1
|
Chennareddy S, Rindler K, Meledathu S, Naidu MP, Alkon N, Ruggiero JR, Szmolyan L, Weninger W, Bauer WM, Griss J, Jonak C, Brunner PM. Single-cell RNA sequencing of chronic idiopathic erythroderma defines disease-specific markers. J Allergy Clin Immunol 2025; 155:892-908. [PMID: 39694280 DOI: 10.1016/j.jaci.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Chronic erythroderma is a potentially life-threatening condition that can be caused by various diseases, but approximately 30% of cases remain idiopathic, often with insufficient treatment options. OBJECTIVE We sought to establish a molecular disease map of chronic idiopathic erythroderma (CIE). METHODS We performed single-cell RNA sequencing combined with T-cell receptor sequencing of blood and skin from 5 patients with CIE and compared results with 8 cases of erythrodermic cutaneous T-cell lymphoma (eCTCL), 15 cases of moderate to severe atopic dermatitis, 10 cases of psoriasis, and 20 healthy control individuals. RESULTS In eCTCL, we found strong expansion of CD4+ malignant clones with a CCR7+SELL+ central memory phenotype. In contrast, CIE exhibited a pattern of low-level, but consistent, expansion of CD8A+KLRK1+ T-cell clones, both in blood and in skin. KLRK1 was also expressed by CCR10+FUT7+ skin-homing CIE blood T cells that had increased proliferation rates and were absent in all other conditions. While patients with CIE and eCTCL lacked the strong type 2 or type 17 immune skewing typically found in atopic dermatitis or psoriasis, respectively, they were characterized by upregulation of MHC II genes (HLA-DRB1, HLA-DRA, and CD74) in keratinocytes and fibroblasts, most likely in an IFN-γ-dependent fashion. Overall, we found the strongest upregulation of type 1 immune mediators in CIE samples, both in the expanded CD8A+ clones and in the tissue microenvironment. CONCLUSIONS Despite the notion that CIE might be a mere bundle of various yet uncharacterized disease processes, we found specific pathogenic signatures in these patients, which were different from other forms of erythroderma. These data might help to improve our pathogenic understanding of the blood and skin compartments of CIE, aiding in discovery of future treatment targets.
Collapse
Affiliation(s)
- Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shannon Meledathu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Malini P Naidu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lisa Szmolyan
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
2
|
Ren P, Yu J, Wang D, Zeng L, Zhang X, Liu X, Cao Y, Hu Z, Zhao X, Yang K. Newcastle disease virus promotes pyroptosis in medulloblastoma cells by regulating interferon-gamma-mediated guanylate-binding protein 1 expression and activating caspase-4. Cytojournal 2024; 21:39. [PMID: 39563668 PMCID: PMC11574683 DOI: 10.25259/cytojournal_39_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/23/2024] [Indexed: 11/21/2024] Open
Abstract
Objective The literature has reported that Newcastle disease virus (NDV) can have inhibitory effects on various tumors. This study aims to investigate the mechanism by which NDV induces pyroptosis in medulloblastoma (MB) cells. Material and Methods We treated MB cell lines Daoy and D283 with NDV or recombinant interferon-gamma (IFN-g) proteins. Guanylate-binding proteins (GBPs) were measured using real-time quantitative polymerase chain reaction. Small interfering RNA-specific targeting GBP1 was transfected into MB cells. Apoptosis was assessed using Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nucleoside nick end labeling and flow cytometry assays. Pyroptosis-related proteins, including caspase-4, caspase-1, and gasdermin D (GSDMD), were detected using Western blotting. Results Bioinformatics analysis revealed that GBP family genes and interferon-related genes might be responsive to NDV stimulation in MB cells. Treatment with NDV resulted in increased IFN-g levels and upregulated GBP expression, particularly GBP1. In addition, IFN-g treatment induced GBP1 expression and enhanced cell apoptosis. GBP1 knockdown attenuated the decreased cell proliferation and increased cell apoptosis induced by NDV in MB cells. GBP1 overexpression upregulated the expression of pyroptosis-related proteins, including caspase-4, caspase-1, and GSDMD, subsequently leading to inhibition of cell proliferation and an increase in cell apoptosis levels. The silencing of caspase-4 confirmed the regulatory role of GBP1 in MB cell pyroptosis. Conclusion Our findings suggest that NDV elevates IFN-g and GBP1 expression in MB cells, potentially contributing to caspase-4-mediated pyroptosis activation.
Collapse
Affiliation(s)
- Pengwu Ren
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Jiayan Yu
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Dongxiang Wang
- Department of Dermatology, The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Zeng
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xianqiang Zhang
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xiaohe Liu
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Yongfu Cao
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Zijian Hu
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xiaoyong Zhao
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Kongbin Yang
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| |
Collapse
|
3
|
Wang X, Han T, Wang Y, Yang R, Yang Q, Li J. Integrative analysis of the immunological significances of guanylate binding protein family genes in microsatellite stability colorectal cancer. Heliyon 2024; 10:e37741. [PMID: 39315131 PMCID: PMC11417218 DOI: 10.1016/j.heliyon.2024.e37741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Microsatellite stability (MSS) colorectal cancer (CRC) has poor sensitivity to immunotherapy and its underlying mechanisms are still unclear. Guanylate binding proteins (GBPs) are a family of GTPase involving innate immune responses by providing defense against invading microbes and pathogens. However, the immunological significances of GBPs in MSS CRC remain unknown. Methods We utilized bioinformatic tools to comprehensively analysis the expression pattern, clinical relevance, prognostic value, biological function, and immunoregulation effect of distinct GBP members in MSS CRC. Results The expression of all seven GBPs in MSS samples are remarkably decreased compared to microsatellite instability-high (MSI-H) samples. Among them, GBP1/2/4/5 are obviously correlated with distant metastasis status. High expression of GBP1/4/5/6 was remarkably related to favorable overall survival (OS) and progression-free survival (PFS) in CRC patients with MSS tumor. Subsequent enrichment analysis revealed that Interferon-gamma (IFN-γ) and NOD-like receptor signaling are the most relevant functions. Besides, the expression patterns of GBPs are remarkably associated with several tumor infiltrated immune cells (e.g. regulatory T cells, CD4+ T cells, and macrophages) and diverse immunoregulatory molecules (e.g. immune checkpoint biomarkers (ICBs) and major histocompatibility complex (MHC) molecules). Moreover, high GBP1/2/4/5 expression predicted better immunotherapy responsiveness in immunotherapy cohorts. Conclusion These findings might provide novel insights for the identification of therapeutic targets and potential prognostic biomarkers of GBP family in CRC with MSS samples.
Collapse
Affiliation(s)
| | | | - Yinchun Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Rui Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Qingqiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Jianxin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| |
Collapse
|
4
|
Hao Y, Fu H, Li K, Zou X, Zhou X, Tang X, Liu C, Zhou F. Inhibition of GBP1 alleviates pyroptosis of human pulmonary microvascular endothelial cells through STAT1/NLRP3/GSDMD pathway. Mol Immunol 2024; 173:1-9. [PMID: 38996607 DOI: 10.1016/j.molimm.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/16/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Restoring and maintaining the function of endothelial cells is critical for acute respiratory distress syndrome (ARDS). Guanylate binding protein 1(GBP1) is proved to elevated in ARDS patients, but its role and mechanism remains unclear. The objective of this study is to investigate the internal mechanism of GBP1 in lung injury. Our study showed that when the LPS and IFN-γ induced human Pulmonary Microvascular Endothelial Cells (HPMECs) injury model was established, cell viability was significantly reduced, and the levels of GBP1 levels and inflammatory factors were significantly increased. When transfection with si-GBP1, low expression of GBP1 promoted cell proliferation and migration, and decreased the expression of downstream inflammatory factors. Furthermore, the inhibition of GBP1 significantly reduced the occurrence of cell pyroptosis and the expression of NLRP3 and STAT1. Our study indicated that GBP1 alleviates endothelial pyroptosis and inflammation through STAT1 / NLRP3/GSDMD signaling pathway, and GBP1 may be a new target in the treatment of lung injury in the future.
Collapse
Affiliation(s)
- Yingting Hao
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Hongxue Fu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Kaili Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuan Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xin Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xiyue Tang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Chang Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fachun Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
5
|
Wang S, Zhang Y, Ma X, Feng Y. Function and mechanism of GBP1 in the development and progression of cervical cancer. J Transl Med 2024; 22:11. [PMID: 38167153 PMCID: PMC10763113 DOI: 10.1186/s12967-023-04837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Guanylate binding protein 1 (GBP1) is the most concerned member of the GBP family, which has a series of effects such as anti-infection and anti-angiogenesis. Its role in malignant tumors including cervical cancer is still controversial. We aim to explore the effects of GBP1 on cervical cancer through bioinformatics and related experiments. In this study, we first found that GBP1 was generally expressed in cervical cancer in various online databases and was closely related to immune invasion. Secondly, we used multicolor immunofluorescence technology to verify the expression of GBP1 in cervical cancer tissues and its relationship with immune invasion, and explored its relationship with the prognosis of patients with cervical cancer. Knockdown and overexpression assays of GBP1 in vitro were used to prove GBP1 as a potential oncogene of cervical cancer, and its carcinogenicity was verified by in vivo experiment. In order to explore the potential mechanism of GBP1 in promoting cancer, RNA-seq was performed on GBP1 overexpression and knockdown expression cell lines, and GBP1 knockdown and overexpression were found to be associated with many RNA alternative splicing events, suggesting that GBP1 maybe a RNA binding protein (RBP) which affect the biological characteristics of cervical cancer cells through the alternative splicing pathway. However, the later RNA binding protein immunoprecipitation (RIP) assay proved that GBP1 was not a direct alternative splicing factor, while the co-immunoprecipitation (CoIP)-mass spectroscopy (MS) assay combined with protein protein interaction (PPI) analysis proved that 8 alternative splicing factors including Heterogeneous Nuclear Ribonucleoprotein K (HNRNPK) were interacting proteins of GBP1. Combined with the existing reports and the results of RNA-seq alternative splicing analysis, it is speculated that GBP1 may regulate the alternative splicing of CD44 protein by binding to interacting protein-HNRNPK, and thus play a role in promoting cancer in cervical cancer.
Collapse
Affiliation(s)
- Senyu Wang
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Yajing Zhang
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Xiumin Ma
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.
| | - Yangchun Feng
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
6
|
Li Z, Gao Y, Cao Y, He F, Jiang R, Liu H, Cai H, Zan T. Extracellular RNA in melanoma: Advances, challenges, and opportunities. Front Cell Dev Biol 2023; 11:1141543. [PMID: 37215082 PMCID: PMC10192583 DOI: 10.3389/fcell.2023.1141543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Melanoma, a malignant mass lesion that originates in melanocytes and has a high rate of malignancy, metastasis, and mortality, is defined by these characteristics. Malignant melanoma is a kind of highly malignant tumor that produces melanin and has a high mortality rate. Its incidence accounts for 1%-3% of all malignant tumors and shows an obvious upward trend. The discovery of biomolecules for the diagnosis and treatment of malignant melanoma has important application value. So far, the exact molecular mechanism of melanoma development relevant signal pathway still remains unclear. According to previous studies, extracellular RNAs (exRNAs) have been implicated in tumorigenesis and spread of melanoma. They can influence the proliferation, invasion and metastasis of melanoma by controlling the expression of target genes and can also influence tumor progression by participating in signal transduction mechanisms. Therefore, understanding the relationship between exRNA and malignant melanoma and targeting therapy is of positive significance for its prevention and treatment. In this review, we did an analysis of extracellular vesicles of melanoma which focused on the role of exRNAs (lncRNAs, miRNAs, and mRNAs) and identifies several potential therapeutic targets. In addition, we discuss the typical signaling pathways involved in exRNAs, advances in exRNA detection and how they affect the tumor immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Gao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Cao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifan He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Runyi Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Hunt EN, Kopacz JP, Vestal DJ. Unraveling the Role of Guanylate-Binding Proteins (GBPs) in Breast Cancer: A Comprehensive Literature Review and New Data on Prognosis in Breast Cancer Subtypes. Cancers (Basel) 2022; 14:cancers14112794. [PMID: 35681772 PMCID: PMC9179834 DOI: 10.3390/cancers14112794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
At least one member of the Guanylate-Binding Protein (GBP) family of large interferon-induced GTPases has been classified as both a marker of good prognosis and as a potential drug target to treat breast cancers. However, the activity of individual GBPs appears to not just be tumor cell type–specific but dependent on the growth factor and/or cytokine environment in which the tumor cells reside. To clarify what we do and do not know about GBPs in breast cancer, the current literature on GBP-1, GBP-2, and GBP-5 in breast cancer has been assembled. In addition, we have analyzed the role of each of these GBPs in predicting recurrence-free survival (RFS), overall survival (OS), and distance metastasis-free survival (DMFS) as single gene products in different subtypes of breast cancers. When a large cohort of breast cancers of all types and stages were examined, GBP-1 correlated with poor RFS. However, it was the only GBP to do so. When smaller cohorts of breast cancer subtypes grouped into ER+, ER+/Her2-, and HER2+ tumors were analyzed, none of the GBPs influenced RFS, OS, or DMSF as single agents. The exception is GBP-5, which correlated with improved RFS in Her2+ breast cancers. All three GBPs individually predicted improved RFS, OS, and DMSF in ER- breast cancers, regardless of the PR or HER2 status, and TNBCs.
Collapse
|
8
|
Zhao Y, Wu J, Li L, Zhang H, Zhang H, Li J, Zhong H, Lei T, Jin Y, Xu B, Song Q. Guanylate-Binding Protein 1 as a Potential Predictor of Immunotherapy: A Pan-Cancer Analysis. Front Genet 2022; 13:820135. [PMID: 35222540 PMCID: PMC8867058 DOI: 10.3389/fgene.2022.820135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/11/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Mainstream application of cancer immunotherapy is hampered by the low response rate of most cancer patients. A novel immunotherapeutic target or a biomarker predicting response to immunotherapy needs to be developed. Guanylate-binding protein 1 (GBP1) is an interferon (IFN)-inducible guanosine triphosphatases (GTPases) involving inflammation and infection. However, the immunological effects of GBP1 in pan-cancer patients are still obscure. Methods: Using large-scale public data, we delineated the landscape of GBP1 across 33 cancer types. The correlation between GBP1 expression or mutation and immune cell infiltration was estimated by ESTIMATE, TIMER, xCell, and quanTIseq algorithms. GBP1-related genes and proteins were subjected to function enrichment analysis. Clustering analysis explored the relationship between GBP1 expression and anti-tumor immune phenotypes. We assessed the patient’s response to immunotherapy using the tumor immune dysfunction and exclusion (TIDE) score and immunophenoscore (IPS). Furthermore, we validated the predictive power of GBP1 expression in four independent immunotherapy cohorts. Results: GBP1 was differentially expressed in tumors and normal tissues in multiple cancer types. Distinct correlations existed between GBP1 expression and prognosis in cancer patients. GBP1 expression and mutation were positively associated with immune cell infiltration. Function enrichment analysis showed that GBP1-related genes were enriched in immune-related pathways. Positive correlations were also observed between GBP1 expression and the expression of immune checkpoints, as well as tumor mutation burden (TMB). Pan-cancer patients with higher GBP1 expression were more inclined to display “hot” anti-tumor immune phenotypes and had lower TIDE scores and higher immunophenoscore, suggesting that these patients had better responses to immunotherapy. Patients with higher GBP1 expression exhibited improved overall survival and clinical benefits in immunotherapy cohorts, including the Gide et al. cohort [area under the curve (AUC): 0.813], the IMvigor210 cohort (AUC: 0.607), the Lauss et al. cohort (AUC: 0.740), and the Kim et al. cohort (AUC: 0.793). Conclusion: This study provides comprehensive insights into the role of GBP1 in a pan-cancer manner. We identify GBP1 expression as a predictive biomarker for immunotherapy, potentially enabling more precise and personalized immunotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Yaqi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, Germany
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Zhong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Jin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Bin Xu, ; Qibin Song,
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Bin Xu, ; Qibin Song,
| |
Collapse
|
9
|
The Large GTPase, GBP-2, Regulates Rho Family GTPases to Inhibit Migration and Invadosome Formation in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13225632. [PMID: 34830789 PMCID: PMC8616281 DOI: 10.3390/cancers13225632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Too many women still die of breast cancer each year. Those breast cancers that kill are those with cells that have migrated away from the primary tumor in the breast and established new tumors at other sites in the body. These tumors are not reached when the original tumor in the breast is removed. This study was designed to determine why some breast cancers move away from their primary tumor and others do not. We have identified a protein that inhibits this movement. Understanding this finding may provide us with ways to inhibit tumor cell movement in patients. Abstract Breast cancer is the most common cancer in women. Despite advances in early detection and treatment, it is predicted that over 43,000 women will die of breast cancer in 2021. To lower this number, more information about the molecular players in breast cancer are needed. Guanylate-Binding Protein-2 has been correlated with better prognosis in breast cancer. In this study, we asked if the expression of GBP-2 in breast cancer merely provided a biomarker for improved prognosis or whether it actually contributed to improving outcome. To answer this, the 4T1 model of murine breast cancer was used. 4T1 cells themselves are highly aggressive and highly metastatic, while 67NR cells, isolated from the same tumor, do not leave the primary site. The expression of GBP-2 was examined in the two cell lines and found to be inversely correlated with aggressiveness/metastasis. Proliferation, migration, and invadosome formation were analyzed after altering the expression levels of GBP-2. Our experiments show that GBP-2 does not alter the proliferation of these cells but inhibits migration and invadosome formation downstream of regulation of Rho GTPases. Together these data demonstrate that GBP-2 is responsible for cell autonomous activities that make breast cancer cells less aggressive.
Collapse
|
10
|
Wan Q, Qu J, Li L, Gao F. Guanylate-binding protein 1 correlates with advanced tumor features, and serves as a prognostic biomarker for worse survival in lung adenocarcinoma patients. J Clin Lab Anal 2020; 35:e23610. [PMID: 33301214 PMCID: PMC7891503 DOI: 10.1002/jcla.23610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Guanylate-binding protein 1 (GBP1) is reported to promote tumor progression and treatment resistance in lung cancer, and presents as a prognostic biomarker in several solid tumors. However, the related research of GBP1 in clinical management of lung adenocarcinoma is still lacking. Therefore, the present study aimed to detect the clinical role of GBP1 in lung adenocarcinoma. METHODS The clinical data of 221 lung adenocarcinoma patients were retrospectively analyzed, and then, their tumor tissue specimens and paired adjacent tissue specimens were retrieved for GBP1 detection via immunohistochemistry (IHC) assay. RESULTS GBP1 expression was upregulated in tumor tissues compared with adjacent tissues (P < .001). Moreover, high tumor GBP1 expression was associated with larger tumor size (P = .030), positive lymph node (LYN) metastasis (P = .001), advanced TNM stage (P = .001), and abnormal preoperative carcinoembryonic antigen (CEA) level (P = .026). Furthermore, tumor GBP1 high expression was correlated with reduced disease-free survival (DFS) and overall survival (OS), and was of independent value in predicting worse DFS and OS. Additionally, data analysis of 1144 lung cancer patients derived from KMplot database (www.kmplot.com) further verified that GBP1 expression was negatively correlated with OS (P = .009). CONCLUSION GBP1 correlates with advanced tumor features and worse survival profiles, suggesting its value to be a prognostic biomarker in management of lung adenocarcinoma.
Collapse
Affiliation(s)
- Quanchao Wan
- Department of Cardiothoracic SurgeryXuzhou Cancer HospitalXuzhouChina
| | - Jingming Qu
- Department of Cardiothoracic SurgeryXuzhou Cancer HospitalXuzhouChina
| | - Longfei Li
- Department of Cardiothoracic SurgeryXuzhou Cancer HospitalXuzhouChina
| | - Feng Gao
- Department of Cardiothoracic SurgeryXuzhou Cancer HospitalXuzhouChina
| |
Collapse
|
11
|
Musseau C, Jorly J, Gadin S, Sørensen I, Deborde C, Bernillon S, Mauxion JP, Atienza I, Moing A, Lemaire-Chamley M, Rose JKC, Chevalier C, Rothan C, Fernandez-Lochu L, Gévaudant F. The Tomato Guanylate-Binding Protein SlGBP1 Enables Fruit Tissue Differentiation by Maintaining Endopolyploid Cells in a Non-Proliferative State. THE PLANT CELL 2020; 32:3188-3205. [PMID: 32753430 PMCID: PMC7534463 DOI: 10.1105/tpc.20.00245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/06/2020] [Accepted: 07/31/2020] [Indexed: 05/12/2023]
Abstract
Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (Solanum lycopersicum), this process is associated with endoreduplication in mesocarp cells. The mechanisms that preserve this developmental program, once initiated, remain unknown. We show here that analysis of a previously identified tomato ethyl methanesulfonate-induced mutant that exhibits abnormal mesocarp cell differentiation could help elucidate determinants of fruit cell fate maintenance. We identified and validated the causal locus through mapping-by-sequencing and gene editing, respectively, and performed metabolic, cellular, and transcriptomic analyses of the mutant phenotype. The data indicate that disruption of the SlGBP1 gene, encoding GUANYLATE BINDING PROTEIN1, induces early termination of endoreduplication followed by late divisions of polyploid mesocarp cells, which consequently acquire the characteristics of young proliferative cells. This study reveals a crucial role of plant GBPs in the control of cell cycle genes, and thus, in cell fate maintenance. We propose that SlGBP1 acts as an inhibitor of cell division, a function conserved with the human hGBP-1 protein.
Collapse
Affiliation(s)
- Constance Musseau
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Joana Jorly
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Stéphanie Gadin
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Catherine Deborde
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Stéphane Bernillon
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Isabelle Atienza
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Annick Moing
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Martine Lemaire-Chamley
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Christian Chevalier
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Christophe Rothan
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Lucie Fernandez-Lochu
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Frédéric Gévaudant
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| |
Collapse
|
12
|
Wu Y, Xia L, Zhao P, Deng Y, Guo Q, Zhu J, Chen X, Ju X, Wu X. Immune profiling reveals prognostic genes in high-grade serous ovarian cancer. Aging (Albany NY) 2020; 12:11398-11415. [PMID: 32544083 PMCID: PMC7343445 DOI: 10.18632/aging.103199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is a heterogeneous disease with diverse clinical outcomes, highlighting a need for prognostic biomarker identification. Here, we combined tumor microenvironment (TME) scores with HGSOC characteristics to identify immune-related prognostic genes through analysis of gene expression profiles and clinical patient data from The Cancer Genome Atlas and the International Cancer Genome Consortium public cohorts. We found that high TME scores (TMEscores) based on the fractions of immune cell types correlated with better overall survival. Furthermore, differential expression analysis revealed 329 differentially expressed genes between patients with high vs. low TMEscores. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that these genes participated mainly in immune-related functions and, among them, 48 TME-related genes predicted overall survival in HGSOC. Seven of those genes were associated with prognosis in an independent HGSOC database. Finally, the two genes with the lowest p-values in the prognostic analysis (GBP1, ETV7) were verified through in vitro experiments. These findings reveal specific TME-related genes that could serve as effective prognostic biomarkers for HGSOC.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping Zhao
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Deng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinhao Guo
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Zhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingzhu Ju
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Carbotti G, Petretto A, Naschberger E, Stürzl M, Martini S, Mingari MC, Filaci G, Ferrini S, Fabbi M. Cytokine-Induced Guanylate Binding Protein 1 (GBP1) Release from Human Ovarian Cancer Cells. Cancers (Basel) 2020; 12:E488. [PMID: 32093058 PMCID: PMC7072386 DOI: 10.3390/cancers12020488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023] Open
Abstract
We showed that IL-27 shares several effects with IFN-γ in human cancer cells. To identify novel extracellular mediators, potentially involved in epithelial ovarian cancer (EOC) biology, we analyzed the effect of IL-27 or IFN-γ on the secretome of cultured EOC cells by mass-spectrometry (nano-UHPLC-MS/MS). IL-27 and IFN-γ modulate the release of a limited fraction of proteins among those induced in the whole cell. We focused our attention on GBP1, a guanylate-binding protein and GTPase, which mediates several biological activities of IFNs. Cytokine treatment induced GBP1, 2, and 5 expressions in EOC cells, but only GBP1 was secreted. ELISA and immunoblotting showed that cytokine-stimulated EOC cells release full-length GBP1 in vitro, through non-classical pathways, not involving microvesicles. Importantly, full-length GBP1 accumulates in the ascites of most EOC patients and ex-vivo EOC cells show constitutive tyrosine-phosphorylated STAT1/3 proteins and GBP1 expression, supporting a role for Signal Transducer And Activator Of Transcription (STAT)-activating cytokines in vivo. High GBP1 gene expression correlates with better overall survival in the TCGA (The Cancer Genome Atlas) dataset of EOC. In addition, GBP1 transfection partially reduced EOC cell viability in an MTT assay. Our data show for the first time that cytokine-stimulated tumor cells release soluble GBP1 in vitro and in vivo and suggest that GBP1 may have anti-tumor effects in EOC.
Collapse
Affiliation(s)
- Grazia Carbotti
- IRCCS Ospedale Policlinico San Martino, Biotherapies Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (G.C.); (G.F.)
| | - Andrea Petretto
- Core Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy;
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany; (E.N.); (M.S.)
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany; (E.N.); (M.S.)
| | - Stefania Martini
- IRCCS Ospedale Policlinico San Martino, Immunology Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (S.M.); (M.C.M.)
| | - Maria Cristina Mingari
- IRCCS Ospedale Policlinico San Martino, Immunology Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (S.M.); (M.C.M.)
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Via L.B. Alberti 2, 16132 Genoa, Italy
| | - Gilberto Filaci
- IRCCS Ospedale Policlinico San Martino, Biotherapies Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (G.C.); (G.F.)
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | - Silvano Ferrini
- IRCCS Ospedale Policlinico San Martino, Biotherapies Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (G.C.); (G.F.)
| | - Marina Fabbi
- IRCCS Ospedale Policlinico San Martino, Biotherapies Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (G.C.); (G.F.)
| |
Collapse
|
14
|
Guanylate-binding protein 6 is a novel biomarker for tumorigenesis and prognosis in tongue squamous cell carcinoma. Clin Oral Investig 2019; 24:2673-2682. [PMID: 31707626 DOI: 10.1007/s00784-019-03129-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Guanylate-binding protein 6 (GBP6) is a member of the guanylate-binding protein family, and its role in cancer has not yet been reported. We aimed to investigate the clinical significance of GBP6 in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Next-generation sequencing was applied for analyzing differential gene expression profiling between corresponding tumor adjacent normal (CTAN) and tumor tissue from two paired OSCC patients. Real-time PCRs (RT-PCRs) were used to investigate the gene expression level of GBP6 of CTAN and tumor tissue samples from 14 TSCC patients. Immunohistochemistry was used to investigate the protein expression level of GBP6 in tumor tissues and paired CTAN tissues from 488 OSCC patients, including 183 buccal mucosa squamous cell carcinoma (BMSCC), 245 tongue squamous cell carcinoma (TSCC), and 60 lip squamous cell carcinoma (LSCC) patients. RESULTS Compared with CTAN tissues of OSCC patients, GBP6 is identified as a downregulated gene using the NGS platform, which was confirmed in 14 OSCC patients by RT-PCR. Moreover, protein expression level of GBP6 in tumor tissues was lower than that in CTAN tissues and the low GBP6 expression was correlated with poor cell differentiation/lymph node metastasis in TSCC patients. In addition, TSCC patients with low expression levels of GBP6 had poor disease-specific survival rate. CONCLUSION The low expression of GBP6 was associated with tumorigenesis and poor prognosis in OSCC patients, especially in TSCC patients. CLINICAL RELEVANCE GBP6 may serve as a novel favorable diagnostic and prognostic biomarker in TSCC patients.
Collapse
|
15
|
Tretina K, Park ES, Maminska A, MacMicking JD. Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. J Exp Med 2019; 216:482-500. [PMID: 30755454 PMCID: PMC6400534 DOI: 10.1084/jem.20182031] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/31/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Guanylate-binding proteins (GBPs) have recently emerged as central orchestrators of immunity to infection, inflammation, and neoplastic diseases. Within numerous host cell types, these IFN-induced GTPases assemble into large nanomachines that execute distinct host defense activities against a wide variety of microbial pathogens. In addition, GBPs customize inflammasome responses to bacterial infection and sepsis, where they act as critical rheostats to amplify innate immunity and regulate tissue damage. Similar functions are becoming evident for metabolic inflammatory syndromes and cancer, further underscoring the importance of GBPs within infectious as well as altered homeostatic settings. A better understanding of the basic biology of these IFN-induced GTPases could thus benefit clinical approaches to a wide spectrum of important human diseases.
Collapse
Affiliation(s)
- Kyle Tretina
- Howard Hughes Medical Institute, Chevy Chase, MD
- Yale Systems Biology Institute, West Haven, CT
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Eui-Soon Park
- Howard Hughes Medical Institute, Chevy Chase, MD
- Yale Systems Biology Institute, West Haven, CT
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Agnieszka Maminska
- Howard Hughes Medical Institute, Chevy Chase, MD
- Yale Systems Biology Institute, West Haven, CT
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - John D MacMicking
- Howard Hughes Medical Institute, Chevy Chase, MD
- Yale Systems Biology Institute, West Haven, CT
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| |
Collapse
|