1
|
Hifdi N, Vaucourt M, Hnia K, Panasyuk G, Vandromme M. Phosphoinositide signaling in the nucleus: Impacts on chromatin and transcription regulation. Biol Cell 2025; 117:e2400096. [PMID: 39707648 PMCID: PMC11771838 DOI: 10.1111/boc.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Phosphoinositides also called Polyphosphoinositides (PPIns) are small lipid messengers with established key roles in organelle trafficking and cell signaling in response to physiological and environmental inputs. Besides their well-described functions in the cytoplasm, accumulating evidences pointed to PPIns involvement in transcription and chromatin regulation. Through the description of previous and recent advances of PPIns implication in transcription, this review highlights key discoveries on how PPIns modulate nuclear factors activity and might impact chromatin to modify gene expression. Finally, we discuss how PPIns nuclear and cytosolic metabolisms work jointly in orchestrating key transduction cascades that end in the nucleus to modulate gene expression.
Collapse
Affiliation(s)
- Nesrine Hifdi
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Mathilde Vaucourt
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Karim Hnia
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Ganna Panasyuk
- Institut Necker‐Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris CitéParisFrance
| | - Marie Vandromme
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| |
Collapse
|
2
|
Yan S, Lu T, Yang H, Ma L, Zhang Y, Li D. Decreased histone H3K9 dimethylation in synergy with DNA demethylation of Spi-1 binding site contributes to ADAMTS-5 expression in articular cartilage of osteoarthritis mice. J Cell Physiol 2024; 239:e31444. [PMID: 39318150 DOI: 10.1002/jcp.31444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Osteoarthritis (OA) is defined by articular cartilage degeneration, synovial membrane inflammation, and abnormal bone remodeling. Recent study has discovered that OA development is linked to an aberrant epigenetic modification of OA-related genes. Our previous research showed that DNA demethylation in ADAMTS-5 promoter region had a substantial impact on ADAMTS-5 expression in the mouse OA model. This process facilitated the binding of Spi-1 to ADAMTS-5 promoter. While alterations in histone methylation have been documented during embryonic development and cancer development, there is a paucity of data on the change in OA pathogenesis. Even no data have been reported on the role of histone modifications in ADAMTS-5 activation in OA. Following our previous study on the role of DNA methylation, we aimed to examine the contribution of histone H3K9 dimethylation in ADAMTS-5 activation in OA. Additionally, we aimed to elucidate the molecular mechanisms underlying the cooperative interaction between DNA methylation and histone H3K9 dimethylation. The potential for anti-OA intervention therapy which is based on modulating histone H3K9 dimethylation is also explored. We demonstrated that a reduction in histone H3K9 dimethylation, along with DNA demethylation of the Spi-1 binding site, had a role in ADAMTS-5 activation in the articular cartilage of OA mice. Significantly, the conditional deletion of histone demethylase to be identified as lysine-specific demethylase 1 (LSD1) in articular cartilage could alleviate the degenerative features of OA mice. Our study demonstrates the direct impact of histone H3K9 dimethylation on gene expression, which in turn contributes to OA development. This research enhances our understanding of the underlying causes of OA.
Collapse
Affiliation(s)
- Shuaichen Yan
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Tongxin Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Huapu Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Liang Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Deqiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| |
Collapse
|
3
|
Li R, Meng S, Ji M, Rong X, You Z, Cai C, Guo X, Lu C, Liang G, Cao G, Li B, Yang Y. HMG20A Inhibit Adipogenesis by Transcriptional and Epigenetic Regulation of MEF2C Expression. Int J Mol Sci 2022; 23:ijms231810559. [PMID: 36142473 PMCID: PMC9505946 DOI: 10.3390/ijms231810559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity and its associated metabolic disease do serious harm to human health. The transcriptional cascade network with transcription factors as the core is the focus of current research on adipogenesis and its mechanism. Previous studies have found that HMG domain protein 20A (HMG20A) is highly expressed in the early stage of adipogenic differentiation of porcine intramuscular fat (IMF), which may be involved in regulating adipogenesis. In this study, HMG20A was found to play a key negative regulatory role in adipogenesis. Gain- and loss-of-function studies revealed that HMG20A inhibited the differentiation of SVF cells and C3H10T1/2 cells into mature adipocytes. RNA-seq was used to screen differentially expressed genes after HMG20A knockdown. qRT-PCR and ChIP-PCR confirmed that MEF2C was the real target of HMG20A, and HMG20A played a negative regulatory role through MEF2C. HMG20A binding protein LSD1 was found to alleviate the inhibitory effect of HMG20A on adipogenesis. Further studies showed that HMG20A could cooperate with LSD1 to increase the H3K4me2 of the MEF2C promoter and then increase the expression of MEF2C. Collectively, these findings highlight a role for HMG20A-dependent transcriptional and epigenetic regulation in adipogenesis.
Collapse
|
4
|
Gouda MBY, Zidane MA, Abdelhady AS, Hassan NM. Expression and prognostic significance of chromatin modulators EHMT2/G9a and KDM2b in acute myeloid leukemia. J Cell Biochem 2022; 123:1340-1355. [PMID: 35696556 DOI: 10.1002/jcb.30297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
Epigenetics factors are critical for normal cell function and their regulation is sensitive to malignancy development. EHMT2/G9a and KDM2b are key epigenetics players in different cancer types. However, their expression profiles and related consequences in acute myeloid leukemia (AML) patients have not been known yet. In addition to routine lab work, expression levels of EHMT2/G9a and KDM2b were determined in 110 adult and pediatric patients with De Novo AML. Relations between their expression and patients' clinical data were tested by statistical methods. EHMT2/G9a and KDM2b were highly expressed in AML patients against control cases and associated with the presence of adverse genomic alterations. In response to induction chemotherapy, EHMT2/G9a and KDM2b showed to be significantly high in resistant and relapsed patients in comparison to the complete remission group. KDM2b overexpression was associated with CD11c (integrin alpha X) downregulation. Kaplan-Meier analysis indicated that EHMT2/G9a and KDM2b overexpression was correlated with poor survival status in AML patients. We conclude that EHMT2/G9a and KDM2b expression levels could be used as independent prognostic factors for AML disease.
Collapse
Affiliation(s)
- Mahmoud B Y Gouda
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed A Zidane
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Naglaa M Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Atanasoff-Kardjalieff AK, Studt L. Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins (Basel) 2022; 14:96. [PMID: 35202124 PMCID: PMC8880415 DOI: 10.3390/toxins14020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Fusarium is a species-rich group of mycotoxigenic plant pathogens that ranks as one of the most economically important fungal genera in the world. During growth and infection, they are able to produce a vast spectrum of low-molecular-weight compounds, so-called secondary metabolites (SMs). SMs often comprise toxic compounds (i.e., mycotoxins) that contaminate precious food and feed sources and cause adverse health effects in humans and livestock. In this context, understanding the regulation of their biosynthesis is crucial for the development of cropping strategies that aim at minimizing mycotoxin contamination in the field. Nevertheless, currently, only a fraction of SMs have been identified, and even fewer are considered for regular monitoring by regulatory authorities. Limitations to exploit their full chemical potential arise from the fact that the genes involved in their biosynthesis are often silent under standard laboratory conditions and only induced upon specific stimuli mimicking natural conditions in which biosynthesis of the respective SM becomes advantageous for the producer. This implies a complex regulatory network. Several components of these gene networks have been studied in the past, thereby greatly advancing the understanding of SM gene regulation and mycotoxin biosynthesis in general. This review aims at summarizing the latest advances in SM research in these notorious plant pathogens with a focus on chromatin structure.
Collapse
Affiliation(s)
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria;
| |
Collapse
|
6
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
7
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
8
|
Kumaraswamy A, Welker Leng KR, Westbrook TC, Yates JA, Zhao SG, Evans CP, Feng FY, Morgan TM, Alumkal JJ. Recent Advances in Epigenetic Biomarkers and Epigenetic Targeting in Prostate Cancer. Eur Urol 2021; 80:71-81. [PMID: 33785255 DOI: 10.1016/j.eururo.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT In addition to genetic alterations, epigenetic alterations play a crucial role during prostate cancer progression. A better understanding of the epigenetic factors that promote prostate cancer progression may lead to the design of rational therapeutic strategies to target prostate cancer more effectively. OBJECTIVE To systematically review recent literature on the role of epigenetic factors in prostate cancer and highlight key preclinical and translational data with epigenetic therapies. EVIDENCE ACQUISITION We performed a systemic literature search in PubMed. At the request of the editors, we limited our search to articles published between January 2015 and August 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Clinical trials targeting epigenetic factors were retrieved from clinicaltrials.gov. EVIDENCE SYNTHESIS We retrieved 1451 articles, and 62 were finally selected for review. Twelve additional foundational studies outside this time frame were also included. Findings from both preclinical and clinical studies were reviewed and summarized. We also discuss 12 ongoing clinical studies with epigenetic targeted therapies. CONCLUSIONS Epigenetic mechanisms impact prostate cancer progression. Understanding the role of specific epigenetic factors is critical to determine how we may improve prostate cancer treatment and modulate resistance to standard therapies. Recent preclinical studies and ongoing or completed clinical studies with epigenetic therapies provide a useful roadmap for how to best deploy epigenetic therapies clinically to target prostate cancer. PATIENT SUMMARY Epigenetics is a process by which gene expression is regulated without changes in the DNA sequence itself. Oftentimes, epigenetic changes influence cellular behavior and contribute to cancer development or progression. Understanding how epigenetic changes occur in prostate cancer is the first step toward therapeutic targeting in patients. Importantly, laboratory-based studies and recently completed and ongoing clinical trials suggest that drugs targeting epigenetic factors are promising. More work is necessary to determine whether this class of drugs will add to our existing treatment arsenal in prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Joel A Yates
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christopher P Evans
- Department of Urologic Surgery and UC Davis Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Joshi J Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
The Role of H3K4 Trimethylation in CpG Islands Hypermethylation in Cancer. Biomolecules 2021; 11:biom11020143. [PMID: 33499170 PMCID: PMC7912453 DOI: 10.3390/biom11020143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
CpG methylation in transposons, exons, introns and intergenic regions is important for long-term silencing, silencing of parasitic sequences and alternative promoters, regulating imprinted gene expression and determining X chromosome inactivation. Promoter CpG islands, although rich in CpG dinucleotides, are unmethylated and remain so during all phases of mammalian embryogenesis and development, except in specific cases. The biological mechanisms that contribute to the maintenance of the unmethylated state of CpG islands remain elusive, but the modification of established DNA methylation patterns is a common feature in all types of tumors and is considered as an event that intrinsically, or in association with genetic lesions, feeds carcinogenesis. In this review, we focus on the latest results describing the role that the levels of H3K4 trimethylation may have in determining the aberrant hypermethylation of CpG islands in tumors.
Collapse
|
10
|
A mycorrhizae-like gene regulates stem cell and gametophore development in mosses. Nat Commun 2020; 11:2030. [PMID: 32332755 PMCID: PMC7181705 DOI: 10.1038/s41467-020-15967-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Plant colonization of land has been intimately associated with mycorrhizae or mycorrhizae-like fungi. Despite the pivotal role of fungi in plant adaptation, it remains unclear whether and how gene acquisition following fungal interaction might have affected the development of land plants. Here we report a macro2 domain gene in bryophytes that is likely derived from Mucoromycota, a group that includes some mycorrhizae-like fungi found in the earliest land plants. Experimental and transcriptomic evidence suggests that this macro2 domain gene in the moss Physcomitrella patens, PpMACRO2, is important in epigenetic modification, stem cell function, cell reprogramming and other processes. Gene knockout and over-expression of PpMACRO2 significantly change the number and size of gametophores. These findings provide insights into the role of fungal association and the ancestral gene repertoire in the early evolution of land plants.
Collapse
|
11
|
Ukita M, Matsushita K, Tamura M, Yamaguchi T. Histone H3K9 methylation is involved in temporomandibular joint osteoarthritis. Int J Mol Med 2019; 45:607-614. [PMID: 31894302 DOI: 10.3892/ijmm.2019.4446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/11/2019] [Indexed: 11/05/2022] Open
Abstract
The morbidity of temporomandibular joint osteoarthritis (TMJOA) increases with age. Condylar articular cartilage degradation, which causes TMJOA, is known to be involved in articular chondrocyte metabolic imbalances in the temporomandibular joint (TMJ) and in other joints of the body. Epigenetic regulation, such as the chemical modification of DNA and histones, is implicated in cartilage homeostasis. However, few studies have been conducted on the epigenetic regulation of condylar articular cartilage degradation. The present study investigated the regulation of histone H3 lysine 9 (H3K9) methylation and its effects on the pathogenesis of degenerative TMJ cartilage disorders. The histone H3K9 methylation level was decreased in degenerated condylar articular cartilage in aged mice. Treatment with chaetocin (a selective H3K9 methylation inhibitor) reduced cell viability and promoted caspase‑3/7 activity in ATDC5 mouse chondroprogenitor cells. The inhibition of H3K9 methylation increased matrix metalloproteinase (Mmp)1 and Mmp13 mRNA expression in these cells. Furthermore, the expression levels of Sox9 and collagen α1(II) (Col2a1) mRNA, which are anabolic factors for chondrogenic differentiation, were also decreased by treatment with chaetocin, which is an inhibitor of histone methyltransferases. These results indicated that histone H3K9 methylation regulates chondrocyte homeostasis in terms of cell growth, apoptosis and gene expression, and highlighted a possible future therapy option for TMJOA.
Collapse
Affiliation(s)
- Mayumi Ukita
- Crown and Bridge Prosthodontics, Department of Oral Functional Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474‑8511, Japan
| | - Masato Tamura
- Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| | - Taihiko Yamaguchi
- Crown and Bridge Prosthodontics, Department of Oral Functional Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| |
Collapse
|
12
|
Nic-Can GI, Rodas-Junco BA, Carrillo-Cocom LM, Zepeda-Pedreguera A, Peñaloza-Cuevas R, Aguilar-Ayala FJ, Rojas-Herrera RA. Epigenetic Regulation of Adipogenic Differentiation by Histone Lysine Demethylation. Int J Mol Sci 2019; 20:E3918. [PMID: 31408999 PMCID: PMC6719019 DOI: 10.3390/ijms20163918] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is a rising public health problem that contributes to the development of several metabolic diseases and cancer. Adipocyte precursors outside of adipose depots that expand due to overweight and obesity may have a negative impact on human health. Determining how progenitor cells acquire a preadipocyte commitment and become mature adipocytes remains a significant challenge. Over the past several years, we have learned that the establishment of cellular identity is widely influenced by changes in histone marks, which in turn modulate chromatin structure. In this regard, histone lysine demethylases (KDMs) are now emerging as key players that shape chromatin through their ability to demethylate almost all major histone methylation sites. Recent research has shown that KDMs orchestrate the chromatin landscape, which mediates the activation of adipocyte-specific genes. In addition, KDMs have functions in addition to their enzymatic activity, which are beginning to be revealed, and their dysregulation seems to be related to the development of metabolic disorders. In this review, we highlight the biological functions of KDMs that contribute to the establishment of a permissive or repressive chromatin environment during the mesenchymal stem cell transition into adipocytes. Understanding how KDMs regulate adipogenesis might prompt the development of new strategies for fighting obesity-related diseases.
Collapse
Affiliation(s)
- Geovanny I Nic-Can
- CONACYT-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico.
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av, Itzaes Costado Sur "Parque de la Paz", Col. Centro, Mérida 97000, Yucatán, Mexico.
| | - Beatriz A Rodas-Junco
- CONACYT-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av, Itzaes Costado Sur "Parque de la Paz", Col. Centro, Mérida 97000, Yucatán, Mexico
| | - Leydi M Carrillo-Cocom
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
| | - Alejandro Zepeda-Pedreguera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
| | - Ricardo Peñaloza-Cuevas
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av, Itzaes Costado Sur "Parque de la Paz", Col. Centro, Mérida 97000, Yucatán, Mexico
| | - Fernando J Aguilar-Ayala
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av, Itzaes Costado Sur "Parque de la Paz", Col. Centro, Mérida 97000, Yucatán, Mexico
| | - Rafael A Rojas-Herrera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
| |
Collapse
|
13
|
Chen P, Wei F, Li R, Li ZQ, Kashif MH, Zhou RY. Comparative acetylomic analysis reveals differentially acetylated proteins regulating anther and pollen development in kenaf cytoplasmic male sterility line. PHYSIOLOGIA PLANTARUM 2019; 166:960-978. [PMID: 30353937 DOI: 10.1111/ppl.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Cytoplasmic male sterility (CMS) is widely used in plant breeding and represents a perfect model to understand cyto-nuclear interactions and pollen development research. Lysine acetylation in proteins is a dynamic and reversible posttranslational modification (PTM) that plays an important roles in diverse cell processes and signaling. However, studies addressing acetylation PTM regarding to anther and pollen development in CMS background are largely lacking. To reveal the possible mechanism of kenaf (Hibiscus cannabinus L.) CMS and pollen development, we performed a label-free-based comparative acetylome analysis in kenaf anther of a CMS line and wild-type (Wt). Using whole transcriptome unigenes of kenaf as the reference genome, we identified a total of 1204 Kac (lysin acetylation) sites on 1110 peptides corresponding to 672 unique proteins. Futher analysis showed 56 out of 672 proteins were differentially acetylated between CMS and Wt line, with 13 and 43 of those characterized up- and downregulated, respectively. Thirty-eight and 82 proteins were detected distinctively acetylated in CMS and Wt lines, respectively. And evaluation of the acetylomic and proteomic results indicated that the most significantly acetylated proteins were not associated with abundant changes at the protein level. Bioinformatics analysis demonstrated that many of these proteins were involved in various biological processes which may play key roles in pollen development, inculding tricarboxylic acid (TCA) cycle and energy metabolism, protein folding, protein metabolism, cell signaling, gene expression regulation. Taken together, our results provide insight into the CMS molecular mechanism and pollen development in kenaf from a protein acetylation perspective.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Fan Wei
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- College of Life Science & Technology, Guangxi University, Nanning, China
| | - Zeng-Qiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad H Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Rui-Yang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
14
|
The histone demethylase LSD1 promotes renal inflammation by mediating TLR4 signaling in hepatitis B virus-associated glomerulonephritis. Cell Death Dis 2019; 10:278. [PMID: 30894511 PMCID: PMC6427019 DOI: 10.1038/s41419-019-1514-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Renal inflammation significantly contributes to the progression of hepatitis B virus (HBV)-associated glomerulonephritis (HBV-GN), but the mechanisms that control its precise regulation remain largely unknown. In this study, we showed that the lysine-specific demethylase 1 (LSD1) was significantly upregulated in renal tissue of HBV-GN patients, and its expression was positively correlated with inflammation. Functionally, LSD1 could promote HBV-induced release of proinflammatory mediators in HK-2 cells, a human renal tubular epithelial (RTE) cell line. Mechanistic investigations suggested that LSD1 directly promoted the transcription of the inflammatory-related gene Tlr4 by eliminating the mono- or di-methylation of H3K9 near its promoter. Knockdown of Lsd1 further inhibited TLR4-NF-κB/JNK signaling cascades, and subsequently decreased HBV-induced production of proinflammatory mediators in HK-2 cells. Co-transfection with Tlr4-expressing plasmids counteracted these effects. Meanwhile, downregulation of abovementioned TLR4-related pathways using small-molecule inhibitors attenuated inflammation. Importantly, LSD1 inhibitor tranylcypromine (TCP) could inhibit TLR4-NF-κB/JNK signaling axis and alleviate renal inflammation in HBV transgenic mice. Taken together, our data identify LSD1 as a novel regulator of renal inflammation and as a potential therapeutic target in HBV-GN.
Collapse
|
15
|
Fulton MD, Brown T, Zheng YG. Mechanisms and Inhibitors of Histone Arginine Methylation. CHEM REC 2018; 18:1792-1807. [PMID: 30230223 PMCID: PMC6348102 DOI: 10.1002/tcr.201800082] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
Histone methylation plays an important regulatory role in chromatin restructuring and RNA transcription. Arginine methylation that is enzymatically catalyzed by the family of protein arginine methyltransferases (PRMTs) can either activate or repress gene expression depending on cellular contexts. Given the strong correlation of PRMTs with pathophysiology, great interest is seen in understanding molecular mechanisms of PRMTs in diseases and in developing potent PRMT inhibitors. Herein, we reviewed key research advances in the study of biochemical mechanisms of PRMT catalysis and their relevance to cell biology. We highlighted how a random binary, ordered ternary kinetic model for PRMT1 catalysis reconciles the literature reports and endorses a distributive mechanism that the enzyme active site utilizes for multiple turnovers of arginine methylation. We discussed the impacts of histone arginine methylation and its biochemical interplays with other key epigenetic marks. Challenges in developing small-molecule PRMT inhibitors were also discussed.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| |
Collapse
|
16
|
Dai B, Huang H, Guan F, Zhu G, Xiao Z, Mao B, Su H, Hu Z. Histone demethylase KDM5A inhibits glioma cells migration and invasion by down regulating ZEB1. Biomed Pharmacother 2018; 99:72-80. [PMID: 29324315 DOI: 10.1016/j.biopha.2018.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 01/16/2023] Open
Abstract
Malignant gliomas are highly lethal cancers worldwide as tumor cells infiltrate to healthy brain tissue invariably. Histone demethylase KDM5A as an oncogene or tumor suppressor in cancer still has been controversial. KDM5A may have a different function in different type cancer cells. However, the specific roles of KDM5A in the progression of glioma remain undiscovered. In this study, we found that compared with primary glioma, metastasis glioma had low KDM5A levels. Besides, lower KDM5A levels were linked to poor survival in glioma cancer patients, indicating that KDM5A is a new prognostic marker for glioma cancer. KDM5A knockdown increases the invasive abilities of glioma cancer cells and changes the EMT markers. A mechanism, KDM5A suppressing the expression of ZEB1, and its catalytic activity is indispensable for anti-invasive function. Our study revealed that histone demethylase KDM5A exerts anti-invasiveness function partly through repressing oncogenic ZEB1 expression by mediating H3K4 demethylation. We also demonstrate that ZEB1 play a crucial role in KDM5A induced function. In summary, in this study, we showed that KDM5A has a crucial role in glioma and therefore may serve as a novel therapeutic target and prognostic marker in glioma.
Collapse
Affiliation(s)
- Bin Dai
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Rd., Yangfangdian, Haidian District, Beijing 100038, PR China
| | - Hui Huang
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Rd., Yangfangdian, Haidian District, Beijing 100038, PR China
| | - Feng Guan
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Rd., Yangfangdian, Haidian District, Beijing 100038, PR China
| | - Guangtong Zhu
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Rd., Yangfangdian, Haidian District, Beijing 100038, PR China
| | - Zhiyong Xiao
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Rd., Yangfangdian, Haidian District, Beijing 100038, PR China
| | - Beibei Mao
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Rd., Yangfangdian, Haidian District, Beijing 100038, PR China
| | - Haiyang Su
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Rd., Yangfangdian, Haidian District, Beijing 100038, PR China
| | - Zhiqiang Hu
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Rd., Yangfangdian, Haidian District, Beijing 100038, PR China.
| |
Collapse
|
17
|
Zhang M, Xu JY, Hu H, Ye BC, Tan M. Systematic Proteomic Analysis of Protein Methylation in Prokaryotes and Eukaryotes Revealed Distinct Substrate Specificity. Proteomics 2017; 18. [PMID: 29150981 DOI: 10.1002/pmic.201700300] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Indexed: 11/07/2022]
Abstract
The studies of protein methylation mainly focus on lysine and arginine residues due to their diverse roles in essential cellular processes from gene expression to signal transduction. Nevertheless, atypical protein methylation occurring on amino acid residues, such as glutamine and glutamic acid, is largely neglected until recently. In addition, the systematic analysis for the distribution of methylation on different amino acids in various species is still lacking, which hinders our understanding of its functional roles. In this study, we deeply explored the methylated sites in three species Escherichia coli, Saccharomyces cerevisiae, and HeLa cells by employing MS-based proteomic approach coupled with heavy methyl SILAC method. We identify a total of 234 methylated sites on 187 proteins with high localization confidence, including 94 unreported methylated sites on nine different amino acid residues. KEGG and gene ontology analysis show the pathways enriched with methylated proteins are mainly involved in central metabolism for E. coli and S. cerevisiae, but related to spliceosome for HeLa cells. The analysis of methylation preference on different amino acids is conducted in three species. Protein N-terminal methylation is dominant in E. coli while methylated lysines and arginines are widely identified in S. cerevisiae and HeLa cells, respectively. To study whether some atypical protein methylation has biological relevance in the pathological process in mammalian cells, we focus on histone methylation in diet-induced obese (DIO) mouse. Two glutamate methylation sites showed statistical significance in DIO mice compared with chow-fed mice, suggesting their potential roles in diabetes and obesity. Together, these findings expanded the methylome database from microbes to mammals, which will benefit our further appreciation for the protein methylation as well as its possible functions on disease.
Collapse
Affiliation(s)
- Min Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yu Xu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao Hu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Jin Y, Huo B, Fu X, Cheng Z, Zhu J, Zhang Y, Hao T, Hu X. LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells. Biomed Pharmacother 2017; 92:896-904. [DOI: 10.1016/j.biopha.2017.05.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/03/2023] Open
|
19
|
Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 2015; 35:68-75. [PMID: 26496625 DOI: 10.1016/j.sbi.2015.09.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/18/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022]
Abstract
DNA and histone lysine methylation are dynamic chemical modifications that play a crucial role in the establishment of gene expression patterns during development. Both types of genomic methylation patterns are enzymatically regulated by the opposing activities of enzymes that introduce and remove these marks, known as methylation 'writers' and 'erasers', respectively. The appropriate localization and activity of these enzymes on chromatin is, in part, regulated by chromatin 'readers', protein modules that recognize histone and DNA modifications. Such reading modules are either encoded within the same polypeptide as the catalytic domains of writers and erasers, or present in protein partners that associate with them. Here, we review recent structural, biochemical and biological studies that demonstrate that there are multiple mechanisms by which reader domains can regulate the writers and erasers of histone and DNA methylation.
Collapse
Affiliation(s)
- Idelisse Ortiz Torres
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Nowicki S, Gottlieb E. Oncometabolites: tailoring our genes. FEBS J 2015; 282:2796-805. [PMID: 25864878 PMCID: PMC4676302 DOI: 10.1111/febs.13295] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/14/2015] [Accepted: 04/06/2015] [Indexed: 12/19/2022]
Abstract
Increased glucose metabolism in cancer cells is a phenomenon that has been known for over 90 years, allowing maximal cell growth through faster ATP production and redistribution of carbons towards nucleotide, protein and fatty acid synthesis. Recently, metabolites that can promote tumorigeneis by altering the epigenome have been identified. These 'oncometabolites' include the tricarboxylic acid cycle metabolites succinate and fumarate, whose levels are elevated in rare tumours with succinate dehydrogenase and fumarate hydratase mutations, respectively. 2-Hydroxyglutarate is another oncometabolite; it is produced de novo as a result of the mutation of isocitrate dehydrogenase, and is commonly found in gliomas and acute myeloid leukaemia. Interestingly, the structural similarity of these oncometabolites to their precursor metabolite, α-ketoglutarate, explains the tumorigenic potential of these metabolites, by competitive inhibition of a superfamily of enzymes called the α-ketoglutarate-dependent dioxygenases. These enzymes utilize α-ketoglutarate as a cosubstrate, and are involved in fatty acid metabolism, oxygen sensing, collagen biosynthesis, and modulation of the epigenome. They include enzymes that are involved in regulating gene expression via DNA and histone tail demethylation. In this review, we will focus on the link between metabolism and epigenetics, and how we may target oncometabolite-induced tumorigenesis in the future.
Collapse
|
21
|
Cleys ER, Halleran JL, Enriquez VA, da Silveira JC, West RC, Winger QA, Anthony RV, Bruemmer JE, Clay CM, Bouma GJ. Androgen receptor and histone lysine demethylases in ovine placenta. PLoS One 2015; 10:e0117472. [PMID: 25675430 PMCID: PMC4326353 DOI: 10.1371/journal.pone.0117472] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/24/2014] [Indexed: 02/05/2023] Open
Abstract
Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR). Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs) to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE) in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders.
Collapse
Affiliation(s)
- Ellane R. Cleys
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jennifer L. Halleran
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - Vanessa A. Enriquez
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juliano C. da Silveira
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rachel C. West
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - Quinton A. Winger
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - Russell V. Anthony
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jason E. Bruemmer
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Colin M. Clay
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gerrit J. Bouma
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
22
|
Huang Y, Xu B, Zhou X, Li Y, Lu M, Jiang R, Li T. Systematic characterization and prediction of post-translational modification cross-talk. Mol Cell Proteomics 2015; 14:761-70. [PMID: 25605461 DOI: 10.1074/mcp.m114.037994] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Post-translational modification (PTM)(1) plays an important role in regulating the functions of proteins. PTMs of multiple residues on one protein may work together to determine a functional outcome, which is known as PTM cross-talk. Identification of PTM cross-talks is an emerging theme in proteomics and has elicited great interest, but their properties remain to be systematically characterized. To this end, we collected 193 PTM cross-talk pairs in 77 human proteins from the literature and then tested location preference and co-evolution at the residue and modification levels. We found that cross-talk events preferentially occurred among nearby PTM sites, especially in disordered protein regions, and cross-talk pairs tended to co-evolve. Given the properties of PTM cross-talk pairs, a naïve Bayes classifier integrating different features was built to predict cross-talks for pairwise combination of PTM sites. By using a 10-fold cross-validation, the integrated prediction model showed an area under the receiver operating characteristic (ROC) curve of 0.833, superior to using any individual feature alone. The prediction performance was also demonstrated to be robust to the biases in the collected PTM cross-talk pairs. The integrated approach has the potential for large-scale prioritization of PTM cross-talk candidates for functional validation and was implemented as a web server available at http://bioinfo.bjmu.edu.cn/ptm-x/.
Collapse
Affiliation(s)
- Yuanhua Huang
- From the ‡Department of Biomedical Informatics, ‖MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China; **European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Bosen Xu
- §Department of Biochemistry and Molecular Biology, and
| | - Xueya Zhou
- ¶¶Department of Psychiatry and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying Li
- From the ‡Department of Biomedical Informatics
| | - Ming Lu
- From the ‡Department of Biomedical Informatics
| | - Rui Jiang
- ‖MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tingting Li
- From the ‡Department of Biomedical Informatics, ¶Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| |
Collapse
|
23
|
|
24
|
Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J 2014; 459:355-68. [PMID: 24467364 DOI: 10.1042/bj20130847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains become activated in the mammary gland early during weaning, cleaving several proteins located mainly in the cell membrane, but also in other organelles such as lysosomes, mitochondria and nuclei. By immunofluorescence and Western blot analysis, we have demonstrated the nuclear translocation of calpain-1 and calpain-2, together with the cleavage of several cytoplasmic nucleoporins in epithelial cells of the lobulo-alveolar compartment. In vivo and in vitro calpain inhibition prevented this nucleoporin degradation. In addition, calpain-1 was also present in the nucleus of non-epithelial mammary tissue cells, concomitant with adipocyte re-differentiation. Calpain-1 was internalized within nuclei and found to be present in the nuclear chromatin-enriched fraction, associated with histone H3. Furthermore, we have demonstrated, both in vivo and in vitro, the cleavage of the N-terminal residue of histone H3 by calpain-1. Calpain-1 co-localized with both H3K4me3 (histone H3 trimethylated at Lys4) and H3K27me3 (histone H3 trimethylated at Lys27) at the nuclear periphery, a bivalent epigenetic signal essential for cell differentiation. Using ChIP assays we could confirm the presence of calpain-1 in the promoters of key genes expressed in adipose tissue, such as Cebpa (CCAAT/enhancer-binding protein α) and Lep (leptin). The results of the present study highlight a dual role for calpain-1 in the weaned gland after the pregnancy/lactation cycle, controlling programmed cell death and participating in the epigenetic programme during adipocyte differentiation.
Collapse
|
25
|
El Mansouri FE, Nebbaki SS, Kapoor M, Afif H, Martel-Pelletier J, Pelletier JP, Benderdour M, Fahmi H. Lysine-specific demethylase 1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1β-induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes. Arthritis Res Ther 2014; 16:R113. [PMID: 24886859 PMCID: PMC4060543 DOI: 10.1186/ar4564] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/30/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE2, a critical mediator in the pathophysiology of osteoarthritis (OA). Histone methylation plays an important role in epigenetic gene regulation. In this study, we investigated the roles of histone H3 lysine 9 (H3K9) methylation in interleukin 1β (IL-1β)-induced mPGES-1 expression in human chondrocytes. Methods Chondrocytes were stimulated with IL-1β, and the expression of mPGES-1 mRNA was evaluated using real-time RT-PCR. H3K9 methylation and the recruitment of the histone demethylase lysine-specific demethylase 1 (LSD1) to the mPGES-1 promoter were evaluated using chromatin immunoprecipitation assays. The role of LSD1 was further evaluated using the pharmacological inhibitors tranylcypromine and pargyline and small interfering RNA (siRNA)-mediated gene silencing. The LSD1 level in cartilage was determined by RT-PCR and immunohistochemistry. Results The induction of mPGES-1 expression by IL-1β correlated with decreased levels of mono- and dimethylated H3K9 at the mPGES-1 promoter. These changes were concomitant with the recruitment of the histone demethylase LSD1. Treatment with tranylcypromine and pargyline, which are potent inhibitors of LSD1, prevented IL-1β-induced H3K9 demethylation at the mPGES-1 promoter and expression of mPGES-1. Consistently, LSD1 gene silencing with siRNA prevented IL-1β-induced H3K9 demethylation and mPGES-1 expression, suggesting that LSD1 mediates IL-1β-induced mPGES-1 expression via H3K9 demethylation. We show that the level of LSD1 was elevated in OA compared to normal cartilage. Conclusion These results indicate that H3K9 demethylation by LSD1 contributes to IL-1β-induced mPGES-1 expression and suggest that this pathway could be a potential target for pharmacological intervention in the treatment of OA and possibly other arthritic conditions.
Collapse
|
26
|
Lunke S, El-Osta A. Applicability of histone deacetylase inhibition for the treatment of spinal muscular atrophy. Neurotherapeutics 2013; 10:677-87. [PMID: 23996601 PMCID: PMC3805858 DOI: 10.1007/s13311-013-0209-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA), a neurodegenerative disease with potentially devastating and even deadly effects on affected individuals, was first described in the late nineteenth century. Although the survival of motor neuron (SMN) gene was identified nearly 2 decades ago to be causative of the disease, neither an effective treatment nor a cure are currently available. Yet efforts are on-going to test a multitude of treatment strategies with the potential to alleviate disease symptoms in human and clinical trials. Among the most studied compounds for the treatment of SMA are histone deacetylase inhibitors. Several of these epigenetic modifiers have been shown to increase expression of the crucial SMN gene in vitro and in vivo, an effect linked to increased histone acetylation and remodeling of the chromatin landscape surrounding the SMN gene promoter. Here, we review the history and current state of use of histone deacetylase inhibitors in SMA, as well as the success of clinical trials investigating the clinical applicability of these epigenetic modifiers in SMA treatment.
Collapse
Affiliation(s)
- Sebastian Lunke
- />Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- />Translational Genomics Laboratory, Centre for Translational Pathology, Department of Pathology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Assam El-Osta
- />Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- />Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
- />Department of Pathology, The University of Melbourne, Melbourne, VIC Australia
- />Faculty of Medicine, Monash University, Monash, VIC Australia
| |
Collapse
|
27
|
Grunewald TGP, Willier S, Janik D, Unland R, Reiss C, da Costa OP, Buch T, Dirksen U, Richter GH, Neff F, Burdach S, Butt E. The Zyxin-related protein thyroid receptor interacting protein 6 (TRIP6) is overexpressed in Ewing's sarcoma and promotes migration, invasion and cell growth. Biol Cell 2013; 105:535-47. [DOI: 10.1111/boc.201300041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/16/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Thomas G. P. Grunewald
- Children's Cancer Research Center and Roman Herzog Comprehensive Cancer Center; Laboratory of Functional Genomics and Transplantation Biology; Klinikum rechts der Isar; Technische Universität München; Munich 80804 Germany
| | - Semjon Willier
- Institute for Clinical Biochemistry and Pathobiochemistry; University Clinic of Würzburg; Würzburg 97080 Germany
| | - Dirk Janik
- Institute of Pathology; Helmholtz Center Munich; Neuherberg 85764 Germany
| | - Rebekka Unland
- Department of Pediatric Hematology and Oncology; University Hospital Muenster; Westphalian Wilhelms University; Muenster 48149 Germany
| | - Cora Reiss
- Institute for Clinical Biochemistry and Pathobiochemistry; University Clinic of Würzburg; Würzburg 97080 Germany
- Center for Thrombosis and Hemostasis; University Medical Center Mainz; Mainz 55131 Germany
| | - Olivia Prazeres da Costa
- Institute for Medical Microbiology, Immunology, and Hygiene; Technische Universität München; Munich 81675 Germany
| | - Thorsten Buch
- Institute for Medical Microbiology, Immunology, and Hygiene; Technische Universität München; Munich 81675 Germany
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology; University Hospital Muenster; Westphalian Wilhelms University; Muenster 48149 Germany
| | - Günther H.S. Richter
- Children's Cancer Research Center and Roman Herzog Comprehensive Cancer Center; Laboratory of Functional Genomics and Transplantation Biology; Klinikum rechts der Isar; Technische Universität München; Munich 80804 Germany
| | - Frauke Neff
- Institute of Pathology; Helmholtz Center Munich; Neuherberg 85764 Germany
| | - Stefan Burdach
- Children's Cancer Research Center and Roman Herzog Comprehensive Cancer Center; Laboratory of Functional Genomics and Transplantation Biology; Klinikum rechts der Isar; Technische Universität München; Munich 80804 Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry; University Clinic of Würzburg; Würzburg 97080 Germany
| |
Collapse
|
28
|
Attig L, Vigé A, Gabory A, Karimi M, Beauger A, Gross MS, Athias A, Gallou-Kabani C, Gambert P, Ekstrom TJ, Jais JP, Junien C. Dietary alleviation of maternal obesity and diabetes: increased resistance to diet-induced obesity transcriptional and epigenetic signatures. PLoS One 2013; 8:e66816. [PMID: 23826145 PMCID: PMC3691260 DOI: 10.1371/journal.pone.0066816] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 05/15/2013] [Indexed: 02/07/2023] Open
Abstract
According to the developmental origins of health and diseases (DOHaD), and in line with the findings of many studies, obesity during pregnancy is clearly a threat to the health and well-being of the offspring, later in adulthood. We previously showed that 20% of male and female inbred mice can cope with the obesogenic effects of a high-fat diet (HFD) for 20 weeks after weaning, remaining lean. However the feeding of a control diet (CD) to DIO mice during the periconceptional/gestation/lactation period led to a pronounced sex-specific shift (17% to 43%) from susceptibility to resistance to HFD, in the female offspring only. Our aim in this study was to determine how, in the context of maternal obesity and T2D, a CD could increase resistance on female fetuses. Transcriptional analyses were carried out with a custom-built mouse liver microarray and by quantitative RT-PCR for muscle and adipose tissue. Both global DNA methylation and levels of pertinent histone marks were assessed by LUMA and western blotting, and the expression of 15 relevant genes encoding chromatin-modifying enzymes was analyzed in tissues presenting global epigenetic changes. Resistance was associated with an enhancement of hepatic pathways protecting against steatosis, the unexpected upregulation of neurotransmission-related genes and the modulation of a vast imprinted gene network. Adipose tissue displayed a pronounced dysregulation of gene expression, with an upregulation of genes involved in lipid storage and adipocyte hypertrophy or hyperplasia in obese mice born to lean and obese mothers, respectively. Global DNA methylation, several histone marks and key epigenetic regulators were also altered. Whether they were themselves lean (resistant) or obese (sensitive), the offspring of lean and obese mice clearly differed in terms of several metabolic features and epigenetic marks suggesting that the effects of a HFD depend on the leanness or obesity of the mother.
Collapse
Affiliation(s)
- Linda Attig
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- INSERM U781 AP-HP; Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants, Paris, France
| | - Alexandre Vigé
- INSERM U781 AP-HP; Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants, Paris, France
| | - Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- INSERM U781 AP-HP; Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants, Paris, France
| | - Moshen Karimi
- Laboratory for Medical Epigenetics, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Aurore Beauger
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- INSERM U781 AP-HP; Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants, Paris, France
| | - Marie-Sylvie Gross
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- INSERM U781 AP-HP; Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants, Paris, France
| | - Anne Athias
- IFR100 Santé-STIC, Plateau Technique Lipidomique, CHU Bocage Bat B2, Dijon, France
| | - Catherine Gallou-Kabani
- INSERM U781 AP-HP; Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants, Paris, France
| | - Philippe Gambert
- IFR100 Santé-STIC, Laboratoire de Biochimie Médicale, Plateau Technique de Biologie, Dijon, France
| | - Tomas J. Ekstrom
- Laboratory for Medical Epigenetics, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Philippe Jais
- Service de Biostatistique et Informatique Médicale, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Claudine Junien
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- INSERM U781 AP-HP; Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants, Paris, France
- Laboratory for Medical Epigenetics, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
29
|
Shahhoseini M, Taghizadeh Z, Hatami M, Baharvand H. Retinoic acid dependent histone 3 demethylation of the clustered HOX genes during neural differentiation of human embryonic stem cells. Biochem Cell Biol 2012; 91:116-22. [PMID: 23527641 DOI: 10.1139/bcb-2012-0049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gene activation of HOX clusters is an early event in embryonic development. These genes are highly expressed and active in the vertebrate nervous system. Based on the presence of retinoic acid response elements (RAREs) in the regulatory region of many of the HOX genes, it is deduced that retinoic acid (RA) can influence epigenetic regulation and consequently the expression pattern of HOX during RA-induced differentiation of embryonic model systems. In this investigation, the expression level as well as the epigenetic regulation of several HOX genes of the 4 A-D clusters was analyzed in human embryonic stem cells, and also through their neural induction, in the presence and absence of RA. Expression analysis data significantly showed increased mRNA levels of all examined HOX genes in the presence of RA. Epigenetic analysis of the HOX gene regulatory regions also showed a significant decrease in methylation of histone H3K27 parallel to an absolute preferential incorporation of the demethylase UTX rather than JMJD3 in RA-induced neural differentiated cells. This finding clearly showed the functional role of UTX in epigenetic alteration of HOX clusters during RA-induced neural differentiation; the activity could not be detectable for the demethylase JMJD3 during this developmental process.
Collapse
Affiliation(s)
- Maryam Shahhoseini
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box 19395-4644, Tehran, Iran
| | | | | | | |
Collapse
|
30
|
Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A. Proc Natl Acad Sci U S A 2012; 109:18845-50. [PMID: 23112189 DOI: 10.1073/pnas.1213951109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chromatin remodeling is essential for controlling the expression of genes during development. The histone-modifying enzyme G9a/KMT1C can act both as a coactivator and a corepressor of transcription. Here, we show that the dual function of G9a as a coactivator vs. a corepressor entails its association within two distinct protein complexes, one containing the coactivator Mediator and one containing the corepressor Jarid1a/KDM5A. Functionally, G9a is important in stabilizing the Mediator complex for gene activation, whereas its repressive function entails a coordinate action with the histone H3 lysine 4 (H3K4) demethylase Jarid1a for the maintenance of gene repression. The essential nature of cross-talk between the histone methyltransferase G9a and the demethylase Jarid1a is demonstrated on the embryonic E(y)-globin gene, where the concurrent introduction of repressive histone marks (dimethylated H3K9 and dimethylated H3K27) and removal of activating histone mark (trimethylated H3K4) is required for maintenance of gene silencing. Taken together with our previous demonstration of cross-talk between UTX and MLL2 to mediate activation of the adult β(maj)-globin gene, these data suggest a model where "active" and "repressive" cross-talk between histone-modifying enzymes coexist on the same multigene locus and play a crucial role in the precise control of developmentally regulated gene expression.
Collapse
|
31
|
Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2012; 109:18505-10. [PMID: 23091032 DOI: 10.1073/pnas.1202070109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of transcription initiation, but how H3K4me3 is demethylated during gene repression is poorly understood. Jhd2, a JmjC domain protein, was recently identified as the major H3K4me3 histone demethylase (HDM) in Saccharomyces cerevisiae. Although JHD2 is required for removal of methylation upon gene repression, deletion of JHD2 does not result in increased levels of H3K4me3 in bulk histones, indicating that this HDM is unable to demethylate histones during steady-state conditions. In this study, we showed that this was due to the negative regulation of Jhd2 activity by histone H3 lysine 14 acetylation (H3K14ac), which colocalizes with H3K4me3 across the yeast genome. We demonstrated that loss of the histone H3-specific acetyltransferases (HATs) resulted in genome-wide depletion of H3K4me3, and this was not due to a transcription defect. Moreover, H3K4me3 levels were reestablished in HAT mutants following loss of JHD2, which suggested that H3-specific HATs and Jhd2 serve opposing functions in regulating H3K4me3 levels. We revealed the molecular basis for this suppression by demonstrating that H3K14ac negatively regulated Jhd2 demethylase activity on an acetylated peptide in vitro. These results revealed the existence of a general mechanism for removal of H3K4me3 following gene repression.
Collapse
|
32
|
Wang LL, Chen H, Huang K, Zheng L. Elevated histone acetylations in Müller cell contribute to inflammation: A novel inhibitory effect of minocycline. Glia 2012; 60:1896-905. [DOI: 10.1002/glia.22405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022]
|
33
|
Kristensen LH, Nielsen AL, Helgstrand C, Lees M, Cloos P, Kastrup JS, Helin K, Olsen L, Gajhede M. Studies of H3K4me3 demethylation by KDM5B/Jarid1B/PLU1 reveals strong substrate recognition in vitro and identifies 2,4-pyridine-dicarboxylic acid as an in vitro and in cell inhibitor. FEBS J 2012; 279:1905-14. [PMID: 22420752 DOI: 10.1111/j.1742-4658.2012.08567.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynamic methylations and demethylations of histone lysine residues are important for gene regulation and are facilitated by histone methyltransferases and histone demethylases (HDMs). KDM5B/Jarid1B/PLU1 is an H3K4me3/me2-specific lysine demethylase belonging to the JmjC domain-containing family of histone demethylases (JHDMs). Several studies have linked KDM5B to breast, prostate and skin cancer, highlighting its potential as a drug target. However, most inhibitor studies have focused on other JHDMs, and inhibitors for KDM5B remain to be explored. Here, we report the expression, purification and characterization of the catalytic core of recombinant KDM5B (ccKDM5B, residues 1-769). We show that ccKDM5B, recombinantly expressed in insect cells, demethylates H3K4me3 and H3K4me2 in vitro. The kinetic characterization showed that ccKDM5B has an apparent Michaelis constant (K(m) (app) ) value of 0.5 μm for its trimethylated substrate H3(1-15)K4me3, a considerably increased apparent substrate affinity than reported for related HDMs. Despite the presence of a PHD domain, the catalytic activity was not affected by additional methylation at the H3K9 position, suggesting that in vitro chromatin cross-talk between H3K4 and H3K9 does not occur for ccKDM5B. Inhibition studies of ccKDM5B showed both in vitro and in cell inhibition of ccKDM5B by 2,4-pyridinedicarboxylic acid (2,4-PDCA) with a potency similar to that reported for the HDM KDM4C. Structure-guided sequence alignment indicated that the binding mode of 2,4-PDCA is conserved between KDM4A/C and KDM5B.
Collapse
Affiliation(s)
- Line H Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Trakhtenberg EF, Goldberg JL. Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci 2012; 5:24. [PMID: 22403528 PMCID: PMC3290832 DOI: 10.3389/fnmol.2012.00024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/12/2012] [Indexed: 12/27/2022] Open
Abstract
Neuroregenerative therapies for central nervous system (CNS) injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and re-innervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases. Although neurons' intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus, a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.
Collapse
|
35
|
Lu L, Ma J, Li Z, Lan Q, Chen M, Liu Y, Xia Z, Wang J, Han Y, Shi W, Quesniaux V, Ryffel B, Brand D, Li B, Liu Z, Zheng SG. All-trans retinoic acid promotes TGF-β-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS One 2011; 6:e24590. [PMID: 21931768 PMCID: PMC3172235 DOI: 10.1371/journal.pone.0024590] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/15/2011] [Indexed: 12/23/2022] Open
Abstract
Background It has been documented all-trans retinoic acid (atRA) promotes the development of TGF-β-induced CD4+Foxp3+ regulatory T cells (iTreg) that play a vital role in the prevention of autoimmune responses, however, molecular mechanisms involved remain elusive. Our objective, therefore, was to determine how atRA promotes the differentiation of iTregs. Methodology/Principal Findings Addition of atRA to naïve CD4+CD25− cells stimulated with anti-CD3/CD28 antibodies in the presence of TGF-β not only increased Foxp3+ iTreg differentiation, but maintained Foxp3 expression through apoptosis inhibition. atRA/TGF-β-treated CD4+ cells developed complete anergy and displayed increased suppressive activity. Infusion of atRA/TGF-β-treated CD4+ cells resulted in the greater effects on suppressing symptoms and protecting the survival of chronic GVHD mice with typical lupus-like syndromes than did CD4+ cells treated with TGF-β alone. atRA did not significantly affect the phosphorylation levels of Smad2/3 and still promoted iTreg differentiation in CD4+ cells isolated from Smad3 KO and Smad2 conditional KO mice. Conversely, atRA markedly increased ERK1/2 activation, and blockade of ERK1/2 signaling completely abolished the enhanced effects of atRA on Foxp3 expression. Moreover, atRA significantly increased histone methylation and acetylation within the promoter and conserved non-coding DNA sequence (CNS) elements at the Foxp3 gene locus and the recruitment of phosphor-RNA polymerase II, while DNA methylation in the CNS3 was not significantly altered. Conclusions/Significance We have identified the cellular and molecular mechanism(s) by which atRA promotes the development and maintenance of iTregs. These results will help to enhance the quantity and quality of development of iTregs and may provide novel insights into clinical cell therapy for patients with autoimmune diseases and those needing organ transplantation.
Collapse
Affiliation(s)
- Ling Lu
- Division of Rheumatology, Department of Medicine, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Key Laboratory of Living Donor Liver Transplantation, Nanjing, People's Republic of China
| | - Jilin Ma
- Division of Rheumatology, Immunology and Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, Hangzhou, People's Republic of China
| | - Zhiyuan Li
- Unit of Molecular Immunology, Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Qin Lan
- Division of Rheumatology, Department of Medicine, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Immune Tolerance Center, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Maogen Chen
- Division of Rheumatology, Department of Medicine, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ya Liu
- Division of Rheumatology, Department of Medicine, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zanxian Xia
- Division of Rheumatology, Department of Medicine, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Julie Wang
- Division of Rheumatology, Department of Medicine, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yuanping Han
- Department of Surgery, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Valerie Quesniaux
- UMR6218, Molecular Immunology, University and Centre National de la Recherche Scientifique, Orleans, France
| | - Bernhard Ryffel
- UMR6218, Molecular Immunology, University and Centre National de la Recherche Scientifique, Orleans, France
| | - David Brand
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
| | - Bin Li
- Unit of Molecular Immunology, Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Zhongmin Liu
- Immune Tolerance Center, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
- * E-mail:
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- UMR6218, Molecular Immunology, University and Centre National de la Recherche Scientifique, Orleans, France
| |
Collapse
|