid genomes compared to near‐diploid tumors. Finally, the presence of mosaic UPD was detected at a higher frequency in DNA extracted from peripheral blood lymphocytes of patients with colorectal cancer compared to healthy individuals. In summary, our study defines specific profiles of aUPD in gastrointestinal cancers and provides unequivocal evidence of their relevance in cancer. What's new? Somatically acquired uniparental disomies (aUPDs), in which two copies of a chromosome originate from the same parent, have been documented in various human cancers. Here, the authors examined the frequency of aUPDs in different gastrointestinal cancer types. Events involving aUPDs were found to occur at high incidence in gastrointestinal cancers and at increased frequency particularly in highly aneuploid genomes. The data also reveal a nonrandom distribution of aUPDs, with evidence of biallelic inactivation of tumor suppressor genes and activation of oncogenes in a tumor type‐specific manner. The findings suggest that aUPDs are functionally relevant in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Keyvan Torabi
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pau Erola
- Bioinformatics Unit, CIBEREHD, Barcelona, Catalonia, Spain.,Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | - Marcos Díaz-Gay
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Queralt Ferrer
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Sergi Castellví-Bel
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Montserrat Milà
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | | | - Rosa Miró
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Immaculada Ponsa
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
18
|
Condorelli DF, Spampinato G, Valenti G, Musso N, Castorina S, Barresi V. Positive Caricature Transcriptomic Effects Associated with Broad Genomic Aberrations in Colorectal Cancer. Sci Rep 2018; 8:14826. [PMID: 30287863 PMCID: PMC6172234 DOI: 10.1038/s41598-018-32884-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
We re-examined the correlation between Broad Genomic Aberrations (BGAs) and transcriptomic profiles in Colorectal Cancer (CRC). Two types of BGAs have been examined: Broad Copy-Number Abnormal regions (BCNAs), distinguished in gain- and loss-type, and Copy-Neutral Loss of Heterozygosities (CNLOHs). Transcripts are classified as “OverT” or “UnderT” if overexpressed or underexpressed comparing CRCs bearing a specific BGA to CRCs not bearing it and as “UpT” or “DownT” if upregulated or downregulated in cancer compared to normal tissue. BGA-associated effects were evaluated by changes in the “Chromosomal Distribution Index” (CDI) of different transcript classes. Data show that UpT are more sensitive than DownT to BCNA-associated gene dosage effects. “Over-UpT” genes are upregulated in cancer and further overexpressed by gene dosage, defining the so called “positive caricature transcriptomic effect”. When Over-UpT genes are ranked according to overexpression, top positions are occupied by genes implicated at the functional and therapeutic level in CRC. We show that cancer-upregulated transcripts are sensitive markers of BCNA-induced effects and suggest that analysis of positive caricature transcriptomic effects can provide clues toward the identification of BCNA-associated cancer driver genes.
Collapse
Affiliation(s)
- Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Giovanna Valenti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Sergio Castorina
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, (95123), Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy.
| |
Collapse
|
19
|
Ganly I, Makarov V, Deraje S, Dong Y, Reznik E, Seshan V, Nanjangud G, Eng S, Bose P, Kuo F, Morris LGT, Landa I, Carrillo Albornoz PB, Riaz N, Nikiforov YE, Patel K, Umbricht C, Zeiger M, Kebebew E, Sherman E, Ghossein R, Fagin JA, Chan TA. Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell 2018; 34:256-270.e5. [PMID: 30107176 PMCID: PMC6247912 DOI: 10.1016/j.ccell.2018.07.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/19/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
The molecular foundations of Hürthle cell carcinoma (HCC) are poorly understood. Here we describe a comprehensive genomic characterization of 56 primary HCC tumors that span the spectrum of tumor behavior. We elucidate the mutational profile and driver mutations and show that these tumors exhibit a wide range of recurrent mutations. Notably, we report a high number of disruptive mutations to both protein-coding and tRNA-encoding regions of the mitochondrial genome. We reveal unique chromosomal landscapes that involve whole-chromosomal duplications of chromosomes 5 and 7 and widespread loss of heterozygosity arising from haploidization and copy-number-neutral uniparental disomy. We also identify fusion genes and disrupted signaling pathways that may drive disease pathogenesis.
Collapse
Affiliation(s)
- Ian Ganly
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shyamprasad Deraje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - YiYu Dong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephanie Eng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Promita Bose
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G T Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedro Blecua Carrillo Albornoz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kepal Patel
- Department of Surgery, Division of Endocrine Surgery, New York University Langone Medical Center, New York, NY, USA
| | - Christopher Umbricht
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martha Zeiger
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Eric Sherman
- Department of Medicine, Head and Neck Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald Ghossein
- Department of Pathology, Head and Neck Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Niida Y, Ozaki M, Shimizu M, Ueno K, Tanaka T. Classification of Uniparental Isodisomy Patterns That Cause Autosomal Recessive Disorders: Proposed Mechanisms of Different Proportions and Parental Origin in Each Pattern. Cytogenet Genome Res 2018; 154:137-146. [PMID: 29656286 DOI: 10.1159/000488572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 01/18/2023] Open
Abstract
Patients with autosomal recessive (AR) disorders are usually born to parents both of whom are heterozygous carriers of the disease. However, in some instances only one of the parents is a carrier and a mutation is segregated to the patient through uniparental isodisomy (UPiD). Recently, an increasing number of such case reports has been published, and it has become clear that there are several different UPiD patterns that cause AR disorders. In this article, we report 3 remarkable patients with different patterns of UPiD. We then review 85 cases collected in the literature. We realized that they can be classified into 3 patterns: UPiD of the whole chromosome, segmental UPiD with uniparental heterodisomy (UPhD), and segmental UPiD caused by post-zygotic mitotic recombination (MiRe). Whole chromosomal UPiD accounted for the majority of cases, with paternal origin accounting for approximately twice as many cases as maternal origin. Most cases of segmental UPiD with UPhD were of maternal origin, with a dominancy of nondisjunction in meiosis I, while segmental UPiD through MiRe is the smallest pattern with equal parental origin. These differences in proportion and parental origin in each pattern can be explained by considering nondisjunction during oogenesis as the starting point and UPiD as subsequent events.
Collapse
|
21
|
Uniparental disomy unveils a novel recessive mutation in POMT2. Neuromuscul Disord 2018; 28:592-596. [PMID: 29759639 DOI: 10.1016/j.nmd.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/24/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
Mutations in POMT2 are most commonly associated with Walker-Warburg syndrome and Muscle-Eye-Brain disease, but can also cause limb girdle muscular dystrophy (LGMD2N). We report a case of LGMD due to a novel mutation in POMT2 unmasked by uniparental isodisomy. The patient experienced proximal muscle weakness from three years of age with minimal progression. She developed progressive contractures and underwent unilateral Achilles tenotomy. By age 11, she had borderline low left ventricular ejection fraction and mild restrictive lung disease. Muscle biopsy showed mild dystrophic changes with selective reduction in α-dystroglycan immunostaining. Sequencing of POMT2 showed a novel homozygous c.1502A>C variant that was predicted to be probably pathogenic. Fibroblast complementation studies showed lack of functional glycosylation rescued by wild-type POMT2 expression. Chromosomal microarray showed a single 15 Mb copy number neutral loss of heterozygosity on chromosome 14 encompassing POMT2. RNAseq verified homozygosity at this locus. Together, our findings indicate maternal uniparental isodisomy causing LGMD2N.
Collapse
|
22
|
Córdova-Fletes C, Becerra-Solano LE, Rangel-Sosa MM, Rivas-Estilla AM, Alberto Galán-Huerta K, Ortiz-López R, Rojas-Martínez A, Juárez-Vázquez CI, García-Ortiz JE. Uncommon runs of homozygosity disclose homozygous missense mutations in two ciliopathy-related genes ( SPAG17 and WDR35 ) in a patient with multiple brain and skeletal anomalies. Eur J Med Genet 2018; 61:161-167. [DOI: 10.1016/j.ejmg.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
23
|
Rotemberg V, Garzon M, Lauren C, Iglesias A, Brachio SS, Aggarwal V, Stong N, Goldstein DB, Diacovo T. A Novel Mutation in Junctional Plakoglobin Causing Lethal Congenital Epidermolysis Bullosa. J Pediatr 2017; 191:266-269.e1. [PMID: 29173316 DOI: 10.1016/j.jpeds.2017.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/20/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023]
Abstract
We report a case of neonatal generalized erythema and epidermolysis resulting from a novel mutation in the junctional plakoglobin gene causing truncation of the plakoglobin protein. Expedited genetic testing enabled diagnosis while the patient was in the neonatal intensive care unit, providing valuable information for the clinicians and family.
Collapse
Affiliation(s)
| | - Maria Garzon
- Department of Dermatology, Columbia University, New York, NY; Department of Pediatrics, Columbia University, New York, NY
| | - Christine Lauren
- Department of Dermatology, Columbia University, New York, NY; Department of Pediatrics, Columbia University, New York, NY
| | - Alejandro Iglesias
- Department of Pediatrics, Columbia University, New York, NY; Department of Clinical Genetics, Columbia University, New York, NY
| | | | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY
| | - David B Goldstein
- Department of Genetics and Development, Columbia University, New York, NY
| | - Thomas Diacovo
- Department of Pediatrics, Columbia University, New York, NY; Department of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
24
|
Smukowski Heil CS, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast. Mol Biol Evol 2017; 34:1596-1612. [PMID: 28369610 PMCID: PMC5455960 DOI: 10.1093/molbev/msx098] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we examine hybrid genome evolution using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae × Saccharomyces uvarum and their parentals. We evolved these strains in nutrient-limited conditions for hundreds of generations and sequenced the resulting cultures identifying numerous point mutations, copy number changes, and loss of heterozygosity (LOH) events, including species-biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated LOH at the high-affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the LOH is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation.
Collapse
Affiliation(s)
| | - Christopher G DeSevo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Dave A Pai
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Cheryl M Tucker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Margaret L Hoang
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution, Baltimore, MD.,Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
25
|
Bens S, Luedeke M, Richter T, Graf M, Kolarova J, Barbi G, Lato K, Barth TF, Siebert R. Mosaic genome-wide maternal isodiploidy: an extreme form of imprinting disorder presenting as prenatal diagnostic challenge. Clin Epigenetics 2017; 9:111. [PMID: 29046733 PMCID: PMC5640928 DOI: 10.1186/s13148-017-0410-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Uniparental disomy of certain chromosomes are associated with a group of well-known genetic syndromes referred to as imprinting disorders. However, the extreme form of uniparental disomy affecting the whole genome is usually not compatible with life, with the exception of very rare cases of patients with mosaic genome-wide uniparental disomy reported in the literature. Results We here report on a fetus with intrauterine growth retardation and malformations observed on prenatal ultrasound leading to invasive prenatal testing. By cytogenetic (conventional karyotyping), molecular cytogenetic (QF-PCR, FISH, array), and methylation (MS-MLPA) analyses of amniotic fluid, we detected mosaicism for one cell line with genome-wide maternal uniparental disomy and a second diploid cell line of biparental inheritance with trisomy X due to paternal isodisomy X. As expected for this constellation, we observed DNA methylation changes at all imprinted loci investigated. Conclusions This report adds new information on phenotypic outcome of mosaic genome-wide maternal uniparental disomy leading to an extreme form of multilocus imprinting disturbance. Moreover, the findings highlight the technical challenges of detecting these rare chromosome disorders prenatally. Electronic supplementary material The online version of this article (10.1186/s13148-017-0410-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Bens
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Manuel Luedeke
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Tanja Richter
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Melanie Graf
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Gotthold Barbi
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Krisztian Lato
- Department of Obstetrics and Gynecology, University of Ulm & Ulm University Hospital, Ulm, Germany
| | - Thomas F Barth
- Institute of Pathology, University of Ulm & Ulm University Hospital, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
26
|
Alsina Casanova M, Monteagudo-Sánchez A, Rodiguez Guerineau L, Court F, Gazquez Serrano I, Martorell L, Rovira Zurriaga C, Moore GE, Ishida M, Castañon M, Moliner Calderon E, Monk D, Moreno Hernando J. Maternal mutations of FOXF1 cause alveolar capillary dysplasia despite not being imprinted. Hum Mutat 2017; 38:615-620. [PMID: 28256047 DOI: 10.1002/humu.23213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 11/06/2022]
Abstract
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare cause of pulmonary hypertension in newborns. Maternally inherited point mutations in Forkhead Box F1 gene (FOXF1), deletions of the gene, or its long-range enhancers on the maternal allele are responsible for this neonatal lethal disorder. Here, we describe monozygotic twins and one full-term newborn with ACD and gastrointestinal malformations caused by de novo mutations of FOXF1 on the maternal-inherited alleles. Since this parental transmission is consistent with genomic imprinting, the parent-of-origin specific monoallelic expression of genes, we have undertaken a detailed analysis of both allelic expression and DNA methylation. FOXF1 and its neighboring gene FENDRR were both biallelically expressed in a wide range of fetal tissues, including lung and intestine. Furthermore, detailed methylation screening within the 16q24.1 regions failed to identify regions of allelic methylation, suggesting that disrupted imprinting is not responsible for ACDMPV.
Collapse
Affiliation(s)
- Miguel Alsina Casanova
- Department of Neonatology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Ana Monteagudo-Sánchez
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute, Hospital Duran & Reynals, Barcelona, Spain
| | | | - Franck Court
- Genetics, Reproduction and Development laboratories (GreD), CNRS, UMR6247, Clermont Université, INSERM U931, Clermont-Ferrand, France
| | - Isabel Gazquez Serrano
- Department of Neonatology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Loreto Martorell
- Laboratory of Molecular Genètics, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Carlota Rovira Zurriaga
- Department of Pathology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Gudrun E Moore
- Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, UK
| | - Miho Ishida
- Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, UK
| | - Montserrat Castañon
- Department of Surgery, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute, Hospital Duran & Reynals, Barcelona, Spain
| | - Julio Moreno Hernando
- Department of Neonatology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Niida Y, Yokoi A, Kuroda M, Mitani Y, Nakagawa H, Ozaki M. Reply to: Uniparental disomy of chromosome 1 unmasks recessive mutations of PPT1 in a boy with neuronal ceroid lipofuscinosis type 1. Brain Dev 2017; 39:184-185. [PMID: 27616753 DOI: 10.1016/j.braindev.2016.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Yo Niida
- Center for Medical Genetics, Kanazawa Medical University Hospital, Ishikawa, Japan.
| | - Ayano Yokoi
- Department of Pediatrics, Institute of Medical, Pharmaceutical and Health Sciences, School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Mondo Kuroda
- Department of Pediatrics, Institute of Medical, Pharmaceutical and Health Sciences, School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Yusuke Mitani
- Department of Pediatrics, Institute of Medical, Pharmaceutical and Health Sciences, School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Hiroyasu Nakagawa
- Department of Pediatrics, Institute of Medical, Pharmaceutical and Health Sciences, School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Mamoru Ozaki
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
28
|
Villacis RAR, Basso TR, Canto LM, Nóbrega AF, Achatz MI, Rogatto SR. Germline large genomic alterations on 7q in patients with multiple primary cancers. Sci Rep 2017; 7:41677. [PMID: 28139749 PMCID: PMC5282589 DOI: 10.1038/srep41677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/29/2016] [Indexed: 11/11/2022] Open
Abstract
Patients with multiple primary cancers (MPCs) are suspected to have a hereditary cancer syndrome. However, only a small proportion may be explained by mutations in high-penetrance genes. We investigate two unrelated MPC patients that met Hereditary Breast and Ovaria Cancer criteria, both presenting triple negative breast tumors and no mutations in BRCA1, BRCA2 and TP53 genes. Germline rearrangements on chromosome 7q, involving over 40 Mb of the same region, were found in both patients: one with mosaic loss (80% of cells) and the other with cnLOH (copy-neutral loss of heterozygosity) secondary to maternal allele duplication. Five children tested had no alterations on 7q. The patients shared 330 genes in common on 7q22.1-q34, including several tumor suppressor genes (TSGs) previously related to breast cancer risk and imprinted genes. The analysis of the triple negative BC from one patient revealed a mosaic gain of 7q translated for over-expressed cancer-related genes. The involvement of TSGs and imprinted genes, mapped on 7q, has the potential of being associated to MPC risk, as well as cancer progression. To our knowledge, this is the first description of patients with MPCs that harbor constitutive large alterations on 7q.
Collapse
Affiliation(s)
- R. A. R. Villacis
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília - UnB, Brasília, DF, Brazil
| | - T. R. Basso
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - L. M. Canto
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - A. F. Nóbrega
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - M. I. Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - S. R. Rogatto
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
- Department of Clinical Genetics, Vejle Hospital, DK and University of Southern Denmark, Denmark
- Department of Urology, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
29
|
Karrman K, Johansson B. Pediatric T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2016; 56:89-116. [PMID: 27636224 DOI: 10.1002/gcc.22416] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
The most common pediatric malignancy is acute lymphoblastic leukemia (ALL), of which T-cell ALL (T-ALL) comprises 10-15% of cases. T-ALL arises in the thymus from an immature thymocyte as a consequence of a stepwise accumulation of genetic and epigenetic aberrations. Crucial biological processes, such as differentiation, self-renewal capacity, proliferation, and apoptosis, are targeted and deranged by several types of neoplasia-associated genetic alteration, for example, translocations, deletions, and mutations of genes that code for proteins involved in signaling transduction, epigenetic regulation, and transcription. Epigenetically, T-ALL is characterized by gene expression changes caused by hypermethylation of tumor suppressor genes, histone modifications, and miRNA and lncRNA abnormalities. Although some genetic and gene expression patterns have been associated with certain clinical features, such as immunophenotypic subtype and outcome, none has of yet generally been implemented in clinical routine for treatment decisions. The recent advent of massive parallel sequencing technologies has dramatically increased our knowledge of the genetic blueprint of T-ALL, revealing numerous fusion genes as well as novel gene mutations. The challenges now are to integrate all genetic and epigenetic data into a coherent understanding of the pathogenesis of T-ALL and to translate the wealth of information gained in the last few years into clinical use in the form of improved risk stratification and targeted therapies. Here, we provide an overview of pediatric T-ALL with an emphasis on the acquired genetic alterations that result in this disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kristina Karrman
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bertil Johansson
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Mutant allele specific imbalance in oncogenes with copy number alterations: Occurrence, mechanisms, and potential clinical implications. Cancer Lett 2016; 384:86-93. [PMID: 27725226 DOI: 10.1016/j.canlet.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023]
Abstract
Mutant allele specific imbalance (MASI) was initially coined to describe copy number alterations associated with the mutant allele of an oncogene. The copy number gain (CNG) specific to the mutant allele can be readily observed in electropherograms. With the development of genome-wide analyses at base-pair resolution with copy number counts, we can now further differentiate MASI into those with CNG, with copy neutral alteration (also termed acquired uniparental disomy; UPD), or with loss of heterozygosity (LOH) due to the loss of the wild-type (WT) allele. Here we summarize the occurrence of MASI with CNG, aUPD, or MASI with LOH in some major oncogenes (such as EGFR, KRAS, PIK3CA, and BRAF). We also discuss how these various classifications of MASI have been demonstrated to impact tumorigenesis, progression, metastasis, prognosis, and potentially therapeutic responses in cancer, notably in lung, colorectal, and pancreatic cancers.
Collapse
|
31
|
Robbins KM, Stabley DL, Holbrook J, Sahraoui R, Sadreameli A, Conard K, Baker L, Gripp KW, Sol-Church K. Paternal uniparental disomy with segmental loss of heterozygosity of chromosome 11 are hallmark characteristics of syndromic and sporadic embryonal rhabdomyosarcoma. Am J Med Genet A 2016; 170:3197-3206. [PMID: 27589201 DOI: 10.1002/ajmg.a.37949] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/14/2016] [Indexed: 01/22/2023]
Abstract
Costello syndrome (CS) arises from a typically paternally derived germline mutation in the proto-oncogene HRAS, and is considered a rasopathy. CS results in failure-to-thrive, intellectual disabilities, short stature, coarse facial features, skeletal abnormalities, congenital heart disease, and a predisposition for cancer, most commonly embryonal rhabdomyosarcoma (ERMS). The goal of this study was to characterize CS ERMS at the molecular level and to determine how divergent it is from sporadic ERMS. We characterized eleven ERMS tumors from eight unrelated CS patients, carrying paternally derived HRAS c.34G>A (p.Gly12Ser; 6) or c.35G>C (p.Gly12Ala; 2) mutations. Loss of heterozygosity (LOH) was evaluated in all CS ERMS by microarray and/or short tandem repeat (STR) markers spanning the entire chromosome 11. Eight CS ERMS tumors displayed complete paternal uniparental disomy of chromosome 11 (pUPD11), whereas two displayed UPD only at 11p and a second primary ERMS tumor showed UPD limited to 11p15.5, the classical hallmark for ERMS. Three sporadic ERMS cell lines (RD, Rh36, Rh18) and eight formalin fixed paraffin embedded (FFPE) ERMS tumors were also analyzed for RAS mutations and LOH status. We found a higher than anticipated frequency of RAS mutations (HRAS or NRAS; 50%) in sporadic ERMS cell lines/tumors. Unexpectedly, complete uniparental disomy (UPD11) was observed in five specimens, while the other six showed LOH extending across the p and q arms of chromosome 11. In this study, we are able to clearly demonstrate complete UPD11 in both syndromic and sporadic ERMS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine M Robbins
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware.,Biological Sciences, University of Delaware, Newark, Delaware
| | - Deborah L Stabley
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jennifer Holbrook
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Rebecca Sahraoui
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware.,Delaware State University, Dover, Delaware
| | - Alexa Sadreameli
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Katrina Conard
- Department of Pathology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Laura Baker
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Karen W Gripp
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Katia Sol-Church
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
32
|
Soehn AS, Rattay TW, Beck-Wödl S, Schäferhoff K, Monk D, Döbler-Neumann M, Hörtnagel K, Schlüter A, Ruiz M, Pujol A, Züchner S, Riess O, Schüle R, Bauer P, Schöls L. Uniparental disomy of chromosome 16 unmasks recessive mutations of FA2H/SPG35 in 4 families. Neurology 2016; 87:186-91. [PMID: 27316240 DOI: 10.1212/wnl.0000000000002843] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/03/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Identifying an intriguing mechanism for unmasking recessive hereditary spastic paraplegias. METHOD Herein, we describe 4 novel homozygous FA2H mutations in 4 nonconsanguineous families detected by whole-exome sequencing or a targeted gene panel analysis providing high coverage of all known hereditary spastic paraplegia genes. RESULTS Segregation analysis revealed in all cases only one parent as a heterozygous mutation carrier whereas the other parent did not carry FA2H mutations. A macro deletion within FA2H, which could have caused a hemizygous genotype, was excluded by multiplex ligation-dependent probe amplification in all cases. Finally, a microsatellite array revealed uniparental disomy (UPD) in all 4 families leading to homozygous FA2H mutations. UPD was confirmed by microarray analyses and methylation profiling. CONCLUSION UPD has rarely been described as causative mechanism in neurodegenerative diseases. Of note, we identified this mode of inheritance in 4 families with the rare diagnosis of spastic paraplegia type 35 (SPG35). Since UPD seems to be a relevant factor in SPG35 and probably additional autosomal recessive diseases, we recommend segregation analysis especially in nonconsanguineous homozygous index cases to unravel UPD as mutational mechanism. This finding may bear major repercussion for genetic counseling, given the markedly reduced risk of recurrence for affected families.
Collapse
Affiliation(s)
- Anne S Soehn
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Tim W Rattay
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Stefanie Beck-Wödl
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Karin Schäferhoff
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - David Monk
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Marion Döbler-Neumann
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Konstanze Hörtnagel
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Agatha Schlüter
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Montserrat Ruiz
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Aurora Pujol
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Stephan Züchner
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Olaf Riess
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Rebecca Schüle
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| | - Peter Bauer
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL.
| | - Ludger Schöls
- From the Institute of Medical Genetics and Applied Genomics (A.S.S., S.B.-W., K.S., O.R., P.B.) and Department of Neurology and Hertie Institute for Clinical Brain Research (T.W.R., R.S., L.S.), University of Tübingen; German Center of Neurodegenerative Diseases (DZNE) (T.W.R., R.S.), Tübingen, Germany; Imprinting and Cancer Group (D.M.), Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain; Department of Neuropediatrics (M.D.-N.), Tübingen University School of Medicine; CeGaT GmbH (K.H.), Tübingen, Germany; Neurometabolic Diseases Laboratory (A.S., M.R., A.P.), Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona; Centre for Biomedical Research on Rare Diseases (CIBERER) (A.S., M.R., A.P.), Institute Carlos III, Madrid; Catalan Institution for Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain; and Hussman Institute for Human Genomics (S.Z., R.S.), University of Miami Miller School of Medicine, FL
| |
Collapse
|
33
|
The prevalence of chromosomal aberrations associated with myelodysplastic syndromes in China. Ann Hematol 2016; 95:1241-8. [DOI: 10.1007/s00277-016-2698-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/16/2016] [Indexed: 02/05/2023]
|
34
|
Huang MC, Chuang TP, Chen CH, Wu JY, Chen YT, Li LH, Yang HC. An integrated analysis tool for analyzing hybridization intensities and genotypes using new-generation population-optimized human arrays. BMC Genomics 2016; 17:266. [PMID: 27029637 PMCID: PMC4815280 DOI: 10.1186/s12864-016-2478-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Affymetrix Axiom single nucleotide polymorphism (SNP) arrays provide a cost-effective, high-density, and high-throughput genotyping solution for population-optimized analyses. However, no public software is available for the integrated genomic analysis of hybridization intensities and genotypes for this new-generation population-optimized genotyping platform. RESULTS A set of statistical methods was developed for an integrated analysis of allele frequency (AF), allelic imbalance (AI), loss of heterozygosity (LOH), long contiguous stretch of homozygosity (LCSH), and copy number variation or alteration (CNV/CNA) on the basis of SNP probe hybridization intensities and genotypes. This study analyzed 3,236 samples that were genotyped using different SNP platforms. The proposed AF adjustment method considerably increased the accuracy of AF estimation. The proposed quick circular binary segmentation algorithm for segmenting copy number reduced the computation time of the original segmentation method by 30-67 %. The proposed CNV/CNA detection, which integrates AI and LOH/LCSH detection, had a promising true positive rate and well-controlled false positive rate in simulation studies. Moreover, our real-time quantitative polymerase chain reaction experiments successfully validated the CNVs/CNAs that were identified in the Axiom data analyses using the proposed methods; some of the validated CNVs/CNAs were not detected in the Affymetrix Array 6.0 data analysis using the Affymetrix Genotyping Console. All the analysis functions are packaged into the ALICE (AF/LOH/LCSH/AI/CNV/CNA Enterprise) software. CONCLUSIONS ALICE and the used genomic reference databases, which can be downloaded from http://hcyang.stat.sinica.edu.tw/software/ALICE.html , are useful resources for analyzing genomic data from the Axiom and other SNP arrays.
Collapse
Affiliation(s)
- Mei-Chu Huang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.,Institute of Statistical Science, Academia Sinica, No 128, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Tzu-Po Chuang
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan.
| | - Hsin-Chou Yang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan. .,Institute of Statistical Science, Academia Sinica, No 128, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan. .,Institute of Public Health, National Yang Ming University, Taipei, 112, Taiwan. .,Department of Statistics, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Statistics, National Tsing Hua University, Hsinchu, 300, Taiwan. .,School of Public Health, National Defense Medical Center, Taipei, 114, Taiwan.
| |
Collapse
|
35
|
Ohtsuka Y, Higashimoto K, Oka T, Yatsuki H, Jozaki K, Maeda T, Kawahara K, Hamasaki Y, Matsuo M, Nishioka K, Joh K, Mukai T, Soejima H. Identification of consensus motifs associated with mitotic recombination and clinical characteristics in patients with paternal uniparental isodisomy of chromosome 11. Hum Mol Genet 2016; 25:1406-19. [PMID: 26908620 DOI: 10.1093/hmg/ddw023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/25/2016] [Indexed: 11/14/2022] Open
Abstract
Uniparental disomy (UPD) is defined as the inheritance of both homologs of a given genomic region from only one parent. The majority of UPD includes an entire chromosome. However, the extent of UPD is sometimes limited to a subchromosomal region (segmental UPD). Mosaic paternal UPD (pUPD) of chromosome 11 is found in approximately 20% of patients with Beckwith-Wiedemann syndrome (BWS) and almost all pUPDs are segmental isodisomic pUPDs resulting from mitotic recombination at an early embryonic stage. A mechanism initiating a DNA double strand break (DSB) within 11p has been predicted to lead to segmental pUPD. However, no consensus motif has yet been found. Here, we analyzed 32 BWS patients with pUPD by SNP array and searched for consensus motifs. We identified four consensus motifs frequently appearing within breakpoint regions of segmental pUPD. These motifs were found in another nine BWS patients with pUPD. In addition, the seven motifs found in meiotic recombination hot spots could not be found within pUPD breakpoint regions. Histone H3 lysine 4 trimethylation, a marker of DSB initiation, could not be found either. These findings suggest that the mechanism(s) of mitotic recombination leading to segmental pUPD are different from that of meiotic recombination. Furthermore, we found seven patients with paternal uniparental diploidy (PUD) mosaicism. Comparison of clinical features between segmental pUPDs and PUDs showed that developmental disability and cardiac abnormalities were additional characteristic features of PUD mosaicism, along with high risk of tumor development. We also found that macroglossia was characteristic of segmental pUPD mosaicism.
Collapse
Affiliation(s)
- Yasufumi Ohtsuka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Department of Pediatrics, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine
| | - Takehiko Oka
- World Fusion Co., Ltd., Tokyo 103-0013, Japan and
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine
| | - Kosuke Jozaki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine
| | - Toshiyuki Maeda
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Department of Pediatrics, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | | | - Yuhei Hamasaki
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kenichi Nishioka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine
| | - Keiichiro Joh
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine
| | | | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine,
| |
Collapse
|
36
|
Torabi K, Miró R, Fernández-Jiménez N, Quintanilla I, Ramos L, Prat E, del Rey J, Pujol N, Killian JK, Meltzer PS, Fernández PL, Ried T, Lozano JJ, Camps J, Ponsa I. Patterns of somatic uniparental disomy identify novel tumor suppressor genes in colorectal cancer. Carcinogenesis 2015; 36:1103-10. [PMID: 26243311 PMCID: PMC4598814 DOI: 10.1093/carcin/bgv115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/06/2015] [Accepted: 07/29/2015] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is characterized by specific patterns of copy number alterations (CNAs), which helped with the identification of driver oncogenes and tumor suppressor genes (TSGs). More recently, the usage of single nucleotide polymorphism arrays provided information of copy number neutral loss of heterozygosity, thus suggesting the occurrence of somatic uniparental disomy (UPD) and uniparental polysomy (UPP) events. The aim of this study is to establish an integrative profiling of recurrent UPDs/UPPs and CNAs in sporadic CRC. Our results indicate that regions showing high frequencies of UPD/UPP mostly coincide with regions typically involved in genomic losses. Among them, chromosome arms 3p, 5q, 9q, 10q, 14q, 17p, 17q, 20p, 21q and 22q preferentially showed UPDs/UPPs over genomic losses suggesting that tumor cells must maintain the disomic state of certain genes to favor cellular fitness. A meta-analysis using over 300 samples from The Cancer Genome Atlas confirmed our findings. Several regions affected by recurrent UPDs/UPPs contain well-known TSGs, as well as novel candidates such as ARID1A, DLC1, TCF7L2 and DMBT1. In addition, VCAN, FLT4, SFRP1 and GAS7 were also frequently involved in regions of UPD/UPP and displayed high levels of methylation. Finally, sequencing and fluorescence in situ hybridization analysis of the gene APC underlined that a somatic UPD event might represent the second hit to achieve biallelic inactivation of this TSG in colorectal tumors. In summary, our data define a profile of somatic UPDs/UPPs in sporadic CRC and highlights the importance of these events as a mechanism to achieve the inactivation of TSGs.
Collapse
Affiliation(s)
- Keyvan Torabi
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Rosa Miró
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Nora Fernández-Jiménez
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Present address: Epigenetics Group, International Agency for Research on Cancer 69008, Lyon, France
| | - Isabel Quintanilla
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia 08036, Spain
| | - Laia Ramos
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Present address: Unitat de Genòmica i Bioinformàtica, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Badalona, Catalonia 08916, Spain
| | - Esther Prat
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Present address: Laboratori de Genètica Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalonia 08908, Spain
| | - Javier del Rey
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Núria Pujol
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - J Keith Killian
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro Luis Fernández
- Department of Pathology, Hospital Clínic/IDIBAPS, Universitat de Barcelona, Barcelona, Catalonia 08036, Spain and
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan José Lozano
- Bioinformatics Unit, CIBERehd, Barcelona, Catalonia 08036, Spain
| | - Jordi Camps
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia 08036, Spain, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Immaculada Ponsa
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain,
| |
Collapse
|
37
|
Nauen DW, Guajardo A, Haley L, Powell K, Burger PC, Gocke CD. Chromosomal defects track tumor subpopulations and change in progression in oligodendroglioma. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2015; 1. [PMID: 31602317 DOI: 10.1088/2057-1739/1/1/015001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To assess karyotypic changes and tumor subpopulations in progression of oligodendroglioma (ODG) we analyzed histologically diagnosed 1p/19q codeleted cases using single nucleotide polymorphism (SNP) microarray data. We separated cases according to grade, which was assigned blind to karyotype information beyond 1p/19q status. The 51 WHO grade II (O2) and 18 WHO grade III (O3) specimens showed frequent chromosomal locations and patterns of change including loss of heterozygosity (LOH), often copy-neutral, on 9p and LOH on 4p and 4q together. Analysis of co-occurrence indicated that most defects were independent but also suggested increased likelihood of defects on 11q, 13q, and 14q in the presence of defects on 18, 4, and 9, respectively. We used the relative degree of change in B-allele frequency as an indicator of an abnormality's extent, and we present simulated data to clarify how information on subpopulations was thus inferred. Among 9p defects, 89.3% involved the whole tumor, whereas only 47.6% of 4q defects did so. We modeled extent through the tumor as due to a karyotypic change's likelihood of occurring and the fitness it confers on its subpopulation, and used group data to estimate these values. To assess progression directly, we evaluated specimens from six patients who underwent multiple resections since 1996. Four of these patients had received no chemotherapy or radiation, permitting assessment of the natural history of the tumor karyotype in situ. Defects present throughout a tumor at first resection remained so, whereas among subpopulations, some expanded, some remained constant, and some disappeared. The rate of expansion among subpopulations that did so was not uniform, and estimates of fitness predicted subpopulation composition at recurrence. These results extend prior studies of increased karyotypic abnormality in progression of oligodendroglioma and reveal the complex dynamics of subpopulations in the tumor over time.
Collapse
Affiliation(s)
- David W Nauen
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Andrew Guajardo
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Lisa Haley
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Kerry Powell
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Peter C Burger
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins Hospital, Ross 558, 720 Rutland Avenue, Baltimore MD 21205, USA
| |
Collapse
|
38
|
Boland BS, Widjaja CE, Banno A, Zhang B, Kim SH, Stoven S, Peterson MR, Jones MC, Su HI, Crowe SE, Bui JD, Ho SB, Okugawa Y, Goel A, Marietta EV, Khosroheidari M, Jepsen K, Aramburu J, López-Rodríguez C, Sandborn WJ, Murray JA, Harismendy O, Chang JT. Immunodeficiency and autoimmune enterocolopathy linked to NFAT5 haploinsufficiency. THE JOURNAL OF IMMUNOLOGY 2015; 194:2551-60. [PMID: 25667416 DOI: 10.4049/jimmunol.1401463] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The link between autoimmune diseases and primary immunodeficiency syndromes has been increasingly appreciated. Immunologic evaluation of a young man with autoimmune enterocolopathy and unexplained infections revealed evidence of immunodeficiency, including IgG subclass deficiency, impaired Ag-induced lymphocyte proliferation, reduced cytokine production by CD8(+) T lymphocytes, and decreased numbers of NK cells. Genetic evaluation identified haploinsufficiency of NFAT5, a transcription factor regulating immune cell function and cellular adaptation to hyperosmotic stress, as a possible cause of this syndrome. Inhibition or deletion of NFAT5 in normal human and murine cells recapitulated several of the immune deficits identified in the patient. These results provide evidence of a primary immunodeficiency disorder associated with organ-specific autoimmunity linked to NFAT5 deficiency.
Collapse
Affiliation(s)
- Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA 92093
| | | | - Asoka Banno
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Bing Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Stephanie H Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | | | - Michael R Peterson
- Western Washington Pathology and Multicare Health System, Tacoma, WA 98405
| | - Marilyn C Jones
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA 92093
| | - H Irene Su
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sheila E Crowe
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Samuel B Ho
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246; Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246; Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246
| | | | - Mahdieh Khosroheidari
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kristen Jepsen
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003 Spain; and
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003 Spain; and
| | - William J Sandborn
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA 92093
| | | | - Olivier Harismendy
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
39
|
Abstract
BACKGROUND The ability to measure the expression of proinflammatory cytokines from intestinal biopsies in patients with Crohn's disease in an accurate and reproducible way is critical for proof-of-concept and mechanism-of-action trials; however, the number of biopsies from a segment of the ileum or colon required to yield reproducible results has not been rigorously evaluated. We examined intestinal biopsies from patients with Crohn's disease to validate methods for detecting changes in inflammatory gene expression. METHODS To evaluate the reproducibility of gene expression measurements, intestinal biopsies were obtained from designated segments from 6 healthy controls, 6 patients with active Crohn's disease, and 6 patients with inactive Crohn's disease. Disease activity was based on the simple endoscopic score for Crohn's disease. Expression of 7 proinflammatory genes was measured from each biopsy using quantitative polymerase chain reaction. Using a linear mixed effects model, the power to detect transcriptional changes corresponding to active and inactive Crohn's disease was calculated. RESULTS Total simple endoscopic score for Crohn's disease score corresponds with expression of most inflammatory biomarkers. For most genes, 2 to 5 biopsies are needed to reduce sampling error to <25% for most genes. To measure changes in mRNA expression corresponding to active versus inactive Crohn's disease, 1 to 2 intestinal biopsies from 3 patients before and after treatment are needed to yield power of at least 80%. CONCLUSIONS Measuring proinflammatory gene expression from mucosal biopsies from patients with Crohn's disease is practicable and provides objective biomarkers that can be used in proof-of-concept and mechanism-of-action trials to assess response to therapy.
Collapse
|
40
|
Sapkota Y. Germline DNA variations in breast cancer predisposition and prognosis: a systematic review of the literature. Cytogenet Genome Res 2014; 144:77-91. [PMID: 25401968 DOI: 10.1159/000369045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common cancer and the second leading cause of death in women worldwide. The disease is caused by a combination of genetic, environmental, lifestyle, and reproductive risk factors. Linkage and family-based studies have identified many pathological germline mutations, which account for around 20% of the genetic risk of familial breast cancer. In recent years, single nucleotide polymorphism-based genetic association studies, especially genome-wide association studies (GWASs), have been very successful in uncovering low-penetrance common variants associated with breast cancer risk. These common variants alone may explain up to an additional 30% of the familial risk of breast cancer. With the advent of available genetic resources and growing collaborations among researchers across the globe, the much needed large sample size to capture variants with small effect sizes and low population frequencies is being addressed, and hence many more common variants are expected to be discovered in the coming days. Here, major GWASs conducted for breast cancer predisposition and prognosis until 2013 are summarized. Few studies investigating other forms of genetic variations contributing to breast cancer predisposition and disease outcomes are also discussed. Finally, the potential utility of the GWAS-identified variants in disease risk models and some future perspectives are presented.
Collapse
Affiliation(s)
- Yadav Sapkota
- The Neurogenetics Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Qld., Australia
| |
Collapse
|
41
|
Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proc Natl Acad Sci U S A 2014; 111:14512-7. [PMID: 25246545 DOI: 10.1073/pnas.1415475111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to signaling through the classical tyrosine kinase pathway, recent studies indicate that insulin receptors (IRs) and insulin-like growth factor 1 (IGF1) receptors (IGF1Rs) can emit signals in the unoccupied state through some yet-to-be-defined noncanonical pathways. Here we show that cells lacking both IRs and IGF1Rs exhibit a major decrease in expression of multiple imprinted genes and microRNAs, which is partially mimicked by inactivation of IR alone in mouse embryonic fibroblasts or in vivo in brown fat in mice. This down-regulation is accompanied by changes in DNA methylation of differentially methylated regions related to these loci. Different from a loss of imprinting pattern, loss of IR and IGF1R causes down-regulated expression of both maternally and paternally expressed imprinted genes and microRNAs, including neighboring reciprocally imprinted genes. Thus, the unoccupied IR and IGF1R generate previously unidentified signals that control expression of imprinted genes and miRNAs through transcriptional mechanisms that are distinct from classical imprinting control.
Collapse
|
42
|
Ohtsuka Y, Higashimoto K, Sasaki K, Jozaki K, Yoshinaga H, Okamoto N, Takama Y, Kubota A, Nakayama M, Yatsuki H, Nishioka K, Joh K, Mukai T, Yoshiura KI, Soejima H. Autosomal recessive cystinuria caused by genome-wide paternal uniparental isodisomy in a patient with Beckwith-Wiedemann syndrome. Clin Genet 2014; 88:261-6. [PMID: 25171146 DOI: 10.1111/cge.12496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023]
Abstract
Approximately 20% of Beckwith-Wiedemann syndrome (BWS) cases are caused by mosaic paternal uniparental disomy of chromosome 11 (pUPD11). Although pUPD11 is usually limited to the short arm of chromosome 11, a small minority of BWS cases show genome-wide mosaic pUPD (GWpUPD). These patients show variable clinical features depending on mosaic ratio, imprinting status of other chromosomes, and paternally inherited recessive mutations. To date, there have been no reports of a mosaic GWpUPD patient with an autosomal recessive disease caused by a paternally inherited recessive mutation. Here, we describe a patient concurrently showing the clinical features of BWS and autosomal recessive cystinuria. Genetic analyses revealed that the patient has mosaic GWpUPD and an inherited paternal homozygous mutation in SLC7A9. This is the first report indicating that a paternally inherited recessive mutation can cause an autosomal recessive disease in cases of GWpUPD mosaicism. Investigation into recessive mutations and the dysregulation of imprinting domains is critical in understanding precise clinical conditions of patients with mosaic GWpUPD.
Collapse
Affiliation(s)
- Y Ohtsuka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - K Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - K Sasaki
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Jozaki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - H Yoshinaga
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - N Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Y Takama
- Department of Pediatric Surgery, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - A Kubota
- Department of Pediatric Surgery, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - M Nakayama
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - H Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - K Nishioka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - K Joh
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - T Mukai
- Nishikyushu University, Saga, Japan
| | - K-i Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - H Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
43
|
Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, Sugahara N, Simón C, Moore H, Harness JV, Keirstead H, Sanchez-Mut JV, Kaneki E, Lapunzina P, Soejima H, Wake N, Esteller M, Ogata T, Hata K, Nakabayashi K, Monk D. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 2014; 24:554-69. [PMID: 24402520 PMCID: PMC3975056 DOI: 10.1101/gr.164913.113] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/26/2013] [Indexed: 12/16/2022]
Abstract
Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.
Collapse
Affiliation(s)
- Franck Court
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Valeria Romanelli
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Isabel Iglesias-Platas
- Servicio de Neonatología, Hospital Sant Joan de Déu, Fundació Sant Joan de Déu, 08950 Barcelona, Spain
| | - Kohji Okamura
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Naoko Sugahara
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Carlos Simón
- Fundación IVI-Instituto Universitario IVI-Universidad de Valencia, INCLIVA, 46980 Paterna, Valencia, Spain
| | - Harry Moore
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Julie V. Harness
- Reeve-Irvine Research Centre, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Hans Keirstead
- Reeve-Irvine Research Centre, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Jose Vicente Sanchez-Mut
- Cancer Epigenetics Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Eisuke Kaneki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular, CIBERER, IDIPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28046 Madrid, Spain
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Norio Wake
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| |
Collapse
|
44
|
Holzmann C, Markowski DN, Koczan D, Helmke BM, Bullerdiek J. Genome-wide acquired uniparental disomy as well as chromosomal gains and losses in an uterine epithelioid leiomyoma. Mol Cytogenet 2014; 7:19. [PMID: 24593849 PMCID: PMC3996012 DOI: 10.1186/1755-8166-7-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/01/2014] [Indexed: 12/12/2022] Open
Abstract
Background Epitheloid leiomyoma is a rare subtype of benign smooth muscle tumors. Results Herein, we present the results of classical cytogenetics, MED12 mutation analysis, and copy number variation array evaluation in one such case. Whereas cytogenetic did not show evidence for clonal chromosome abnormalities and no MED12 mutation in the “fibroid hot spot” region was detected, array hybridization revealed multiple abnormalities. Most noteworthy, almost all chromosomes showed copy-number neutral loss of heterozygosity. As examples of further abnormalities, trisomies of chromosomes 8, 12, 20, and X were noted. Discussion The data presented suggest a near-haploid karyotype of the tumor as the initial genetic alteration followed by secondary duplications of large parts of the genome. The absence of any clonal karyotypic alterations after performing classical cytogenetics is likely explained by a reduced ability of the tumor cells to proliferate in vitro. However, to the best of our knowledge this is the first report of an uterine leiomyoma showing extended uniparental disomy. It remains to be determined if this is a more common phenomenon in epithelioid leiomyomas or even subsets of “ordinary” leiomyomas.
Collapse
Affiliation(s)
| | | | | | | | - Jörn Bullerdiek
- Institute for Medical Genetics, University of Rostock, University Medicine, Ernst-Heydemann-Strasse 8, D-18057 Rostock, Germany.
| |
Collapse
|
45
|
Boublikova L, Buchler T, Stary J, Abrahamova J, Trka J. Molecular biology of testicular germ cell tumors: Unique features awaiting clinical application. Crit Rev Oncol Hematol 2014; 89:366-85. [DOI: 10.1016/j.critrevonc.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023] Open
|
46
|
García MM, Velez C, Fenollar-Cortés M, Bustamante A, Lorda-Sanchez I, Soriano-Guillén L, Trujillo-Tiebas MJ. Paternal isodisomy of chromosome 5 in a patient with recessive multiple epiphyseal dysplasia. Am J Med Genet A 2014; 164A:1075-8. [PMID: 24458706 DOI: 10.1002/ajmg.a.36378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/06/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Mónica Martínez García
- Servicio de Genética del Hospital Fundación Jiménez Díaz de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Idris SF, Ahmad SS, Scott MA, Vassiliou GS, Hadfield J. The role of high-throughput technologies in clinical cancer genomics. Expert Rev Mol Diagn 2014; 13:167-81. [DOI: 10.1586/erm.13.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Sugimachi K, Niida A, Yamamoto K, Shimamura T, Imoto S, Iinuma H, Shinden Y, Eguchi H, Sudo T, Watanabe M, Tanaka J, Kudo S, Hase K, Kusunoki M, Yamada K, Shimada Y, Sugihara K, Maehara Y, Miyano S, Mori M, Mimori K. Allelic imbalance at an 8q24 oncogenic SNP is involved in activating MYC in human colorectal cancer. Ann Surg Oncol 2014; 21 Suppl 4:S515-21. [PMID: 24390711 DOI: 10.1245/s10434-013-3468-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND The rs6983267 at 8q24.21 has been established as a significant cancer-related single nucleotide polymorphism (SNP). The risk allele showed similarity to the binding site of transcription factor TCF4/LEF1 that activates transcription of MYC. However, little is known about the role of this SNP in increasing MYC activity in colorectal cancers (CRCs). METHODS The genotypes of rs6983267 in peripheral blood and primary cancers, MYC activity and copy number (CN) alteration were examined in 107 CRCs. Next, we plotted the number of cancers cell lines exhibiting specific G/T genotypes in 746 cancer cell lines of the Sanger Institute database. Then we validated the relationship between the 8q24 SNP status and clinicopathologic parameters in 68 CRCs with loss of heterozygosity (LOH). RESULTS The MYC module activity was activated by either transcription in the risk allele (G) or by amplification in the non-risk allele (T). Then, we confirmed that the CN amplification dominantly occurred in the non-risk allele, whereas CN neutral LOH, which indicated uniparental disomy (UPD) was more frequently observed for the risk allele. Finally, we confirmed that risk allele dominant cases, either by amplification or by UPD, indicated a more malignant clinical phenotype than non-risk allele dominant cases. CONCLUSIONS The development of CRC requires MYC activation through retention of the risk allele, or amplification of the non-risk allele at the oncogenic SNP in the site of primary tumor.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sapkota Y, Ghosh S, Lai R, Coe BP, Cass CE, Yasui Y, Mackey JR, Damaraju S. Germline DNA copy number aberrations identified as potential prognostic factors for breast cancer recurrence. PLoS One 2013; 8:e53850. [PMID: 23342018 PMCID: PMC3547038 DOI: 10.1371/journal.pone.0053850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/05/2012] [Indexed: 11/30/2022] Open
Abstract
Breast cancer recurrence (BCR) is a common treatment outcome despite curative-intent primary treatment of non-metastatic breast cancer. Currently used prognostic and predictive factors utilize tumor-based markers, and are not optimal determinants of risk of BCR. Germline-based copy number aberrations (CNAs) have not been evaluated as determinants of predisposition to experience BCR. In this study, we accessed germline DNA from 369 female breast cancer subjects who received curative-intent primary treatment following diagnosis. Of these, 155 experienced BCR and 214 did not, after a median duration of follow up after breast cancer diagnosis of 6.35 years (range = 0.60–21.78) and 8.60 years (range = 3.08–13.57), respectively. Whole genome CNA genotyping was performed on the Affymetrix SNP array 6.0 platform. CNAs were identified using the SNP-Fast Adaptive States Segmentation Technique 2 algorithm implemented in Nexus Copy Number 6.0. Six samples were removed due to poor quality scores, leaving 363 samples for further analysis. We identified 18,561 CNAs with ≥1 kb as a predefined cut-off for observed aberrations. Univariate survival analyses (log-rank tests) identified seven CNAs (two copy number gains and five copy neutral-loss of heterozygosities, CN-LOHs) showing significant differences (P<2.01×10−5) in recurrence-free survival (RFS) probabilities with and without CNAs.We also observed three additional but distinct CN-LOHs showing significant differences in RFS probabilities (P<2.86×10−5) when analyses were restricted to stratified cases (luminal A, n = 208) only. After adjusting for tumor stage and grade in multivariate analyses (Cox proportional hazards models), all the CNAs remained strongly associated with the phenotype of BCR. Of these, we confirmed three CNAs at 17q11.2, 11q13.1 and 6q24.1 in representative samples using independent genotyping platforms. Our results suggest further investigations on the potential use of germline DNA variations as prognostic markers in cancer-associated phenotypes.
Collapse
Affiliation(s)
- Yadav Sapkota
- Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sunita Ghosh
- Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Lai
- Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington, School of Medicine, Seattle, Washington, United States of America
| | - Carol E. Cass
- Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Yutaka Yasui
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John R. Mackey
- Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
50
|
Oyarzabal A, Martínez-Pardo M, Merinero B, Navarrete R, Desviat LR, Ugarte M, Rodríguez-Pombo P. A novel regulatory defect in the branched-chain α-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease. Hum Mutat 2012; 34:355-62. [PMID: 23086801 DOI: 10.1002/humu.22242] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/04/2012] [Indexed: 11/11/2022]
Abstract
This article describes a hitherto unreported involvement of the phosphatase PP2Cm, a recently described member of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, in maple syrup urine disease (MSUD). The disease-causing mutation was identified in a patient with a mild variant phenotype, involving a gene not previously associated with MSUD. SNP array-based genotyping showed a copy-neutral homozygous pattern for chromosome 4 compatible with uniparental isodisomy. Mutation analysis of the candidate gene, PPM1K, revealed a homozygous c.417_418delTA change predicted to result in a truncated, unstable protein. No PP2Cm mutant protein was detected in immunocytochemical or Western blot expression analyses. The transient expression of wild-type PPM1K in PP2Cm-deficient fibroblasts recovered 35% of normal BCKDH activity. As PP2Cm has been described essential for cell survival, apoptosis and metabolism, the impact of its deficiency on specific metabolic stress variables was evaluated in PP2Cm-deficient fibroblasts. Increases were seen in ROS levels along with the activation of specific stress-signaling MAP kinases. Similar to that described for the pyruvate dehydrogenase complex, a defect in the regulation of BCKDH caused the aberrant metabolism of its substrate, contributing to the patient's MSUD phenotype--and perhaps others.
Collapse
Affiliation(s)
- Alfonso Oyarzabal
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CIBERER U746, IDIPAZ, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|