1
|
Jumabay M, Abud EM, Okamoto K, Dutta P, Chiang AWT, Li H, Manresa MC, Zhu YP, Frederick D, Kurten R, Croker B, Lewis NE, Kennedy JL, Dohil R, Croft M, Ay F, Wechsler JB, Aceves SS. Eosinophilic esophagitis drives tissue fibroblast regenerative programs toward pathologic dysfunction. J Allergy Clin Immunol 2025; 155:1333-1345. [PMID: 39617290 PMCID: PMC11980045 DOI: 10.1016/j.jaci.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pathologic tissue remodeling with scarring and tissue rigidity has been demonstrated in inflammatory, autoimmune, and allergic diseases. Eosinophilic esophagitis (EoE) is an allergic disease that is diagnosed and managed by repeated biopsy procurement, allowing an understanding of tissue fibroblast dysfunction. While EoE-associated tissue remodeling causes clinical dysphagia, food impactions, esophageal rigidity, and strictures, molecular mechanisms driving these complications remain under investigation. OBJECTIVE We hypothesized that chronic EoE inflammation induces pathogenic fibroblasts with dysfunctional tissue regeneration and motility. METHODS We used single-cell RNA sequencing, fluorescence-activated cell sorting analysis, and fibroblast differentiation and migration assays to decipher the induced and retained pathogenic dysfunctions in EoE versus healthy esophageal fibroblasts. RESULTS Differentiation assays demonstrated that active EoE fibroblasts retain regenerative programs for rigid cells such as chondrocytes (P < .05) but lose healthy fibroblast capacity for soft cells such as adipocytes (P < .01), which was reflected in biopsy sample immunostaining (P < .01). EoE, but not healthy, fibroblasts show proinflammatory and prorigidity transcriptional programs on single-cell RNA sequencing. In vivo, regenerative fibroblasts reside in perivascular regions and near the epithelial junction, and during EoE, they have significantly increased migration (P < .01). Flow analysis and functional assays demonstrated that regenerative EoE fibroblasts have decreased surface CD73 expression and activity (both P < .05) compared to healthy controls, indicating aberrant adenosine triphosphate handling. EoE fibroblast dysfunctions were induced in healthy fibroblasts by reducing CD73 activity and rescued in EoE using adenosine repletion. CONCLUSION A normalization of perturbed extracellular adenosine triphosphate handling and CD73 could improve pathogenic fibroblast dysfunction and tissue regeneration in type 2 inflammatory diseases.
Collapse
Affiliation(s)
- Medet Jumabay
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | - Edsel M Abud
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif; Scripps Research Translational Institute, San Diego, Calif
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | | | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, Calif; Department of Bioengineering, University of California, San Diego, Calif
| | - Haining Li
- Department of Pediatrics, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif
| | - Mario C Manresa
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | - Yanfang P Zhu
- Department of Pediatrics, University of California, San Diego, Calif
| | | | - Richard Kurten
- Department of Bioengineering, University of California, San Diego, Calif
| | - Ben Croker
- Department of Pediatrics, University of California, San Diego, Calif
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif
| | | | - Ranjan Dohil
- Department of Pediatrics, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif; La Jolla Institute, La Jolla, Calif
| | | | - Ferhat Ay
- Department of Pediatrics, University of California, San Diego, Calif; La Jolla Institute, La Jolla, Calif
| | | | - Seema S Aceves
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif; Department of Medicine, University of California, San Diego, Calif; Lurie Children's Hospital, Northwestern University, Chicago, Ill.
| |
Collapse
|
2
|
Lhamyani S, Gentile AM, Mengual-Mesa M, Grueso E, Giráldez-Pérez RM, Fernandez-Garcia JC, Vega-Rioja A, Clemente-Postigo M, Pearson JR, González-Mariscal I, Olveira G, Bermudez-Silva FJ, El Bekay R. Au@16-pH-16/miR-21 mimic nanosystem: An efficient treatment for obesity through browning and thermogenesis induction. Biomed Pharmacother 2024; 171:116104. [PMID: 38198956 DOI: 10.1016/j.biopha.2023.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity. Despite these promising results, the implementation of more advanced delivery system techniques for miR-21 mimic would greatly enhance the advancement of safe and efficient treatment approaches for individuals with obesity in the future. Our objective is to explore whether a new delivery system based on gold nanoparticles and Gemini surfactants (Au@16-ph-16) can replicate the favorable effects of the miR-21 mimic on weight gain, browning, and thermogenesis. We found that dosages as low as 0.2 μg miR-21 mimic /animal significantly inhibited weight gain and induced browning and thermogenic parameters. This was evidenced by the upregulation of specific genes and proteins associated with these processes, as well as the biogenesis of beige adipocytes and mitochondria. Significant increases in miR-21 levels were observed in adipose tissue but not in other tissue types. Our data indicates that Au@16-ph-16 could serve as an effective delivery system for miRNA mimics, suggesting its potential suitability for the development of future clinical treatments against obesity.
Collapse
Affiliation(s)
- Said Lhamyani
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Adriana-Mariel Gentile
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain
| | - María Mengual-Mesa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Universidad de Málaga. Andalucía Tech, Faculty of Health Sciences, Department of Systems and Automation Engineering, Malaga, Spain
| | - Elia Grueso
- Departamento de Física Química, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rosa M Giráldez-Pérez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - José Carlos Fernandez-Garcia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vega-Rioja
- Laboratorio de Inmunología y Alergia-FISEVI, UGC de Alergología. Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Medicina. Facultad de Medicina. Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Clemente-Postigo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain; Department of Cell Biology, Genetics, and Physiology, Faculty of Science, University of Malaga, Malaga, Spain
| | - John R Pearson
- Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Isabel González-Mariscal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Inserm UMR1190, CHU de Lille, Universite de Lille, Institute Pasteur de Lille, Lille, France
| | - Gabriel Olveira
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Departamento de Medicina y Cirugía, Universidad de Málaga, Málaga, Spain
| | - Francisco-Javier Bermudez-Silva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Rajaa El Bekay
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Onogi Y, Ussar S. Regulatory networks determining substrate utilization in brown adipocytes. Trends Endocrinol Metab 2022; 33:493-506. [PMID: 35491296 DOI: 10.1016/j.tem.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
Brown adipose tissue (BAT) is often considered as a sink for nutrients to generate heat. However, when the complex hormonal and nervous inputs and intracellular signaling networks regulating substrate utilization are considered, BAT appears much more as a tightly controlled rheostat, regulating body temperature and balancing circulating nutrient levels. Here we provide an overview of key regulatory circuits, including the diurnal rhythm, determining glucose, fatty acid, and amino acid utilization and the interdependency of these nutrients in thermogenesis. Moreover, we discuss additional factors mediating sympathetic BAT activation beyond β-adrenergic signaling and the limitations of glucose-based BAT activity measurements to foster a better understanding and interpretation of BAT activity data.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
4
|
Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications. Rev Physiol Biochem Pharmacol 2022; 186:135-176. [PMID: 35915363 DOI: 10.1007/112_2022_73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.
Collapse
|
5
|
Altun I, Yan X, Ussar S. Immune Cell Regulation of White Adipose Progenitor Cell Fate. Front Endocrinol (Lausanne) 2022; 13:859044. [PMID: 35422761 PMCID: PMC9001836 DOI: 10.3389/fendo.2022.859044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
Adipose tissue is essential for energy storage and endocrine regulation of metabolism. Imbalance in energy intake and expenditure result in obesity causing adipose tissue dysfunction. This alters cellular composition of the stromal cell populations and their function. Moreover, the individual cellular composition of each adipose tissue depot, regulated by environmental factors and genetics, determines the ability of the depots to expand and maintain its endocrine and storage function. Thus, stromal cells modulate adipocyte function and vice versa. In this mini-review we discuss heterogeneity in terms of composition and fate of adipose progenitor subtypes and their interactions with and regulation by different immune cell populations. Immune cells are the most diverse cell populations in adipose tissue and play essential roles in regulating adipose tissue function via interaction with adipocytes but also with adipocyte progenitors. We specifically discuss the role of macrophages, mast cells, innate lymphoid cells and T cells in the regulation of adipocyte progenitor proliferation, differentiation and lineage commitment. Understanding the factors and cellular interactions regulating preadipocyte expansion and fate decision will allow the identification of novel mechanisms and therapeutic strategies to promote healthy adipose tissue expansion without systemic metabolic impairment.
Collapse
Affiliation(s)
- Irem Altun
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xiaocheng Yan
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Siegfried Ussar
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
- *Correspondence: Siegfried Ussar,
| |
Collapse
|
6
|
Hung J, Awasthi R, Klibanov AL, Kelly KA. Identification of Novel Ligands for Targeted Antifibrotic Therapy of Chronic Pancreatitis. Int J Nanomedicine 2021; 16:5495-5512. [PMID: 34429596 PMCID: PMC8374843 DOI: 10.2147/ijn.s318331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Chronic pancreatitis (CP) is an inflammatory disorder of the pancreas that leads to impaired pancreatic function. The limited therapeutic options and the lack of molecular targeting ligands or non-serum-based biomarkers hinder the development of target-specific drugs. Thus, there is a need for an unbiased, comprehensive discovery and evaluation of pancreatitis-specific ligands. METHODS This study utilized a computational-guided in vivo phage display approach to select peptide ligands selective for cellular components in the caerulein-induced mouse model of CP. The identified peptides were conjugated to pegylated DOPC liposomes via the reverse-phase evaporation method, and the in vivo specificity and pharmacokinetics were determined. As proof of concept, CP-targeted liposomes were used to deliver an antifibrotic small molecular drug, apigenin. Antifibrotic effects determined by pancreatic histology, fibronectin expression, and collagen deposition were evaluated. RESULTS We have identified five peptides specific for chronic pancreatitis and demonstrated selectivity to activated pancreatic stellate cells, acinar cells, macrophages, and extracellular matrix, respectively. MDLSLKP-conjugated liposomes demonstrated an increased particle accumulation by 1.3-fold in the inflamed pancreas compared to the control liposomes. We also observed that targeted delivery of apigenin resulted in improved acini preservation, a 37.2% and 33.1% respective reduction in collagen and fibronectin expression compared to mice receiving the free drug, and reduced oxidative stress in the liver. CONCLUSION In summary, we have developed a systematic approach to profile peptide ligands selective for cellular components of complex disease models and demonstrated the biomedical applications of the identified peptides to improve tissue remodeling in the inflamed pancreas.
Collapse
Affiliation(s)
- Jessica Hung
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Rohni Awasthi
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Alexander L Klibanov
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, 22908, USA
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, 22908, USA
- Department of Radiology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Kimberly A Kelly
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, Virginia, 22908, USA
| |
Collapse
|
7
|
Current and emerging roles of adipose tissue in health and disease. Biochem J 2021; 477:3645-3647. [PMID: 33017469 DOI: 10.1042/bcj20200718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/17/2022]
|
8
|
Chemically Defined Xeno- and Serum-Free Cell Culture Medium to Grow Human Adipose Stem Cells. Cells 2021; 10:cells10020466. [PMID: 33671568 PMCID: PMC7926673 DOI: 10.3390/cells10020466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is an abundant source of stem cells. However, liposuction cannot yield cell quantities sufficient for direct applications in regenerative medicine. Therefore, the development of GMP-compliant ex vivo expansion protocols is required to ensure the production of a "cell drug" that is safe, reproducible, and cost-effective. Thus, we developed our own basal defined xeno- and serum-free cell culture medium (UrSuppe), specifically formulated to grow human adipose stem cells (hASCs). With this medium, we can directly culture the stromal vascular fraction (SVF) cells in defined cell culture conditions to obtain hASCs. Cells proliferate while remaining undifferentiated, as shown by Flow Cytometry (FACS), Quantitative Reverse Transcription PCR (RT-qPCR) assays, and their secretion products. Using the UrSuppe cell culture medium, maximum cell densities between 0.51 and 0.80 × 105 cells/cm2 (=2.55-4.00 × 105 cells/mL) were obtained. As the expansion of hASCs represents only the first step in a cell therapeutic protocol or further basic research studies, we formulated two chemically defined media to differentiate the expanded hASCs in white or beige/brown adipocytes. These new media could help translate research projects into the clinical application of hASCs and study ex vivo the biology in healthy and dysfunctional states of adipocytes and their precursors. Following the cell culture system developers' practice and obvious reasons related to the formulas' patentability, the defined media's composition will not be disclosed in this study.
Collapse
|
9
|
Karlina R, Lutter D, Miok V, Fischer D, Altun I, Schöttl T, Schorpp K, Israel A, Cero C, Johnson JW, Kapser-Fischer I, Böttcher A, Keipert S, Feuchtinger A, Graf E, Strom T, Walch A, Lickert H, Walzthoeni T, Heinig M, Theis FJ, García-Cáceres C, Cypess AM, Ussar S. Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice. Life Sci Alliance 2020; 4:4/1/e202000924. [PMID: 33257475 PMCID: PMC7723269 DOI: 10.26508/lsa.202000924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022] Open
Abstract
Using a number of cell biological and statistical methods we identify and characterize EIF5, TCF25 and BIN1 as markers for individual brown adipocyte subtypes in C57BL/6J mice. Brown adipose tissue (BAT) plays an important role in the regulation of body weight and glucose homeostasis. Although increasing evidence supports white adipose tissue heterogeneity, little is known about heterogeneity within murine BAT. Recently, UCP1 high and low expressing brown adipocytes were identified, but a developmental origin of these subtypes has not been studied. To obtain more insights into brown preadipocyte heterogeneity, we use single-cell RNA sequencing of the BAT stromal vascular fraction of C57/BL6 mice and characterize brown preadipocyte and adipocyte clonal cell lines. Statistical analysis of gene expression profiles from brown preadipocyte and adipocyte clones identify markers distinguishing brown adipocyte subtypes. We confirm the presence of distinct brown adipocyte populations in vivo using the markers EIF5, TCF25, and BIN1. We also demonstrate that loss of Bin1 enhances UCP1 expression and mitochondrial respiration, suggesting that BIN1 marks dormant brown adipocytes. The existence of multiple brown adipocyte subtypes suggests distinct functional properties of BAT depending on its cellular composition, with potentially distinct functions in thermogenesis and the regulation of whole body energy homeostasis.
Collapse
Affiliation(s)
- Ruth Karlina
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dominik Lutter
- German Center for Diabetes Research (DZD), Neuherberg, Germany .,Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Viktorian Miok
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - David Fischer
- Institute for Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Irem Altun
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Theresa Schöttl
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Israel
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cheryl Cero
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - James W Johnson
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - Ingrid Kapser-Fischer
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Susanne Keipert
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Graf
- Institute for Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim Strom
- Institute for Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Thomas Walzthoeni
- Institute for Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Matthias Heinig
- Institute for Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Fabian J Theis
- Institute for Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.,Department of Mathematics and School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Aaron M Cypess
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - Siegfried Ussar
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany .,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|