1
|
Heidarian Y, Fasteen TD, Mungcal L, Buddika K, Mahmoudzadeh NH, Nemkov T, D'Alessandro A, Tennessen JM. Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster. Mol Metab 2025; 93:102106. [PMID: 39894213 PMCID: PMC11869853 DOI: 10.1016/j.molmet.2025.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVES The rapid growth that occurs during Drosophila larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth. To date, the only factor known to activate the larval glycolytic program is the Drosophila Estrogen-Related Receptor (dERR). However, dERR is dynamically regulated during the onset of this metabolic switch, indicating that other factors must be involved. Here we examine the possibility that the Drosophila ortholog of Hypoxia inducible factor 1α (Hif1α) is also required to activate the larval glycolytic program. METHODS CRISPR/Cas9 was used to generate new loss-of-function alleles in the Drosophila gene similar (sima), which encodes the sole fly ortholog of Hif1α. The resulting mutant strains were analyzed using a combination of metabolomics and RNAseq for defects in carbohydrate metabolism. RESULTS Our studies reveal that sima mutants fail to activate aerobic glycolysis and die during larval development with metabolic phenotypes that mimic those displayed by dERR mutants. Moreover, we demonstrate that dERR and Sima/Hif1α protein accumulation is mutually dependent, as loss of either transcription factor results in decreased abundance of the other protein. CONCLUSIONS These findings demonstrate that Sima/HIF1α is required during embryogenesis to coordinately up-regulate carbohydrate metabolism in preparation for larval growth. Notably, our study also reveals that the Sima/HIF1α-dependent gene expression program shares considerable overlap with that observed in dERR mutant, suggesting that Sima/HIF1α and dERR cooperatively regulate embryonic and larval glycolytic gene expression.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Liam Mungcal
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Heidarian Y, Fasteen TD, Mungcal L, Buddika K, Mahmoudzadeh NH, Nemkov T, D'Alessandro A, Tennessen JM. Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631819. [PMID: 39829828 PMCID: PMC11741260 DOI: 10.1101/2025.01.07.631819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The rapid growth that occurs during Drosophila larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth. To date, the only factor known to activate the larval glycolytic program is the Drosophila Estrogen-Related Receptor (dERR). However, dERR is dynamically regulated during the onset of this metabolic switch, indicating that other factors must be involved. Here we discover that Sima, the Drosophila ortholog of Hif1α, is also essential for establishing the larval glycolytic program. Using a multi-omics approach, we demonstrate that sima mutants fail to properly activate aerobic glycolysis and die during larval development with metabolic defects that phenocopy dERR mutants. Moreover, we demonstrate that dERR and Sima/Hif1α protein accumulation is mutually dependent, as loss of either transcription factor results in decreased abundance of the other protein. Considering that the mammalian homologs of ERR and Hif1α also cooperatively regulate aerobic glycolysis in cancer cells, our findings establish the fly as a powerful genetic model for studying the interaction between these two key metabolic regulators.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Liam Mungcal
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Affiliate Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
3
|
Wang X, Yang Z, Peng C, Yu H, Cui C, Xing Q, Hu J, Bao Z, Huang X. Comparative Analyses of Dynamic Transcriptome Profile of Heart Highlight the Key Response Genes for Heat Stress in Zhikong Scallop Chlamys farreri. Antioxidants (Basel) 2024; 13:1217. [PMID: 39456470 PMCID: PMC11505284 DOI: 10.3390/antiox13101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress resulting from global climate change has been demonstrated to adversely affect growth, development, and reproduction of marine organisms. The Zhikong scallop (Chlamys farreri), an important economical mollusk in China, faces increasing risks of summer mortality due to the prolonged heat waves. The heart, responsible for transporting gas and nutrients, is vital in maintaining homeostasis and physiological status in response to environmental changes. In this study, the effect of heat stress on the cardiac function of C. farreri was investigated during the continuous 30-day heat stress at 27 °C. The results showed the heart rate of scallops increased due to stress in the initial phase of high temperature exposure, peaking at 12 h, and then gradually recovered, indicating an acclimatization at the end of the experiment. In addition, the levels of catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) exhibited an initial increase followed by recovery in response to heat stress. Furthermore, transcriptome analysis of the heart identified 3541 differentially expressed genes (DEGs) in response to heat stress. Subsequent GO and KEGG enrichment analysis showed that these genes were primarily related to signal transduction and oxidative stress, such as the phosphatidylinositol signaling system, regulation of actin cytoskeleton, MAPK signaling pathway, FoxO signaling pathway, etc. In addition, two modules were identified as significant responsive modules according to the weighted gene co-expression network analysis (WGCNA). The upregulation of key enzymes within the base excision repair and gap junction pathways indicated that the heart of C. farreri under heat stress enhanced DNA repair and maintained cellular integrity. In addition, the variable expression of essential signaling molecules and cytoskeletal regulators suggested that the heart of C. farreri modulated cardiomyocyte contraction, intracellular signaling, and heart rate through complex regulation of phosphorylation and calcium dynamics in response to heat stress. Collectively, this study enhances our understanding of cardiac function and provides novel evidence for unraveling the mechanism underlying the thermal response in mollusks.
Collapse
Affiliation(s)
- Xinyuan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Marchetti M, Ronda L, Cozzi M, Bettati S, Bruno S. Genetically Encoded Biosensors for the Fluorescence Detection of O 2 and Reactive O 2 Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:8517. [PMID: 37896609 PMCID: PMC10611200 DOI: 10.3390/s23208517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The intracellular concentrations of oxygen and reactive oxygen species (ROS) in living cells represent critical information for investigating physiological and pathological conditions. Real-time measurement often relies on genetically encoded proteins that are responsive to fluctuations in either oxygen or ROS concentrations. The direct binding or chemical reactions that occur in their presence either directly alter the fluorescence properties of the binding protein or alter the fluorescence properties of fusion partners, mostly consisting of variants of the green fluorescent protein. Oxygen sensing takes advantage of several mechanisms, including (i) the oxygen-dependent hydroxylation of a domain of the hypoxia-inducible factor-1, which, in turn, promotes its cellular degradation along with fluorescent fusion partners; (ii) the naturally oxygen-dependent maturation of the fluorophore of green fluorescent protein variants; and (iii) direct oxygen binding by proteins, including heme proteins, expressed in fusion with fluorescent partners, resulting in changes in fluorescence due to conformational alterations or fluorescence resonance energy transfer. ROS encompass a group of highly reactive chemicals that can interconvert through various chemical reactions within biological systems, posing challenges for their selective detection through genetically encoded sensors. However, their general reactivity, and particularly that of the relatively stable oxygen peroxide, can be exploited for ROS sensing through different mechanisms, including (i) the ROS-induced formation of disulfide bonds in engineered fluorescent proteins or fusion partners of fluorescent proteins, ultimately leading to fluorescence changes; and (ii) conformational changes of naturally occurring ROS-sensing domains, affecting the fluorescence properties of fusion partners. In this review, we will offer an overview of these genetically encoded biosensors.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Monica Cozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
5
|
Shaposhnikov MV, Gorbunova AA, Zemskaya NV, Ulyasheva NS, Pakshina NR, Yakovleva DV, Moskalev A. Simultaneous activation of the hydrogen sulfide biosynthesis genes (CBS and CSE) induces sex-specific geroprotective effects in Drosophila melanogaster. Biogerontology 2023; 24:275-292. [PMID: 36662374 DOI: 10.1007/s10522-023-10017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalya R Pakshina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991.
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
6
|
Meng J, Wang T, Li B, Li L, Zhang G. Oxygen sensing and transcriptional regulation under hypoxia exposure in the mollusk Crassostrea gigas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158557. [PMID: 36084780 DOI: 10.1016/j.scitotenv.2022.158557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia caused by global climate change and anthropogenic pollution has exposed marine species to increasing stress. Oxygen sensing mediated by prolyl hydroxylase (PHD) is regarded as the first line of defense under hypoxia exposure; however, the function of PHD in marine molluscan species remains unclear. In this study, we identified two PHD2 gene in the oyster Crassostrea gigas using phylogenetic tree analysis with 36 species, namely, CgPHD2A/B. Under hypoxia, the mRNA and protein expression of CgPHD2A displayed a time-dependent pattern, revealing a critical role in the response to hypoxia-induced stress. Observation of interactions between CgPHD2 and CgHIF-1α proteins under normoxia using co-immunoprecipitation and GST-pull down experiments showed that the β2β3 loop in CgPHD2A hydroxylates CgHIF-1α to promote its ubiquitination with CgVHL. With the protein recombination and site-directed mutagenesis, the hydroxylation domain and two target proline loci (P404A and 504A) in CgPHDs and CgHIF-1α were identified respectively. Moreover, the electrophoretic mobility-shift assay (EMSA) and luciferase double reporter gene assay revelaed that CgHIF-1α could regulate CgPHD2A expression through binding with the hypoxia-responsive element in the promoter region (320 bp upstream), forming a feedback loop. However, protein structure analysis indicated that six extra amino acids formed an α-helix in the β2β3 loop of CgPHD2B, inhibiting its activity. Overall, this study revealed that two CgPHD2 proteins have evolved, which encode enzymes with different activities in oyster, potentially representing a specific hypoxia-sensing mechanism in mollusks. Illustrating the functional diversity of CgPHDs could help to assess the physiological status of oyster and guide their aquaculture.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China
| | - Ting Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China
| | - Busu Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.
| |
Collapse
|
7
|
Aalto A, Martínez‐Chacón G, Kietz C, Tsyganova N, Kreutzer J, Kallio P, Broemer M, Meinander A. M1-linked ubiquitination facilitates NF-κB activation and survival during sterile inflammation. FEBS J 2022; 289:5180-5197. [PMID: 35263507 PMCID: PMC9543601 DOI: 10.1111/febs.16425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 01/03/2023]
Abstract
Methionine 1 (M1)-linked ubiquitination plays a key role in the regulation of inflammatory nuclear factor-κB (NF-κB) signalling and is important for clearance of pathogen infection in Drosophila melanogaster. M1-linked ubiquitin (M1-Ub) chains are assembled by the linear ubiquitin E3 ligase (LUBEL) in flies. Here, we have studied the role of LUBEL in sterile inflammation induced by different types of cellular stresses. We have found that the LUBEL catalyses formation of M1-Ub chains in response to hypoxic, oxidative and mechanical stress conditions. LUBEL is shown to be important for flies to survive low oxygen conditions and paraquat-induced oxidative stress. This protective action seems to be driven by stress-induced activation of the NF-κB transcription factor Relish via the immune deficiency (Imd) pathway. In addition to LUBEL, the intracellular mediators of Relish activation, including the transforming growth factor activating kinase 1 (Tak1), Drosophila inhibitor of apoptosis (IAP) Diap2, the IκB kinase γ (IKKγ) Kenny and the initiator caspase Death-related ced-3/Nedd2-like protein (Dredd), but not the membrane receptor peptidoglycan recognition protein (PGRP)-LC, are shown to be required for sterile inflammatory response and survival. Finally, we showed that the stress-induced upregulation of M1-Ub chains in response to hypoxia, oxidative and mechanical stress is also induced in mammalian cells and protects from stress-induced cell death. Taken together, our results suggest that M1-Ub chains are important for NF-κB signalling in inflammation induced by stress conditions often observed in chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Anna Aalto
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | | | - Christa Kietz
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | - Nadezhda Tsyganova
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | - Joose Kreutzer
- Faculty of Medicine and Health TechnologyBioMediTechTampere UniversityFinland
| | - Pasi Kallio
- Faculty of Medicine and Health TechnologyBioMediTechTampere UniversityFinland
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Annika Meinander
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
8
|
Song S, Fu Z, Guan R, Zhao J, Yang P, Li Y, Yin H, Lai Y, Gong G, Zhao S, Yu J, Peng X, He Y, Luo Y, Zhong N, Su J. Intracellular hydroxyproline imprinting following resolution of bleomycin-induced pulmonary fibrosis. Eur Respir J 2021; 59:13993003.00864-2021. [PMID: 34561295 PMCID: PMC9068975 DOI: 10.1183/13993003.00864-2021] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/14/2021] [Indexed: 11/05/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with few treatment options. The poor success in developing anti-IPF strategies have impelled researchers to reconsider the importance of choice for animal model and assessment methodologies. Currently, it is still not settled whether the bleomycin-induced lung fibrosis mouse model finally returns to resolution.This study aimed to follow the dynamic fibrotic features of BLM (Bleomycin)-treated mouse lungs with extended durations through a combination of the latest technologies (micro-CT imaging and histological detection of degraded collagens) with traditional methods. In addition, we also applied immunohistochemistry to explore the distribution of all hydroxyproline-containing molecules.As determined by classical biochemical method, total lung hydroxyproline contents reached peak at 4-week after bleomycin injury and maintained a steady high level thereafter until the end of the experiments (16-week). This result seemed to partially contradict with the changes of other fibrosis evaluation parameters, which indicated a gradual degradation of collagens and a recovery of lung aeration post the fibrosis peak. This inconsistency was well reconciled by our data from immunostaining against hydroxyproline and a fluorescent peptide staining against degraded collagen, together showing large amounts of hydroxyproline-rich degraded collagen fragments detained and enriched within the intracellular regions at 10- or 16-week, rather than at 4-week post the BLM-treatment. Hence, our present data not only offer respiratory researchers a new perspective towards the resolution nature of mouse lung fibrosis, but also remind them to be cautious while using hydroxyproline content assay to evaluate the severity of fibrosis.
Collapse
Affiliation(s)
- Shengren Song
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China.,State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,These authors contributed equally to this work
| | - Zhenli Fu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,These authors contributed equally to this work
| | - Ruijuan Guan
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, China.,These authors contributed equally to this work
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,These authors contributed equally to this work
| | - Penghui Yang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,These authors contributed equally to this work
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hang Yin
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunxin Lai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gencheng Gong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Simin Zhao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiangtian Yu
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, China
| | - Xiaomin Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ying He
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumei Luo
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China .,State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin Su
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China .,Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Posthypoxic behavioral impairment and mortality of Drosophila melanogaster are associated with high temperatures, enhanced predeath activity and oxidative stress. Exp Mol Med 2021; 53:264-280. [PMID: 33564101 PMCID: PMC8080651 DOI: 10.1038/s12276-021-00565-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
Hypoxia is an underlying pathophysiological condition of a variety of devastating diseases, including acute ischemic stroke (AIS). We are faced with limited therapeutic options for AIS patients, and even after successful restoration of cerebral blood flow, the poststroke mortality is still high. More basic research is needed to explain mortality after reperfusion and to develop adjunct neuroprotective therapies. Drosophila melanogaster (D.m.) is a suitable model to analyze hypoxia; however, little is known about the impacts of hypoxia and especially of the subsequent reperfusion injury on the behavior and survival of D.m. To address this knowledge gap, we subjected two wild-type D.m. strains (Canton-S and Oregon-R) to severe hypoxia (<0.3% O2) under standardized environmental conditions in a well-constructed hypoxia chamber. During posthypoxic reperfusion (21% O2), we assessed fly activity (evoked and spontaneous) and analyzed molecular characteristics (oxidative stress marker abundance, reactive oxygen species (ROS) production, and metabolic activity) at various timepoints during reperfusion. First, we established standard conditions to induce hypoxia in D.m. to guarantee stable and reproducible experiments. Exposure to severe hypoxia under defined conditions impaired the climbing ability and reduced the overall activity of both D.m. strains. Furthermore, a majority of the flies died during the early reperfusion phase (up to 24 h). Interestingly, the flies that died early exhibited elevated activity before death compared to that of the flies that survived the entire reperfusion period. Additionally, we detected increases in ROS and stress marker (Catalase, Superoxide Dismutase and Heat Shock Protein 70) levels as well as reductions in metabolic activity in the reperfusion phase. Finally, we found that changes in environmental conditions impacted the mortality rate. In particular, decreasing the temperature during hypoxia or the reperfusion phase displayed a protective effect. In conclusion, our data suggest that reperfusion-dependent death might be associated with elevated temperatures, predeath activity, and oxidative stress. A new fruit fly model of reperfusion injury, the tissue damage commonly seen in stroke that occurs when an organ is starved of oxygen and then exposed to oxygen again, opens new possibilities for understanding stroke pathology. Pardes Habib from Aachen University, Germany, and colleagues subjected flies to extremely low oxygen levels for up to six hours before returning them to a normal oxygen environment. Most flies died after re-exposure to oxygen, but not before showing a ‘last gasp’ burst of physical activity compared to individuals that survived the treatment. The return to normal oxygen levels led to an increase in signs of cellular stress and reduced metabolic activity, especially among those flies kept at warmer temperatures. The findings lay the groundwork for better understanding of reperfusion injury and how to treat it.
Collapse
|
10
|
Marden JH, Langford EA, Robertson MA, Fescemyer HW. Alleles in metabolic and oxygen-sensing genes are associated with antagonistic pleiotropic effects on life history traits and population fitness in an ecological model insect. Evolution 2020; 75:116-129. [PMID: 32895932 DOI: 10.1111/evo.14095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023]
Abstract
Genes with opposing effects on fitness at different life stages are the mechanistic basis for evolutionary theories of aging and life history. Examples come from studies of mutations in model organisms, but there is little knowledge of genetic bases of life history tradeoffs in natural populations. Here, we test the hypothesis that alleles affecting oxygen sensing in Glanville fritillary butterflies have opposing effects on larval versus adult fitness-related traits. Intermediate-frequency alleles in Succinate dehydrogenase d, and to a lesser extent Hypoxia inducible factor 1α, are associated in larvae with variation in metabolic rate and activation of the hypoxia inducible factor (HIF) pathway, which affects tracheal development and delivery of oxygen to adult flight muscles. A dominant Sdhd allele is likely to cause antagonistic pleiotropy for fitness through its opposing effects on larval metabolic and growth rate versus adult flight and dispersal, and may have additional effects arising from sensitivity to low-iron host plants. Prior results in Glanville fritillaries indicate that fitness of alleles in Sdhd and another antagonistically pleiotropic metabolic gene, Phosphoglucose isomerase, depend strongly on the size and distribution of host plant patches. Hence, these intermediate-frequency alleles are involved in ecoevolutionary dynamics involving life history tradeoffs.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University.,Huck Institutes of the Life Sciences, Pennsylvania State University
| | | | | | | |
Collapse
|
11
|
Bragança CE, Kraut DA. Mode of targeting to the proteasome determines GFP fate. J Biol Chem 2020; 295:15892-15901. [PMID: 32913119 DOI: 10.1074/jbc.ra120.015235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin-proteasome system is the canonical pathway for protein degradation in eukaryotic cells. GFP is frequently used as a reporter in proteasomal degradation assays. However, there are multiple variants of GFP in use, and these variants have different intrinsic stabilities. Further, there are multiple means by which substrates are targeted to the proteasome, and these differences could also affect the proteasome's ability to unfold and degrade substrates. Herein we investigate how the fate of GFP variants of differing intrinsic stabilities is determined by the mode of targeting to the proteasome. We compared two targeting systems: linear Ub4 degrons and the UBL domain from yeast Rad23, both of which are commonly used in degradation experiments. Surprisingly, the UBL degron allows for degradation of the most stable sGFP-containing substrates, whereas the Ub4 degron does not. Destabilizing the GFP by circular permutation allows degradation with either targeting signal, indicating that domain stability and mode of targeting combine to determine substrate fate. Difficult-to-unfold substrates are released and re-engaged multiple times, with removal of the degradation initiation region providing an alternative clipping pathway that precludes unfolding and degradation; the UBL degron favors degradation of even difficult-to-unfold substrates, whereas the Ub4 degron favors clipping. Finally, we show that the ubiquitin receptor Rpn13 is primarily responsible for the enhanced ability of the proteasome to degrade stable UBL-tagged substrates. Our results indicate that the choice of targeting method and reporter protein are critical to the design of protein degradation experiments.
Collapse
Affiliation(s)
| | - Daniel Adam Kraut
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, USA.
| |
Collapse
|
12
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
13
|
Tauc M. [A new paradigm in the treatment of ischemia. Learning from drosophila]. Med Sci (Paris) 2020; 36:147-152. [PMID: 32129751 DOI: 10.1051/medsci/2020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ischemia is one of the major concerns of clinicians who are constantly confronted with it, both in surgical and pathological aspects. The consequences of ischemic stress are dramatic and can lead to organic, motor or cognitive disabilities. Currently, there is no identified specific molecular target whose targeting could be beneficial in this area. The drosophila melanogaster fly, used as a model animal, has made it possible to highlight a major advance by allowing the identification of a completely new pharmacological target whose inhibition significantly increases tolerance to hypoxia. Applied to a preclinical model of renal transplantation, this new approach significantly improves the functional recovery of the graft in the long term. This mini-synthesis retraces the steps that made it possible to transfer to higher mammals a concept highlighted in Drosophila that clearly shows, beyond basic research, the contribution that a model organism can make to the clinic.
Collapse
Affiliation(s)
- Michel Tauc
- UMR 6097 Université Côte d'Azur, LP2M faculté de Médecine, 28 avenue de Valombrose, 06107 Nice Cedex France
| |
Collapse
|
14
|
Chen PY, Tsai YW, Cheng YJ, Giangrande A, Chien CT. Glial response to hypoxia in mutants of NPAS1/3 homolog Trachealess through Wg signaling to modulate synaptic bouton organization. PLoS Genet 2019; 15:e1007980. [PMID: 31381576 PMCID: PMC6695205 DOI: 10.1371/journal.pgen.1007980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/15/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Synaptic structure and activity are sensitive to environmental alterations. Modulation of synaptic morphology and function is often induced by signals from glia. However, the process by which glia mediate synaptic responses to environmental perturbations such as hypoxia remains unknown. Here, we report that, in the mutant for Trachealess (Trh), the Drosophila homolog for NPAS1 and NPAS3, smaller synaptic boutons form clusters named satellite boutons appear at larval neuromuscular junctions (NMJs), which is induced by the reduction of internal oxygen levels due to defective tracheal branches. Thus, the satellite bouton phenotype in the trh mutant is suppressed by hyperoxia, and recapitulated in wild-type larvae raised under hypoxia. We further show that hypoxia-inducible factor (HIF)-1α/Similar (Sima) is critical in mediating hypoxia-induced satellite bouton formation. Sima upregulates the level of the Wnt/Wingless (Wg) signal in glia, leading to reorganized microtubule structures within presynaptic sites. Finally, hypoxia-induced satellite boutons maintain normal synaptic transmission at the NMJs, which is crucial for coordinated larval locomotion.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Cheng-Ting Chien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
The multifaceted contribution of α-ketoglutarate to tumor progression: An opportunity to exploit? Semin Cell Dev Biol 2019; 98:26-33. [PMID: 31175937 DOI: 10.1016/j.semcdb.2019.05.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/25/2023]
Abstract
The thriving field that constitutes cancer metabolism has unveiled some groundbreaking facts over the past two decades, at the heart of which is the TCA cycle and its intermediates. As such and besides its metabolic role, α-ketoglutarate was shown to withstand a wide range of physiological reactions from protection against oxidative stress, collagen and bone maintenance to development and immunity. Most importantly, it constitutes the rate-limiting substrate of 2-oxoglutarate-dependent dioxygenases family enzymes, which are involved in hypoxia sensing and in the shaping of cellular epigenetic landscape, two major drivers of oncogenic transformation. Based on literature reports, we hereby review the benefits of this metabolite as a possible novel adjuvant therapeutic opportunity to target tumor progression. This article is part of the special issue "Mitochondrial metabolic alterations in cancer cells and related therapeutic targets".
Collapse
|
16
|
Hampton-Smith RJ, Davenport BA, Nagarajan Y, Peet DJ. The conservation and functionality of the oxygen-sensing enzyme Factor Inhibiting HIF (FIH) in non-vertebrates. PLoS One 2019; 14:e0216134. [PMID: 31034531 PMCID: PMC6488082 DOI: 10.1371/journal.pone.0216134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
The asparaginyl hydroxylase, Factor Inhibiting HIF (FIH), is a cellular dioxygenase. Originally identified as oxygen sensor in the cellular response to hypoxia, where FIH acts as a repressor of the hypoxia inducible transcription factor alpha (HIF-α) proteins through asparaginyl hydroxylation, FIH also hydroxylates many proteins that contain ankyrin repeat domains (ARDs). Given FIH's promiscuity and the unclear functional effects of ARD hydroxylation, the biological relevance of HIF-α and ARD hydroxylation remains uncertain. Here, we have employed evolutionary and enzymatic analyses of FIH, and both HIF-α and ARD-containing substrates, in a broad range of metazoa to better understand their conservation and functional importance. Utilising Tribolium castaneum and Acropora millepora, we provide evidence that FIH from both species are able to hydroxylate HIF-α proteins, supporting conservation of this function beyond vertebrates. We further demonstrate that T. castaneum and A. millepora FIH homologs can also hydroxylate specific ARD proteins. Significantly, FIH is also conserved in several species with inefficiently-targeted or absent HIF, supporting the hypothesis of important HIF-independent functions for FIH. Overall, these data show that while oxygen-dependent HIF-α hydroxylation by FIH is highly conserved in many species, HIF-independent roles for FIH have evolved in others.
Collapse
Affiliation(s)
| | - Briony A. Davenport
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yagnesh Nagarajan
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
17
|
Arginine refolds, stabilizes, and restores function of mutant pVHL proteins in animal model of the VHL cancer syndrome. Oncogene 2018; 38:1038-1049. [PMID: 30194449 DOI: 10.1038/s41388-018-0491-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/09/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Abstract
The von Hippel-Lindau (VHL) syndrome is a rare inherited cancer, caused by mutations in the VHL gene, many of which render the VHL protein (pVHL) unstable. pVHL is a tumor-suppressor protein implicated in a variety of cellular processes, most notably in response to changes in oxygen availability, due to its role as part of an E3-ligase complex which targets the hypoxia-inducible factor (HIF) for degradation. Previously we reported, using in silico and in vitro analyses, that common oncogenic VHL mutations render pVHL less stable than the wild-type protein, distort its core domain and as a result reduce the ability of the protein to bind its target HIF-1α. Among various chemical chaperones tested, arginine was the most effective in refolding mutant of pVHL. Here we examined the consequences of administering L- or D-arginine to a Drosophila VHL model and to human renal carcinoma cells, both expressing misfolded versions of human pVHL. Arginine treatment increased pVHL solubility in both models and increased the half-life of the mutant pVHL proteins in the cell culture. In both models, L- as well as D-arginine enhanced the ability of wild-type pVHL and certain misfolded mutant versions of pVHL to bind ODD, the HIF-derived target peptide, reflecting restoration of pVHL function. Moreover, continuous feeding of Drosophila expressing misfolded versions of pVHL either L- or D-arginine rich diet rescued their lethal phenotype. Collectively, these in vivo results suggest that arginine supplementation should be examined as a potential novel treatment for VHL cancer syndrome.
Collapse
|
18
|
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 2018; 27:3040-3054. [PMID: 29920826 DOI: 10.1111/mec.14769] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
Abstract
Heat-shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat-shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat-shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in "omic" quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat-shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade-offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Martin E Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Cui S, Wang L, Qiu J, Liu Z, Geng X. Comparative metabolomics analysis of Callosobruchus chinensis larvae under hypoxia, hypoxia/hypercapnia and normoxia. PEST MANAGEMENT SCIENCE 2017; 73:1267-1276. [PMID: 27718517 DOI: 10.1002/ps.4455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Insect tolerance to low oxygen (hypoxia) and high carbon dioxide (hypercapnia) is critical for insect control. On the basis of bioassay, metabolism profiles were built to investigate adaptive mechanisms in bean weevil under hypoxia (2% O2 ), hypoxia/hypercapnia (2% O2 + 18% CO2 ) and normoxia (control, 20% O2 + 80% N2 ) using gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS). RESULTS The growth and development of bean weevils were significantly suppressed by the two hypoxia conditions; hypercapnia enhanced the mortality, but after 24 days of exposure, the surviving insects emerged as adults earlier than those under hypoxia only. Metabolism profiles also showed striking differences in metabolites among the treatment and control groups, both quantitatively and qualitatively. Pairwise comparisons of the three groups showed that 61 metabolites changed significantly, 40 in the hypoxia group and 37 in the hypoxia/hypercapnia group relative to the control group, while only 16 were shared equally by the hypoxia and hypoxia/hypercapnia groups. Increased metabolites were mainly carbohydrates, amino acids and organic acids, while free fatty acids were decreased. Furthermore, the changes were strengthened by the addition of hypercapnia, but excluding free fatty acids. CONCLUSION The findings show that bean weevil has high tolerance to hypoxia or even hypoxia/hypercapnia at biologically achievable levels and provide more direct evidence for stored product insect mechanism regulation under hypoxia stress, especially free fatty acid regulation by hypercapnia but not by hypoxia. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sufen Cui
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangping Qiu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Liu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Geng
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Misra T, Baccino-Calace M, Meyenhofer F, Rodriguez-Crespo D, Akarsu H, Armenta-Calderón R, Gorr TA, Frei C, Cantera R, Egger B, Luschnig S. A genetically encoded biosensor for visualising hypoxia responses in vivo. Biol Open 2017; 6:296-304. [PMID: 28011628 PMCID: PMC5312090 DOI: 10.1242/bio.018226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response. Summary: This study describes a biosensor for visualising the hypoxic state of cells in vivo. They demonstrate that the Drosophila larval brain contains distinct hypoxic microenvironments that correlate with local airway supply.
Collapse
Affiliation(s)
- Tvisha Misra
- Institute of Molecular Life Sciences and Ph.D. program in Molecular Life Sciences, University of Zurich, Zurich CH-8057, Switzerland
| | | | - Felix Meyenhofer
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | | | - Hatice Akarsu
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | | | - Thomas A Gorr
- Institute of Veterinary Physiology, University of Zurich, Zurich CH-8057, Switzerland
| | - Christian Frei
- Institute of Cell Biology, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland
| | - Rafael Cantera
- Developmental Neurobiology, IIBCE, Montevideo 116 00, Uruguay.,Zoology Department, Stockholm University, Stockholm 106 91, Sweden
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Stefan Luschnig
- Institute of Molecular Life Sciences and Ph.D. program in Molecular Life Sciences, University of Zurich, Zurich CH-8057, Switzerland .,Institute of Neurobiology, University of Münster, Badestrasse 9, Münster D-48149, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster D-48149, Germany
| |
Collapse
|
21
|
Abstract
We previously demonstrated that, while changes in temperature produce dramatic shifts in the time elapsed during
Drosophila melanogaster embryogenesis, the relative timing of events within embryogenesis does not change. However, it was unclear if this uniform scaling is an intrinsic property of developing embryos, or if it is specific to thermal fluctuations. To investigate this, here we characterize the embryonic response to changes in oxygen concentration, which also impact developmental rate, using time-lapse imaging, and find it fundamentally different from the temperature response. Most notably, changes in oxygen levels drive developmental heterochrony, with the timing of several morphological processes showing distinct scaling behaviors. Gut formation is severely slowed by decreases in oxygen, while head involution and syncytial development are less impacted than the rest of development, and the order of several developmental landmarks is inverted at different oxygen levels. These data reveal that the uniform scaling seen with changes in temperature is not a trivial consequence of adjusting developmental rate. The developmental rate changes produced by changing oxygen concentrations dwarf those induced by temperature, and greatly impact survival. While extreme temperatures increase early embryo mortality, mild hypoxia increases arrest and death during mid-embryogenesis and mild hyperoxia increases survival over normoxia.
Collapse
Affiliation(s)
- Steven G Kuntz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA ; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA ; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA ; Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
22
|
Bandarra D, Biddlestone J, Mudie S, Müller HAJ, Rocha S. HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals. Dis Model Mech 2014; 8:169-81. [PMID: 25510503 PMCID: PMC4314782 DOI: 10.1242/dmm.017285] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia and inflammation are intimately linked. It is known that nuclear factor κB (NF-κB) regulates the hypoxia-inducible factor (HIF) system, but little is known about how HIF regulates NF-κB. Here, we show that HIF-1α represses NF-κB-dependent gene expression. HIF-1α depletion results in increased NF-κB transcriptional activity both in mammalian cells and in the model organism Drosophila melanogaster. HIF-1α depletion enhances the NF-κB response, and this required not only the TAK-IKK complex, but also CDK6. Loss of HIF-1α results in an increased angiogenic response in mammalian cancer cells and increased mortality in Drosophila following infection. These results indicate that HIF-1α is required to restrain the NF-κB response, and thus prevents excessive and damaging pro-inflammatory responses.
Collapse
Affiliation(s)
- Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - John Biddlestone
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - H-Arno J Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK.
| |
Collapse
|
23
|
Shmueli MD, Schnaider L, Herzog G, Gazit E, Segal D. Computational and experimental characterization of dVHL establish a Drosophila model of VHL syndrome. PLoS One 2014; 9:e109864. [PMID: 25310726 PMCID: PMC4195687 DOI: 10.1371/journal.pone.0109864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/30/2014] [Indexed: 01/13/2023] Open
Abstract
The von Hippel-Lindau (VHL) cancer syndrome is associated with mutations in the VHL gene. The pVHL protein is involved in response to changes in oxygen availability as part of an E3-ligase that targets the Hypoxia-Inducible Factor for degradation. pVHL has a molten globule configuration with marginal thermodynamic stability. The cancer-associated mutations further destabilize it. The Drosophila homolog, dVHL, has relatively low sequence similarity to pVHL, and is also involved in regulating HIF1-α. Using in silico, in vitro and in vivo approaches we demonstrate high similarity between the structure and function of dVHL and pVHL. These proteins have a similar fold, secondary and tertiary structures, as well as thermodynamic stability. Key functional residues in dVHL are evolutionary conserved. This structural homology underlies functional similarity of both proteins, evident by their ability to bind their reciprocal partner proteins, and by the observation that transgenic pVHL can fully maintain normal dVHL-HIF1-α downstream pathways in flies. This novel transgenic Drosophila model is thus useful for studying the VHL syndrome, and for testing drug candidates to treat it.
Collapse
Affiliation(s)
- Merav D. Shmueli
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gal Herzog
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
24
|
Marden JH. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection. Mol Ecol 2013; 22:5743-64. [PMID: 24106889 DOI: 10.1111/mec.12534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 01/01/2023]
Abstract
Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
25
|
Speer RE, Karuppagounder SS, Basso M, Sleiman SF, Kumar A, Brand D, Smirnova N, Gazaryan I, Khim SJ, Ratan RR. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators: From ferroptosis to stroke. Free Radic Biol Med 2013; 62:26-36. [PMID: 23376032 PMCID: PMC4327984 DOI: 10.1016/j.freeradbiomed.2013.01.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 01/12/2023]
Abstract
Neurologic conditions including stroke, Alzheimer disease, Parkinson disease, and Huntington disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia-inducible factor (HIF)-1α mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway is neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adaptation in detail and provide perspective on which targets within this pathway seem to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases.
Collapse
Affiliation(s)
- Rachel E Speer
- Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Saravanan S Karuppagounder
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Manuela Basso
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Sama F Sleiman
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Amit Kumar
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - David Brand
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Natalya Smirnova
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Irina Gazaryan
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Soah J Khim
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Rajiv R Ratan
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA; Burke Medical Research Institute, White Plains, NY 10605, USA.
| |
Collapse
|
26
|
Abstract
The response of eukaryotic microbes to low-oxygen (hypoxic) conditions is strongly regulated at the level of transcription. Comparative analysis shows that some of the transcriptional regulators (such as the sterol regulatory element-binding proteins, or SREBPs) are of ancient origin and probably regulate sterol synthesis in most eukaryotic microbes. However, in some fungi SREBPs have been replaced by a zinc-finger transcription factor (Upc2). Nuclear localization of fungal SREBPs is determined by regulated proteolysis, either by site-specific proteases or by an E3 ligase complex and the proteasome. The exact mechanisms of oxygen sensing are not fully characterized but involve responding to low levels of heme and/or sterols and possibly to levels of nitric oxide and reactive oxygen species. Changes in central carbon metabolism (glycolysis and respiration) are a core hypoxic response in some, but not all, fungal species. Adaptation to hypoxia is an important virulence characteristic of pathogenic fungi.
Collapse
Affiliation(s)
- Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
27
|
Mortimer NT, Moberg KH. The archipelago ubiquitin ligase subunit acts in target tissue to restrict tracheal terminal cell branching and hypoxic-induced gene expression. PLoS Genet 2013; 9:e1003314. [PMID: 23459416 PMCID: PMC3573119 DOI: 10.1371/journal.pgen.1003314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/22/2012] [Indexed: 12/20/2022] Open
Abstract
The Drosophila melanogaster gene archipelago (ago) encodes the F-box/WD-repeat protein substrate specificity factor for an SCF (Skp/Cullin/F-box)-type polyubiquitin ligase that inhibits tumor-like growth by targeting proteins for degradation by the proteasome. The Ago protein is expressed widely in the fly embryo and larva and promotes degradation of pro-proliferative proteins in mitotically active cells. However the requirement for Ago in post-mitotic developmental processes remains largely unexplored. Here we show that Ago is an antagonist of the physiologic response to low oxygen (hypoxia). Reducing Ago activity in larval muscle cells elicits enhanced branching of nearby tracheal terminal cells in normoxia. This tracheogenic phenotype shows a genetic dependence on sima, which encodes the HIF-1α subunit of the hypoxia-inducible transcription factor dHIF and its target the FGF ligand branchless (bnl), and is enhanced by depletion of the Drosophila Von Hippel Lindau (dVHL) factor, which is a subunit of an oxygen-dependent ubiquitin ligase that degrades Sima/HIF-1α protein in metazoan cells. Genetic reduction of ago results in constitutive expression of some hypoxia-inducible genes in normoxia, increases the sensitivity of others to mild hypoxic stimulus, and enhances the ability of adult flies to recover from hypoxic stupor. As a molecular correlate to these genetic data, we find that Ago physically associates with Sima and restricts Sima levels in vivo. Collectively, these findings identify Ago as a required element of a circuit that suppresses the tracheogenic activity of larval muscle cells by antagonizing the Sima-mediated transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Nathan T. Mortimer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- ¤ Current address: Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Marden JH, Fescemyer HW, Schilder RJ, Doerfler WR, Vera JC, Wheat CW. GENETIC VARIATION IN HIF SIGNALING UNDERLIES QUANTITATIVE VARIATION IN PHYSIOLOGICAL AND LIFE-HISTORY TRAITS WITHIN LOWLAND BUTTERFLY POPULATIONS. Evolution 2012; 67:1105-15. [DOI: 10.1111/evo.12004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Shingleton AW. The regulation of organ size in Drosophila: physiology, plasticity, patterning and physical force. Organogenesis 2012; 6:76-87. [PMID: 20885854 DOI: 10.4161/org.6.2.10375] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/16/2009] [Accepted: 10/20/2009] [Indexed: 12/19/2022] Open
Abstract
The correct regulation of organ size is a fundamental developmental process, the failure of which can compromise organ function and organismal integrity. Consequently, the mechanisms that regulate organ size have been subject to intense research. This research has highlighted four classes of mechanism that are involved in organ size regulation: physiology, plasticity, patterning and physical force. Nevertheless, how these mechanisms are integrated and converge on the cellular process that regulate organ growth is unknown. One group of animals where this integration is beginning to be achieved is in the insects. Here, I review the different mechanisms that regulate organ size in insects, and describe our current understanding of how these mechanisms interact. The genes and hormones involved are remarkably conserved in all animals, so these studies in insects provide a precedent for future research on organ size regulation in mammals.
Collapse
|
30
|
Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene 2011; 31:2247-57. [PMID: 21996733 DOI: 10.1038/onc.2011.442] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The von Hippel-Lindau tumor suppressor gene (VHL) has attracted intensive interest not only because its mutations predispose carriers to devastating tumors, but also because it is involved in oxygen sensing under physiological conditions. VHL loss-of-function mutations result in organ-specific tumors, such as hemangioblastoma of the central nervous system and renal cell carcinoma, both untreatable with conventional chemotherapies. The VHL protein is best known as an E3 ubiquitin ligase that targets hypoxia-inducible factor-α (HIF-α), but many diverse, non-canonical cellular functions have also been assigned to VHL, mainly based on studies in cell culture systems. As such, although the HIF-dependent role of VHL is critical, the full spectrum of pathophysiological functions of VHL is still unresolved. Such understanding requires careful cross-referencing with physiologically relevant experimental models. Studies in model systems, such as Caenorhabditis elegans, Drosophila, zebrafish and mouse have provided critical in vivo confirmation of the VHL-HIF pathway, and verification of potentially important cellular functions including microtubule stabilization and epithelial morphogenesis. More recently, animal models have also suggested systemic roles of VHL in hematopoiesis, metabolic homeostasis and inflammation. In this review, the studies performed in model organisms will be summarized and placed in context with existing clinical and in vitro data.
Collapse
|
31
|
Dekanty A, Romero NM, Bertolin AP, Thomas MG, Leishman CC, Perez-Perri JI, Boccaccio GL, Wappner P. Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia. PLoS Genet 2010; 6:e1000994. [PMID: 20585616 PMCID: PMC2891703 DOI: 10.1371/journal.pgen.1000994] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/19/2010] [Indexed: 01/08/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF–dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF–related pathologies, including heart attack, cancer, and stroke. Adaptation of cells to low oxygen (hypoxia) is a physiological response related to important diseases, including heart attacks, stroke, cancer, and diabetes. The mechanisms that mediate adaptation to hypoxia in humans are almost identical to those operating in diverse animal species, including mice, worms, and insects. The master regulator of cellular responses to hypoxia is a transcription factor named HIF, which induces a set of genes that mediate adaptation to oxygen starvation. Although it is known that regulation of HIF occurs mainly at the level of protein degradation and transcriptional coactivator recruitment, a comprehensive screen for HIF regulators has not been performed before. In this work, we have conducted an RNAi-based screen of the genome of the fruit fly Drosophila melanogaster, searching for genes that are required for HIF activity. This screen carried out in a cell culture system led to the definition of 30 critical regulators of HIF, most of which have not been associated with hypoxia biology before. The hits of the screen included components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. Our results open the possibility of performing detailed studies on HIF regulation that may lead to novel therapeutic strategies for important human diseases.
Collapse
Affiliation(s)
- Andrés Dekanty
- Instituto Leloir, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nuria M. Romero
- Instituto Leloir, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina P. Bertolin
- Instituto Leloir, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María G. Thomas
- Instituto Leloir, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | - Graciela L. Boccaccio
- Instituto Leloir, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo Wappner
- Instituto Leloir, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
32
|
Vigne P, Frelin C. Hypoxia modifies the feeding preferences of Drosophila. Consequences for diet dependent hypoxic survival. BMC PHYSIOLOGY 2010; 10:8. [PMID: 20465825 PMCID: PMC2877658 DOI: 10.1186/1472-6793-10-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 05/13/2010] [Indexed: 11/18/2022]
Abstract
Background Recent attention has been given to the relationships between diet, longevity, aging and resistance to various forms of stress. Flies do not simply ingest calories. They sense different concentrations of carbohydrate and protein macronutrients and they modify their feeding behavior in response to changes in dietary conditions. Chronic hypoxia is a major consequence of cardiovascular diseases. Dietary proteins have recently been shown to decrease the survival of chronically hypoxic Drosophila. Whether flies modify their feeding behavior in response to hypoxia is not currently known. This study uses the recently developed capillary feeding assay to analyze the feeding behavior of normoxic and chronically hypoxic Drosophila melanogaster. Results The intakes rates of sucrose and yeast by normoxic or chronically hypoxic flies (5% O2) were analyzed under self selecting and "no choice" conditions. Chronically hypoxic flies fed on pure yeast diets or mixed diets under self selection conditions stopped feeding on yeast. Flies fed on mixed diets under "no choice" conditions reduced their food intakes. Hypoxia did not modify the adaptation of flies to diluted diets or to imbalanced diets. Mortality was assessed in parallel experiments. Dietary yeast had two distinct effects on hypoxic flies (i) a repellent action which eventually led to starvation and which was best observed in the absence of dietary sucrose and (ii) a toxic action which led to premature death. Finally we determined that hypoxic survivals were correlated to the intakes of sucrose, which suggested that dietary yeast killed flies by reducing their intake of sucrose. The feeding preferences of adult Drosophila were insensitive to NO scavengers, NO donor molecules and inhibitors of phosphodiesterases which are active on Drosophila larvae. Conclusion Chronically hypoxic flies modify their feeding behavior. They avoid dietary yeast which appears to be toxic. Hypoxic survival is dependent on a source of exogenous sucrose. Ultimately, dietary yeast reduces hypoxic survival by reducing the intake of sucrose. The results highlight the importance of behavioral mechanisms in the responses of Drosophila to chronic hypoxic conditions.
Collapse
Affiliation(s)
- Paul Vigne
- CNRS UMR 6543, Univ Nice Sophia Antipolis, Nice, F-06108 France
| | | |
Collapse
|
33
|
Klok CJ, Kaiser A, Lighton JRB, Harrison JF. Critical oxygen partial pressures and maximal tracheal conductances for Drosophila melanogaster reared for multiple generations in hypoxia or hyperoxia. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:461-469. [PMID: 19682996 DOI: 10.1016/j.jinsphys.2009.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 07/24/2009] [Accepted: 08/03/2009] [Indexed: 05/28/2023]
Abstract
In Drosophila melanogaster and other insects, increases in atmospheric oxygen partial pressure (aPO(2)) tend to increase adult body size and decrease tracheal diameters and tracheolar proliferation. If changes in tracheal morphology allow for functional compensation for aPO(2), we would predict that higher aPO(2) would be associated with higher critical PO(2) values (CritPO(2)) and lower maximal tracheal conductances (G(max)). We measured CritPO(2) and G(max) for adult and larval vinegar flies reared for 7-9 generations in 10, 21 or 40 kPa O(2). The CritPO(2), CO(2) emission rates and G(max) values were generally independent of the rearing PO(2) these flies had experienced, suggesting that minimal functional changes in tracheal capacities occurred in response to rearing PO(2). Larvae were able to continue activity during 20 min of anoxia. The lack of multigenerational rearing PO(2) effects on tracheal function suggests that the functional compensation at the whole-body level due to tracheal morphological changes in response to aPO(2) may be minimal; alternatively the benefits of such compensation may occur in specific tissues or during processes not assessed by these methods. In larvae, the CritPO(2) and the capacity for movement in anoxia suggest adaptations for life in hypoxic organic matter.
Collapse
Affiliation(s)
- C Jaco Klok
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| | | | | | | |
Collapse
|
34
|
Duchi S, Fagnocchi L, Cavaliere V, Hsouna A, Gargiulo G, Hsu T. Drosophila VHL tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability. Development 2010; 137:1493-503. [PMID: 20388653 PMCID: PMC2853850 DOI: 10.1242/dev.042804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2010] [Indexed: 12/17/2022]
Abstract
Mutations in the human von Hippel-Lindau (VHL) genes are the cause of VHL disease, which displays multiple benign and malignant tumors. The VHL gene has been shown to regulate angiogenic potential and glycolic metabolism via its E3 ubiquitin ligase function against the alpha subunit of hypoxia-inducible factor (HIF). However, many other HIF-independent functions of VHL have been identified and recent evidence indicates that the canonical function cannot fully explain the VHL mutant cell phenotypes. Many of these functions have not been verified in genetically tractable systems. Using an established follicular epithelial model in Drosophila, we show that the Drosophila VHL gene is involved in epithelial morphogenesis via stabilizing microtubule bundles and aPKC. Microtubule defects in VHL mutants lead to mislocalization of aPKC and subsequent loss of epithelial integrity. Destabilizing microtubules in ex vivo culture of wild-type egg chambers can also result in aPKC mislocalization and epithelial defects. Importantly, paclitaxel-induced stabilization of microtubules can rescue the aPKC localization phenotype in Drosophila VHL mutant follicle cells. The results establish a developmental function of the VHL gene that is relevant to its tumor-suppressor activity.
Collapse
Affiliation(s)
- Serena Duchi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Luca Fagnocchi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Valeria Cavaliere
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Anita Hsouna
- Department of Pathology and Laboratory Medicine, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Giuseppe Gargiulo
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Tien Hsu
- Department of Pathology and Laboratory Medicine, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
35
|
Dose-dependent modulation of HIF-1alpha/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene 2009; 29:1123-34. [PMID: 19966858 DOI: 10.1038/onc.2009.407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The role of the hypoxic response during metastasis was analysed in migrating border cells of the Drosophila ovary. Acute exposure to 1% O(2) delayed or blocked border cell migration (BCM), whereas prolonged exposure resulted in the first documented accelerated BCM phenotype. Similarly, manipulating the expression levels of sima, the Drosophila hypoxia-inducible factor (HIF)-1alpha ortholog, revealed that Sima can either block or restore BCM in a dose-dependent manner. In contrast, over-expression of Vhl (Drosophila von Hippel-Lindau) generated a range of phenotypes, including blocked, delayed and accelerated BCM, whereas over-expression of hph (Drosophila HIF prolyl hydroxylase) only accelerated BCM. Mosaic clone analysis of sima or tango (HIF-1beta ortholog) mutants revealed that cells lacking Hif-1 transcriptional activity were preferentially detected in the leading cell position of the cluster, resulting in either a delay or acceleration of BCM. Moreover, in sima mutant cell clones, there was reduced expression of nuclear slow border cells (Slbo) and basolateral DE-cadherin, proteins essential for proper BCM. These results show that Sima levels define the rate of BCM in part through regulation of Slbo and DE-cadherin, and suggest that dynamic regulation of Hif-1 activity is necessary to maintain invasive potential of migrating epithelial cells.
Collapse
|
36
|
Abstract
Obligate aerobes, by definition, require oxygen in order to sustain life. Therefore, changes in environment or physiology that cause metabolic demand for oxygen to exceed supply (hypoxia) can be highly detrimental. Despite considerable variation in physiology and habitat between species, a majority of metazoa employ homologues of the hypoxia-inducible factor (HIF) transcription factors to adapt to oxygen deprivation. Studies in mammals, Drosophila and C. elegans have shown that regulation of HIF-alpha by prolyl hydroxylase (PHD)-mediated proteasomal degradation is conserved, as are a number of HIF target genes. More recently, analysis of coral and beetle HIFs has revealed that, unlike flies and worms, the C-terminal transactivation domain of HIF-alpha and its regulatory hydroxylase FIH-1 are also preserved. The reasons for variable conservation of this system are unknown. However, discovery of the "intermediary" properties of the beetle HIF pathway may prove a useful tool to better define HIF signaling in both mammals and invertebrates.
Collapse
Affiliation(s)
- R J Hampton-Smith
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
37
|
Irisarri M, Lavista-Llanos S, Romero NM, Centanin L, Dekanty A, Wappner P. Central role of the oxygen-dependent degradation domain of Drosophila HIFalpha/Sima in oxygen-dependent nuclear export. Mol Biol Cell 2009; 20:3878-87. [PMID: 19587118 DOI: 10.1091/mbc.e09-01-0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Drosophila HIFalpha homologue, Sima, is localized mainly in the cytoplasm in normoxia and accumulates in the nucleus upon hypoxic exposure. We have characterized the mechanism governing Sima oxygen-dependent subcellular localization and found that Sima shuttles continuously between the nucleus and the cytoplasm. We have previously shown that nuclear import depends on an atypical bipartite nuclear localization signal mapping next to the C-terminus of the protein. We show here that nuclear export is mediated in part by a CRM1-dependent nuclear export signal localized in the oxygen-dependent degradation domain (ODDD). CRM1-dependent nuclear export requires both oxygen-dependent hydroxylation of a specific prolyl residue (Pro850) in the ODDD, and the activity of the von Hippel Lindau tumor suppressor factor. At high oxygen tension rapid nuclear export of Sima occurs, whereas in hypoxia, Sima nuclear export is largely inhibited. HIFalpha/Sima nucleo-cytoplasmic localization is the result of a dynamic equilibrium between nuclear import and nuclear export, and nuclear export is modulated by oxygen tension.
Collapse
Affiliation(s)
- Maximiliano Irisarri
- Instituto Leloir and FCEyN, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
38
|
Mortimer NT, Moberg KH. Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 2009; 329:294-305. [PMID: 19285057 PMCID: PMC2688766 DOI: 10.1016/j.ydbio.2009.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/27/2009] [Accepted: 03/03/2009] [Indexed: 01/01/2023]
Abstract
The tracheal system of Drosophila melanogaster is an interconnected network of gas-filled epithelial tubes that develops during embryogenesis and functions as the main gas-exchange organ in the larva. Larval tracheal cells respond to hypoxia by activating a program of branching and growth driven by HIF-1alpha/sima-dependent expression of the breathless (btl) FGF receptor. By contrast, the ability of the developing embryonic tracheal system to respond to hypoxia and integrate hard-wired branching programs with sima-driven tracheal remodeling is not well understood. Here we show that embryonic tracheal cells utilize the conserved ubiquitin ligase dVHL to control the HIF-1 alpha/sima hypoxia response pathway, and identify two distinct phases of tracheal development with differing hypoxia sensitivities and outcomes: a relatively hypoxia-resistant 'early' phase during which sima activity conflicts with normal branching and stunts migration, and a relatively hypoxia-sensitive 'late' phase during which the tracheal system uses the dVHL/sima/btl pathway to drive increased branching and growth. Mutations in the archipelago (ago) gene, which antagonizes btl transcription, re-sensitize early embryos to hypoxia, indicating that their relative resistance can be reversed by elevating activity of the btl promoter. These findings reveal a second type of tracheal hypoxic response in which Sima activation conflicts with developmental tracheogenesis, and identify the dVHL and ago ubiquitin ligases as key determinants of hypoxia sensitivity in tracheal cells. The identification of an early stage of tracheal development that is vulnerable to hypoxia is an important addition to models of the invertebrate hypoxic response.
Collapse
Affiliation(s)
- Nathan T. Mortimer
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| |
Collapse
|
39
|
Kimbrel EA, Davis TN, Bradner JE, Kung AL. In Vivo Pharmacodynamic Imaging of Proteasome Inhibition. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inhibiting the proteolytic activity of the 26S proteasome has been shown to have selective apoptotic effects on cancer cells and to be clinically efficacious in certain malignancies. There is an unmet medical need for additional proteasome inhibitors, and their development will be facilitated by surrogate markers of proteasome function. Toward this end, ectopic fusion of the destruction domain from ornithine decarboxylase (ODC) to reporter proteins is often used for assessing proteasome function. For luciferase-based reporters, we hypothesized that the oxygen-dependent destruction domain (ODD) from hypoxia-inducible factor 1α (HIF-1α) may provide improved sensitivity over luciferase-ODC, owing to its extremely rapid turnover by the proteasome (HIF-1α has a half-life of less than 5 minutes). In the current study, we show that ODD-luciferase affords a greater dynamic range and faster kinetics than luciferase-ODC in sensing proteasome inhibition in vitro. Importantly, ODD-luciferase also serves as an effective in vivo marker of proteasome function in xenograft tumor models, with inhibition being detected by noninvasive imaging within 3 hours of bortezomib administration. These data establish ODD-luciferase as a surrogate marker of proteasome function that can be used both in vitro and in vivo for the development of novel proteasome inhibitors.
Collapse
Affiliation(s)
- Erin A. Kimbrel
- From the Departments of Pediatric Oncology and Adult Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA; and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA
| | - Tina N. Davis
- From the Departments of Pediatric Oncology and Adult Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA; and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA
| | - James E. Bradner
- From the Departments of Pediatric Oncology and Adult Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA; and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA
| | - Andrew L. Kung
- From the Departments of Pediatric Oncology and Adult Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA; and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA
| |
Collapse
|
40
|
Vigne P, Tauc M, Frelin C. Strong dietary restrictions protect Drosophila against anoxia/reoxygenation injuries. PLoS One 2009; 4:e5422. [PMID: 19412543 PMCID: PMC2671842 DOI: 10.1371/journal.pone.0005422] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/08/2009] [Indexed: 01/19/2023] Open
Abstract
Background Reoxygenation of ischemic tissues is a major factor that determines the severity of cardiovascular diseases. This paper describes the consequences of anoxia/reoxygenation (A/R) stresses on Drosophila, a useful, anoxia tolerant, model organism. Methodology/Principal Findings Newly emerged adult male flies were exposed to anoxic conditions (<1% O2) for 1 to 6 hours, reoxygenated and their survival was monitored. Results A/R stresses induced a transient increase in mortality which peaked at the time of reoxygenation. Then flies recovered low mortality rates similar to those of control flies. A/R induced mortality was strongly dependent on dietary conditions during the 48 h that preceded anoxia. Well fed flies were anoxia sensitive. Strong dietary restrictions and starvation conditions protected flies against A/R injuries. The tolerance to anoxia was associated to large decreases in glycogen, protein, and ATP contents. During anoxia, anoxia tolerant flies produced more lactate, less phosphate and they maintained more stable ATP levels than anoxia sensitive flies. Moderate dietary restrictions, which increased the longevity of normoxic flies, did not promote resistance to A/R stresses. Diet dependent A/R injuries were still observed in sima loss of function mutants and they were insensitive to dietary rapamycin or resveratrol. AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribosefuranoside), an activator AMP kinase decreased A/R injuries. Mutants in the insulin signalling pathway were more anoxia tolerant in a fed state. Conclusion/Significance Long A/R stresses induce a transient increase in mortality in Drosophila. This mortality is highly dependent on dietary conditions prior to the stress. Strong dietary restrictions and starvation conditions protect flies against A/R injuries, probably by inducing a major remodelling of energy metabolism. The results also indicate that mechanistically different responses develop in response to dietary restrictions of different strengths. AMP kinase and the insulin signalling pathway are possible mediators of diet dependent anoxic tolerance in Drosophila.
Collapse
Affiliation(s)
- Paul Vigne
- IBDC, CNRS UMR 6543, Université de Nice Sophia Antipolis, Nice, France
| | - Michel Tauc
- TIANP, CNRS FRE 3093, Université de Nice Sophia Antipolis, Nice, France
| | - Christian Frelin
- IBDC, CNRS UMR 6543, Université de Nice Sophia Antipolis, Nice, France
- * E-mail:
| |
Collapse
|
41
|
Gleixner E, Abriss D, Adryan B, Kraemer M, Gerlach F, Schuh R, Burmester T, Hankeln T. Oxygen-induced changes in hemoglobin expression in Drosophila. FEBS J 2008; 275:5108-16. [PMID: 18795948 DOI: 10.1111/j.1742-4658.2008.06642.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hemoglobin gene 1 (dmeglob1) of the fruit fly Drosophila melanogaster is expressed in the tracheal system and fat body, and has been implicated in hypoxia resistance. Here we investigate the expression levels of dmeglob1 and lactate dehydrogenase (a positive control) in embryos, third instar larvae and adult flies under various regimes of hypoxia and hyperoxia. As expected, mRNA levels of lactate dehydrogenase increased under hypoxia. We show that expression levels of dmeglob1 are decreased under both short- and long-term hypoxia, compared with the normoxic (21% O2) control. By contrast, a hypoxia/reoxygenation regime applied to third instar larvae elevated the level of dmeglob1 mRNA. An excess of O2 (hyperoxia) also triggered an increase in dmeglob1 mRNA. The data suggest that Drosophila hemoglobin may be unlikely to function merely as a myoglobin-like O2 storage protein. Rather, dmeglob1 may protect the fly from an excess of O2, either by buffering the flux of O2 from the tracheoles to the cells or by degrading noxious reactive oxygen species.
Collapse
Affiliation(s)
- Eva Gleixner
- Institute of Molecular Genetics, University of Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Alcaide-German ML, Vara-Vega A, Garcia-Fernandez LF, Landazuri MO, del Peso L. A yeast three-hybrid system that reconstitutes mammalian hypoxia inducible factor regulatory machinery. BMC Cell Biol 2008; 9:18. [PMID: 18402654 PMCID: PMC2346465 DOI: 10.1186/1471-2121-9-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/10/2008] [Indexed: 12/23/2022] Open
Abstract
Background Several human pathologies, including neoplasia and ischemic cardiovascular diseases, course with an unbalance between oxygen supply and demand (hypoxia). Cells within hypoxic regions respond with the induction of a specific genetic program, under the control of the Hypoxia Inducible Factor (HIF), that mediates their adaptation to the lack of oxygen. The activity of HIF is mainly regulated by the EGL-nine homolog (EGLN) enzymes that hydroxylate the alpha subunit of this transcription factor in an oxygen-dependent reaction. Hydroxylated HIF is then recognized and ubiquitinilated by the product of the tumor suppressor gene, pVHL, leading to its proteosomal degradation. Under hypoxia, the hydroxylation of HIF by the EGLNs is compromised due to the lack of oxygen, which is a reaction cosubstrate. Thus, HIF escapes degradation and drives the transcription of its target genes. Since the progression of the aforementioned pathologies might be influenced by activation of HIF-target genes, development of small molecules with the ability to interfere with the HIF-regulatory machinery is of great interest. Results Herein we describe a yeast three-hybrid system that reconstitutes mammalian HIF regulation by the EGLNs and VHL. In this system, yeast growth, under specific nutrient restrictions, is driven by the interaction between the β domain of VHL and a hydroxyproline-containing HIFα peptide. In turn, this interaction is strictly dependent on EGLN activity that hydroxylates the HIFα peptide. Importantly, this system accurately preserves the specificity of the hydroxylation reaction toward specific substrates. We propose that this system, in combination with a matched control, can be used as a simple and inexpensive assay to identify molecules that specifically modulate EGLN activity. As a proof of principle we show that two known EGLN inhibitors, dimethyloxaloylglycine (DMOG) and 6-chlor-3-hydroxychinolin-2-carbonic acid-N-carboxymethylamide (S956711), have a profound and specific effect on the yeast HIF/EGLN/VHL system. Conclusion The system described in this work accurately reconstitutes HIF regulation while preserving EGLN substrate specificity. Thus, it is a valuable tool to study HIF regulation, and particularly EGLN biochemistry, in a cellular context. In addition, we demonstrate that this system can be used to identify specific inhibitors of the EGLN enzymes.
Collapse
Affiliation(s)
- Maria L Alcaide-German
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | |
Collapse
|
43
|
Centanin L, Dekanty A, Romero N, Irisarri M, Gorr TA, Wappner P. Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting. Dev Cell 2008; 14:547-58. [DOI: 10.1016/j.devcel.2008.01.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/06/2007] [Accepted: 01/10/2008] [Indexed: 01/23/2023]
|
44
|
Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 2008; 15:635-41. [PMID: 18259202 DOI: 10.1038/cdd.2008.10] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oxygen-dependent hydroxylation of hypoxia-inducible factor (HIF)-alpha subunits by prolyl hydroxylase domain (PHD) proteins signals their polyubiquitination and proteasomal degradation, and plays a critical role in regulating HIF abundance and oxygen homeostasis. While oxygen concentration plays a major role in determining the efficiency of PHD-catalyzed hydroxylation reactions, many other environmental and intracellular factors also significantly modulate PHD activities. In addition, PHDs may also employ hydroxylase-independent mechanisms to modify HIF activity. Interestingly, while PHDs regulate HIF-alpha protein stability, PHD2 and PHD3 themselves are subject to feedback upregulation by HIFs. Functionally, different PHD isoforms may differentially contribute to specific pathophysiological processes, including angiogenesis, erythropoiesis, tumorigenesis, and cell growth, differentiation and survival. Because of diverse roles of PHDs in many different processes, loss of PHD expression or function triggers multi-faceted pathophysiological changes as has been shown in mice lacking different PHD isoforms. Future investigations are needed to explore in vivo specificity of PHDs over different HIF-alpha subunits and differential roles of PHD isoforms in different biological processes.
Collapse
Affiliation(s)
- G-H Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, USA.
| | | |
Collapse
|
45
|
Abstract
How multicellular organisms obtain and use oxygen and other substrates has evolved over hundreds of millions of years in parallel with the evolution of oxygen-delivery systems. A steady supply of oxygen is critical to the existence of organisms that depend on oxygen as a primary source of fuel (i.e., those that live by aerobic metabolism). Not surprisingly, a number of mechanisms have evolved to defend against oxygen deprivation. This review highlights evolutionary and developmental aspects of O2 delivery to allow understanding of adaptive responses to O2 deprivation (hypoxia). First, we consider how the drive for more efficient oxygen delivery from the heart to the periphery may have shaped the evolution of the cardiovascular system, with particular attention to the routing of oxygenated and deoxygenated blood in the cardiac outlet. Then we consider the role of O2 in the morphogenesis of the cardiovascular system of animals of increasing size and complexity. We conclude by suggesting areas for future research regarding the role of oxygen deprivation and oxidative stress in the normal development of the heart and vasculature or in the pathogenesis of congenital heart defects.
Collapse
Affiliation(s)
- Steven A Fisher
- Case Western Reserve School of Medicine, Cleveland, Ohio 44106-7290, USA.
| | | |
Collapse
|
46
|
Groenman FA, Rutter M, Wang J, Caniggia I, Tibboel D, Post M. Effect of chemical stabilizers of hypoxia-inducible factors on early lung development. Am J Physiol Lung Cell Mol Physiol 2007; 293:L557-67. [PMID: 17545484 DOI: 10.1152/ajplung.00486.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Low oxygen stimulates pulmonary vascular development and airway branching and involves hypoxia-inducible factor (HIF). HIF is stable and initiates expression of angiogenic factors under hypoxia, whereas normoxia triggers hydroxylation of the HIF-1α subunit by prolyl hydroxylases (PHDs) and subsequent degradation. Herein, we investigated whether chemical stabilization of HIF-1α under normoxic (20% O2) conditions would stimulate vascular growth and branching morphogenesis in early lung explants. Tie2-LacZ (endothelial LacZ marker) mice were used for visualization of the vasculature. Embryonic day 11.5 (E11.5) lung buds were dissected and cultured in 20% O2 in the absence or presence of cobalt chloride (CoCl2, a hypoxia mimetic), dimethyloxalylglycine (DMOG; a nonspecific inhibitor of PHDs), or desferrioxamine (DFO; an iron chelator). Vascularization was assessed by X-gal staining, and terminal buds were counted. The fine vascular network surrounding the developing lung buds seen in control explants disappeared in CoCl2- and DFO-treated explants. Also, epithelial branching was reduced in the explants treated with CoCl2 and DFO. In contrast, DMOG inhibited branching but stimulated vascularization. Both DFO and DMOG increased nuclear HIF-1α protein levels, whereas CoCl2 had no effect. Since HIF-1α induces VEGF expression, the effect of SU-5416, a potent VEGF receptor (VEGFR) blocker, on early lung development was also investigated. Inhibition of VEGFR2 signaling in explants maintained under hypoxic (2% O2) conditions completely abolished vascularization and slightly decreased epithelial branching. Taken together, the data suggest that DMOG stabilization of HIF-1α during early development leads to a hypervascular lung and that airway branching proceeds without the vasculature, albeit at a slower rate.
Collapse
Affiliation(s)
- Freek A Groenman
- CIHR Group in Lung Development, Hospital for Sick Children Research Institute, Department of Pediatrics and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Vigne P, Frelin C. Diet dependent longevity and hypoxic tolerance of adult Drosophila melanogaster. Mech Ageing Dev 2007; 128:401-6. [PMID: 17606290 DOI: 10.1016/j.mad.2007.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 04/25/2007] [Accepted: 05/16/2007] [Indexed: 12/25/2022]
Abstract
Relationships between nutrition and longevity are of growing interest. Here we analysed the influences of dietary restriction on the survival of Drosophila exposed to atmospheric oxygen or to chronic hypoxia. Dietary restriction was achieved by food dilution, by sucrose restriction or by yeast restriction. Sucrose and yeast influenced survival in a complex manner that was best visualised using a phenotypic landscape metaphor. Survival contour maps integrate poorly understood behavioural adaptations, metabolic regulations and nutrient signalling pathways in a comprehensive manner. Dietary yeast produced a bell shaped survival response which was dependent on sucrose. Hypoxic flies had a reduced longevity as compared to normoxic flies and their dependence on specific nutrients was modified. Yeast which was beneficial to normoxic flies was toxic for hypoxic flies. In addition hypoxic flies were more resistant to starvation. We conclude that the survival and the hypoxic tolerance of Drosophila have different nutritional requirements.
Collapse
|
48
|
|
49
|
Vigne P, Frelin C. A low protein diet increases the hypoxic tolerance in Drosophila. PLoS One 2006; 1:e56. [PMID: 17183686 PMCID: PMC1762395 DOI: 10.1371/journal.pone.0000056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 10/25/2006] [Indexed: 01/04/2023] Open
Abstract
Dietary restriction is well known to increase the life span of a variety of organisms from yeast to mammals, but the relationships between nutrition and the hypoxic tolerance have not yet been considered. Hypoxia is a major cause of cell death in myocardial infarction and stroke. Here we forced hypoxia-related death by exposing one-day-old male Drosophila to chronic hypoxia (5% O2) and analysed their survival. Chronic hypoxia reduced the average life span from 33.6 days to 6.3 days when flies were fed on a rich diet. A demographic analysis indicated that chronic hypoxia increased the slope of the mortality trajectory and not the short-term risk of death. Dietary restriction produced by food dilution, by yeast restriction, or by amino acid restriction partially reversed the deleterious action of hypoxia. It increased the life span of hypoxic flies up to seven days, which represented about 25% of the life time of an hypoxic fly. Maximum survival of hypoxic flies required only dietary sucrose, and it was insensitive to drugs such as rapamycin and resveratrol, which increase longevity of normoxic animals. The results thus uncover a new link between protein nutrition, nutrient signalling, and resistance to hypoxic stresses.
Collapse
Affiliation(s)
- Paul Vigne
- Institut National de la Santé et de la Recherche MédicaleNice, France
- Université de Nice Sophia AntipolisNice, France
| | - Christian Frelin
- Institut National de la Santé et de la Recherche MédicaleNice, France
- Université de Nice Sophia AntipolisNice, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Jiang L, Crews ST. Dysfusion transcriptional control of Drosophila tracheal migration, adhesion, and fusion. Mol Cell Biol 2006; 26:6547-56. [PMID: 16914738 PMCID: PMC1592841 DOI: 10.1128/mcb.00284-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Drosophila dysfusion basic-helix-loop-helix-PAS transcription factor gene is expressed in specialized fusion cells that reside at the tips of migrating tracheal branches. dysfusion mutants were isolated, and genetic analysis of live embryos revealed that mutant tracheal branches migrate to close proximity but fail to recognize and adhere to each other. Misexpression of dysfusion throughout the trachea further indicated that dysfusion has the ability to both inhibit cell migration and promote ectopic tracheal fusion. Nineteen genes whose expression either increases or decreases in fusion cells during development were analyzed in dysfusion mutant embryos. dysfusion upregulates the levels of four genes, including the shotgun cell adhesion protein gene and the zona pellucida family transmembrane protein gene, CG13196. Misexpression experiments with CG13196 result in ectopic tracheal fusion events, suggesting that it also encodes a cell adhesion protein. Another target gene of dysfusion is members only, which inhibits protein nuclear export and influences tracheal fusion. dysfusion also indirectly downregulates protein levels of Trachealess, an important regulator of tracheal development. These results indicate that fusion cells undergo dynamic changes in gene expression as they switch from migratory to fusion modes and that dysfusion regulates a discrete, but important, set of these genes.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|