1
|
Nuzhnaya TV, Sorokan AV, Burkhanova GF, Maksimov IV, Veselova SV. The Role of Cytokinins and Abscisic Acid in the Growth, Development and Virulence of the Pathogenic Fungus Stagonospora nodorum (Berk.). Biomolecules 2024; 14:517. [PMID: 38785924 PMCID: PMC11117529 DOI: 10.3390/biom14050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.
Collapse
Affiliation(s)
- Tatyana V. Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Antonina V. Sorokan
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Guzel F. Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Igor V. Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Svetlana V. Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| |
Collapse
|
2
|
Stuart AKDC, Furuie JL, Cataldi TR, Stuart RM, Zawadneak MAC, Labate CA, Pimentel IC. Fungal consortium of two Beauveria bassiana strains increases their virulence, growth, and resistance to stress: A metabolomic approach. PLoS One 2022; 17:e0271460. [PMID: 35834517 PMCID: PMC9282594 DOI: 10.1371/journal.pone.0271460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The use of two or more microorganisms in a microbial consortium has been increasingly applied in the biological control of diseases and pests. Beauveria bassiana is one of the most widely studied fungal species in biological control, yet little is known about its role in fungal consortiums. In a previous study, our group found that a consortium formed by two strains of B. bassiana had significantly greater biocontrol potential against the polyphagous caterpillars Duponchelia fovealis (Lepidoptera: Crambidae) than either strain on its own. In this study, we use GC-MS and LC-MS/MS to evaluate and discuss the metabolomics of the consortium. A total of 21 consortium biomarkers were identified, corresponding to 14 detected by LC-MS/MS and seven by GC-MS. Antioxidant and anti-inflammatory mechanisms are the main properties of the metabolites produced by the consortium. These metabolites can depress the insect’s immune system, increasing its vulnerability and, hence, the fungal virulence of the consortium. In light of these results, we propose an action model of insect mortality due to the metabolites secreted by the consortium. The model includes the inhibition of defense mechanisms such as pro-inflammatory interleukin secretion, cell migration, cell aggregation, Dif, Dorsal and Relish gene transcription, and JAK/STAT and JNK signaling pathways. It also promotes the cleaning of oxidative molecules, like ROS, NOS, and H2O2, and the induction of virulence factors.
Collapse
Affiliation(s)
- Andressa Katiski da Costa Stuart
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- * E-mail:
| | - Jason Lee Furuie
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Thais Regiani Cataldi
- Departamento de Genética, Laboratório de Genética de Plantas Max Feffer, Escola Superior de Agronomia Luiz de Queiroz – Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Rodrigo Makowiecky Stuart
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Maria Aparecida Cassilha Zawadneak
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Departamento de Fitotecnia e Fitossanitaríssimo, Programa de Pós-graduação em Agronomia Produção Vegetal, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carlos Alberto Labate
- Departamento de Genética, Laboratório de Genética de Plantas Max Feffer, Escola Superior de Agronomia Luiz de Queiroz – Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Ida Chapaval Pimentel
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
Li G, Liu S, Wu L, Wang X, Cuan R, Zheng Y, Liu D, Yuan Y. Characterization and Functional Analysis of a New Calcium/Calmodulin-Dependent Protein Kinase (CaMK1) in the Citrus Pathogenic Fungus Penicillium italicum. J Fungi (Basel) 2022; 8:667. [PMID: 35887424 PMCID: PMC9323541 DOI: 10.3390/jof8070667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium (Ca2+)/calmodulin-dependent protein kinases (CaMKs) act as a class of crucial elements in Ca2+-signal transduction pathways that regulate fungal growth, sporulation, virulence, and environmental stress tolerance. However, little is known about the function of such protein kinase in phytopathogenic Penicillium species. In the present study, a new CaMK gene from the citrus pathogenic fungus P. italicum, designated PiCaMK1, was cloned and functionally characterized by gene knockout and transcriptome analysis. The open reading frame of PiCaMK1 is 1209 bp in full length, which encodes 402 amino acid residues (putative molecular weight ~45.2 KD) with the highest homologous (~96.3%) to the P. expansum CaMK. The knockout mutant ΔPiCaMK1 showed a significant reduction in vegetative growth, conidiation, and virulence (i.e., to induce blue mold decay on citrus fruit). ΔPiCaMK1 was less sensitive to NaCl- or KCl-induced salinity stress and less resistant to mannitol-induced osmotic stress, indicating the functional involvement of PiCaMK1 in such environmental stress tolerance. In contrast, the PiCaMK1-complemented strain ΔPiCaMK1COM can restore all the defective phenotypes. Transcriptome analysis revealed that knockout of PiCaMK1 down-regulated expression of the genes involved in DNA replication and repair, cell cycle, meiosis, pyrimidine and purine metabolisms, and MAPK signaling pathway. Our results suggested the critical role of PiCaMK1 in regulating multiple physical and cellular processes of citrus postharvest pathogen P. italicum, including growth, conidiation, virulence, and environmental stress tolerance.
Collapse
Affiliation(s)
- Guoqi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Shaoting Liu
- School of Public Administration, Central China Normal University, Wuhan 430079, China;
| | - Lijuan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Xiao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Rongrong Cuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Yongliang Zheng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China;
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| |
Collapse
|
4
|
Gupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, Kumar R, Gautam V. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem Biol 2021; 16:2068-2086. [PMID: 34724607 DOI: 10.1021/acschembio.1c00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive compounds have gained substantial attention in research and have conferred great advancements in the industrial and pharmacological fields. Highly diverse fungi and their metabolome serve as a big platform to be explored for their diverse bioactive compounds. Omics tools coupled with bioinformatics, statistical, and well-developed algorithm tools have elucidated immense knowledge about fungal endophyte derived bioactive compounds. Further, these compounds are subjected to chromatography-gas chromatography and liquid chromatography (LC), spectroscopy-nuclear magnetic resonance (NMR), and "soft ionization" technique-matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) based analytical techniques for structural characterization. The mass spectrometry (MS)-based approach, being highly sensitive, reproducible, and reliable, produces quick and high-profile identification. Coupling these techniques with MS has resulted in a descriptive account of the identification and quantification of fungal endophyte derived bioactive compounds. This paper emphasizes the workflows of the above-mentioned techniques, their advancement, and future directions to study the unraveled area of chemistry of fungal endophyte-derived bioactive compounds.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Brijesh Kumar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
5
|
Mannitol-1-phosphate dehydrogenase, MpdA, is required for mannitol production in vegetative cells and involved in hyphal branching, heat resistance of conidia and sexual development in Aspergillus nidulans. Curr Genet 2021; 67:613-630. [PMID: 33683401 DOI: 10.1007/s00294-021-01163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Aspergillus nidulans produces cleistothecia as sexual reproductive organs in a process affected by genetic and external factors. To gain a deeper insight into A. nidulans sexual development, we performed comparative proteome analyses based on the wild type developmental periods. We identified sexual development-specific proteins with a more than twofold increase in production during hypoxia or the sexual period compared to the asexual period. Among the sexual development-specific proteins analyzed by gene-deletion experiments and functional assays, MpdA, a putative mannitol-1-phosphate 5-dehydrogenase, plays multiple roles in growth and differentiation of A. nidulans. The most distinct mpdA-deletion phenotype was ascosporogenesis failure. Genetic mpdA deletion resulted in small cleistothecia with no functional ascospores. Transcriptional analyses indicated that MpdA modulates the expression of key development- and meiosis-regulatory genes during sexual development. The mpdA deletion increased hyphal branching and decreased conidial heat resistance. Mannitol production in conidia showed no difference, whereas it was decreased in mycelia and sexual cultures. Addition of mannitol during vegetative growth recovered the defects in conidial heat resistance and ascospore genesis. Taken together, these results indicate that MpdA plays an important role in sexual development, hyphal branching, and conidial heat resistance in Aspergillus nidulans.
Collapse
|
6
|
Lin M, Corsi B, Ficke A, Tan KC, Cockram J, Lillemo M. Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:785-808. [PMID: 31996971 PMCID: PMC7021668 DOI: 10.1007/s00122-019-03507-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE A locus on wheat chromosome 2A was found to control field resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. The necrotrophic fungal pathogen Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch and glume blotch, which are common wheat (Triticum aestivum L.) diseases in humid and temperate areas. Susceptibility to Septoria nodorum leaf blotch can partly be explained by sensitivity to corresponding P. nodorum necrotrophic effectors (NEs). Susceptibility to glume blotch is also quantitative; however, the underlying genetics have not been studied in detail. Here, we genetically map resistance/susceptibility loci to leaf and glume blotch using an eight-founder wheat multiparent advanced generation intercross population. The population was assessed in six field trials across two sites and 4 years. Seedling infiltration and inoculation assays using three P. nodorum isolates were also carried out, in order to compare quantitative trait loci (QTL) identified under controlled conditions with those identified in the field. Three significant field resistance QTL were identified on chromosomes 2A and 6A, while four significant seedling resistance QTL were detected on chromosomes 2D, 5B and 7D. Among these, QSnb.niab-2A.3 for field resistance to both leaf blotch and glume blotch was detected in Norway and the UK. Colocation with a QTL for seedling reactions against culture filtrate from a Norwegian P. nodorum isolate indicated the QTL could be caused by a novel NE sensitivity. The consistency of this QTL for leaf blotch at the seedling and adult plant stages and culture filtrate infiltration was confirmed by haplotype analysis. However, opposite effects for the leaf blotch and glume blotch reactions suggest that different genetic mechanisms may be involved.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway
| | - Beatrice Corsi
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Andrea Ficke
- Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1433, Ås, Norway
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - James Cockram
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
7
|
Changes in Mannitol Content, Regulation of Genes Involved in Mannitol Metabolism, and the Protective Effect of Mannitol on Volvariella volvacea at Low Temperature. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1493721. [PMID: 31321228 PMCID: PMC6610757 DOI: 10.1155/2019/1493721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/30/2019] [Indexed: 11/18/2022]
Abstract
The mechanism of autolysis of Volvariella volvacea (V. volvacea) at low temperature has not been fully explained. As mannitol is among the most important osmotic adjustment substances in fungal resistance, this study sampled mycelia of strains V23 and VH3 treated at 0°C for 0, 2, 4, 8, and 10 h to analyze changes in intracellular mannitol content by high-performance anion chromatography with pulsed amperometric detection (HAPEC-PAD). Reverse transcription quantitative PCR (RT-qPCR) analysis was applied to assess differences in the transcript levels of genes associated with mannitol metabolism under low-temperature stress. A mannitol solution was added to cultures of V. volvacea fruiting bodies, and effects on the hypothermic resistance of these organs were explored by evaluating variations in sensory properties during cryogenic storage after harvest. The results suggested that in the initial stage of low-temperature treatment, intracellular mannitol was largely catabolized as an energy storage material and the expression of genes encoding enzymes involved in synthetic reactions was inhibited. However, low-temperature resistance was induced with further treatment, with activation of mannitol synthesis and inhibition of degradation; the cells accumulated mannitol, leading to osmoregulation. No significant elongation of V. volvacea fruiting bodies during storage at 4°C was observed, and these organs tended to shrink and collapse. The sensory quality of mannitol-treated fruiting bodies was much better than that of control fruiting bodies. Application of a mannitol solution at the cultivation stage of V. volvacea somewhat improved the low-temperature resistance of the fruiting bodies, verifying the correlation between mannitol and resistance to this stress in V. volvacea. The results of this study lay a foundation for a deeper understanding of the autolysis mechanism of V. volvacea, providing technical support for increasing the cryopreservation time of this species and extending the postharvest shelf life of its fruiting bodies. In addition, the mechanism underlying the low-temperature tolerance of the VH3 strain should be further explained at the molecular level.
Collapse
|
8
|
Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3069-3085. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metabolomics is increasingly being applied in various fields offering a highly informative tool for high-throughput diagnostics. However, in plant sciences, metabolomics is underused, even though plant studies are relatively easy and cheap when compared to those on humans and animals. Despite their importance for human nutrition, cereals, and especially wheat, remain understudied from a metabolomics point of view. The metabolomics of durum wheat has been essentially neglected, although its genetic structure allows the inference of common mechanisms that can be extended to other wheat and cereal species. This review covers the present achievements in durum wheat metabolomics highlighting the connections with the metabolomics of other cereal species (especially bread wheat). We discuss the metabolomics data from various studies and their relationships to other "-omics" sciences, in terms of wheat genetics, abiotic and biotic stresses, beneficial microbes, and the characterization and use of durum wheat as feed, food, and food ingredient.
Collapse
Affiliation(s)
- Sergio Saia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 11 per Torino , Km 2,5, 13100 Vercelli , Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| |
Collapse
|
9
|
He Y, Zhang W, Peng F, Lu R, Zhou H, Bao G, Wang B, Huang B, Li Z, Hu F. Metabolomic variation in wild and cultured cordyceps and mycelia of Isaria cicadae. Biomed Chromatogr 2019; 33:e4478. [PMID: 30578653 DOI: 10.1002/bmc.4478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yaqiong He
- Anhui Agricultural University; Hefei China
| | - Wancun Zhang
- Children's Hospital Affiliaten of Zhengzhou University; Zhengzhou China
| | - Fan Peng
- Anhui Agricultural University; Hefei China
| | - Ruili Lu
- Anhui Agricultural University; Hefei China
| | - Hong Zhou
- Naval Postgraduate School; Monterey CA USA
| | - Guanhu Bao
- Anhui Agricultural University; Hefei China
| | - Bin Wang
- Anhui Agricultural University; Hefei China
| | - Bo Huang
- Anhui Agricultural University; Hefei China
| | - Zengzhi Li
- Anhui Agricultural University; Hefei China
| | - Fenglin Hu
- Anhui Agricultural University; Hefei China
| |
Collapse
|
10
|
Wyatt TT, Wösten HAB, Dijksterhuis J. Fungal spores for dispersion in space and time. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:43-91. [PMID: 23942148 DOI: 10.1016/b978-0-12-407672-3.00002-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spores are an integral part of the life cycle of the gross majority of fungi. Their morphology and the mode of formation are both highly variable among the fungi, as is their resistance to stressors. The main aim for spores is to be dispersed, both in space, by various mechanisms or in time, by an extended period of dormancy. Some fungal ascospores belong to the most stress-resistant eukaryotic cells described to date. Stabilization is a process in which biomolecules and complexes thereof are protected by different types of molecules against heat, drought, or other molecules. This review discusses the most important compounds that are known to protect fungal spores and also addresses the biophysics of cell protection. It further covers the phenomena of dormancy, breaking of dormancy, and early germination. Germination is the transition from a dormant cell toward a vegetative cell and includes a number of specific changes. Finally, the applied aspects of spore biology are discussed.
Collapse
Affiliation(s)
- Timon T Wyatt
- Department of Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | |
Collapse
|
11
|
Syme RA, Tan KC, Hane JK, Dodhia K, Stoll T, Hastie M, Furuki E, Ellwood SR, Williams AH, Tan YF, Testa AC, Gorman JJ, Oliver RP. Comprehensive Annotation of the Parastagonospora nodorum Reference Genome Using Next-Generation Genomics, Transcriptomics and Proteogenomics. PLoS One 2016; 11:e0147221. [PMID: 26840125 PMCID: PMC4739733 DOI: 10.1371/journal.pone.0147221] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022] Open
Abstract
Parastagonospora nodorum, the causal agent of Septoria nodorum blotch (SNB), is an economically important pathogen of wheat (Triticum spp.), and a model for the study of necrotrophic pathology and genome evolution. The reference P. nodorum strain SN15 was the first Dothideomycete with a published genome sequence, and has been used as the basis for comparison within and between species. Here we present an updated reference genome assembly with corrections of SNP and indel errors in the underlying genome assembly from deep resequencing data as well as extensive manual annotation of gene models using transcriptomic and proteomic sources of evidence (https://github.com/robsyme/Parastagonospora_nodorum_SN15). The updated assembly and annotation includes 8,366 genes with modified protein sequence and 866 new genes. This study shows the benefits of using a wide variety of experimental methods allied to expert curation to generate a reliable set of gene models.
Collapse
Affiliation(s)
- Robert A. Syme
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - James K. Hane
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
- Curtin Institute for Computation, Curtin University, Bentley, WA, Australia
| | - Kejal Dodhia
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Thomas Stoll
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Marcus Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Eiko Furuki
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Simon R. Ellwood
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Angela H. Williams
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | | | - Alison C. Testa
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Jeffrey J. Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Richard P. Oliver
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
- * E-mail:
| |
Collapse
|
12
|
Molecular Genetics of Beauveria bassiana Infection of Insects. ADVANCES IN GENETICS 2016; 94:165-249. [DOI: 10.1016/bs.adgen.2015.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Meena M, Prasad V, Zehra A, Gupta VK, Upadhyay RS. Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Front Microbiol 2015; 6:1019. [PMID: 26441941 PMCID: PMC4585237 DOI: 10.3389/fmicb.2015.01019] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 12/03/2022] Open
Abstract
Numerous plants and fungi produce mannitol, which may serve as an osmolyte or metabolic store; furthermore, mannitol also acts as a powerful quencher of reactive oxygen species (ROS). Some phytopathogenic fungi use mannitol to stifle ROS-mediated plant resistance. Mannitol is essential in pathogenesis to balance cell reinforcements produced by both plants and animals. Mannitol likewise serves as a source of reducing power, managing coenzymes, and controlling cytoplasmic pH by going about as a sink or hotspot for protons. The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst. In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol. The enzyme mannitol dehydrogenase plays a key role in host-pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Banaras Hindu UniversityVaranasi, India
| | - Vishal Prasad
- Institute of Environment and Sustainable Development, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Department of Botany, Banaras Hindu UniversityVaranasi, India
| | - Vijai K. Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland GalwayGalway, Ireland
| | - Ram S. Upadhyay
- Department of Botany, Banaras Hindu UniversityVaranasi, India
| |
Collapse
|
14
|
Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J, Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA, Courbot M. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. PLANT PHYSIOLOGY 2015; 167:1158-85. [PMID: 25596183 PMCID: PMC4348787 DOI: 10.1104/pp.114.255927] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/16/2015] [Indexed: 05/17/2023]
Abstract
The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
Collapse
Affiliation(s)
- Jason J Rudd
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Kostya Kanyuka
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Keywan Hassani-Pak
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mark Derbyshire
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Ambrose Andongabo
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Jean Devonshire
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Artem Lysenko
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mansoor Saqi
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Nalini M Desai
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Stephen J Powers
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Juliet Hooper
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Linda Ambroso
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Arvind Bharti
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Andrew Farmer
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Robert A Dietrich
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mikael Courbot
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| |
Collapse
|
15
|
Wyatt TT, van Leeuwen MR, Golovina EA, Hoekstra FA, Kuenstner EJ, Palumbo EA, Snyder NL, Visagie C, Verkennis A, Hallsworth JE, Wösten HAB, Dijksterhuis J. Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi. Environ Microbiol 2015; 17:395-411. [PMID: 25040129 PMCID: PMC4371660 DOI: 10.1111/1462-2920.12558] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 12/03/2022]
Abstract
Ascospores of Neosartorya, Byssochlamys and Talaromyces can be regarded as the most stress-resistant eukaryotic cells. They can survive exposure at temperatures as high as 85°C for 100 min or more. Neosartorya fischeri ascospores are more viscous and more resistant to the combined stress of heat and desiccation than the ascospores of Talaromyces macrosporus which contain predominantly trehalose. These ascospores contain trehalose-based oligosaccharides (TOS) that are novel compatible solutes, which are accumulated to high levels. These compounds are also found in other members of the genus Neosartorya and in some other genera within the order Eurotiales that also include Byssochlamys and Talaromyces. The presence of oligosaccharides was observed in species that had a relatively high growth temperature. TOS glasses have a higher glass transition temperature (Tg ) than trehalose, and they form a stable glass with crystallizing molecules, such as mannitol. Our data indicate that TOS are important for prolonged stabilization of cells against stress. The possible unique role of these solutes in protection against dry heat conditions is discussed.
Collapse
Affiliation(s)
- Timon T Wyatt
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584CT, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luo F, Wang Q, Yin C, Ge Y, Hu F, Huang B, Zhou H, Bao G, Wang B, Lu R, Li Z. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant. J Invertebr Pathol 2015; 130:154-64. [PMID: 25584432 DOI: 10.1016/j.jip.2015.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 12/01/2022]
Abstract
Beauveria bassiana is a kind of world-wide entomopathogenic fungus and can also colonize plant rhizosphere. Previous researches showed differential expression of genes when entomopathogenic fungi are cultured in insect or plant materials. However, so far there is no report on metabolic alterations of B. bassiana in the environments of insect or plant. The purpose of this paper is to address this problem. Herein, we first provide the metabolomic analysis of B. bassiana cultured in insect pupae extracts (derived from Euproctis pseudoconspersa and Bombyx mori, EPP and BMP), plant root exudates (derived from asparagus and carrot, ARE and CRE), distilled water and minimal media (MM), respectively. Principal components analysis (PCA) shows that mycelia cultured in pupae extracts and root exudates are evidently separated and individually separated from MM, which indicates that fungus accommodates to insect and plant environments by different metabolic regulation mechanisms. Subsequently, orthogonal projection on latent structure-discriminant analysis (OPLS-DA) identifies differential metabolites in fungus under three environments relative to MM. Hierarchical clustering analysis (HCA) is performed to cluster compounds based on biochemical relationships, showing that sphingolipids are increased in BMP but are decreased in EPP. This observation further implies that sphingolipid metabolism may be involved in the adaptation of fungus to different hosts. In the meantime, sphingolipids are significantly decreased in root exudates but they are not decreased in distilled water, suggesting that some components of the root exudates can suppress sphingolipid to down-regulate sphingolipid metabolism. Pathway analysis finds that fatty acid metabolism is maintained at high level but non-ribosomal peptides (NRP) synthesis is unaffected in mycelia cultured in pupae extracts. In contrast, fatty acid metabolism is not changed but NRP synthesis is high in mycelia cultured in root exudates and distilled water. This indicates that fungal fatty acid metabolism is enhanced when contacting insect, but when in the absence of insect hosts NRP synthesis is increased. Ornithine, arginine and GABA are decreased in mycelia cultured in pupae extracts and root exudates but remain unchanged in distilled water, which suggests that they may be associated with fungal cross-talk with insects and plants. Trehalose and mannitol are decreased while adenine is increased in three conditions, signifying carbon shortage in cells. Together, these results unveil that B. bassiana has differential metabolic responses in pupae extracts and root exudates, and metabolic similarity in root exudates and distilled water is possibly due to the lack of insect components.
Collapse
Affiliation(s)
- Feifei Luo
- Anhui Agricultural University, Hefei 230036, China; Shanghai Institute of Physiology and Ecology, Shanghai 200032, China
| | - Qian Wang
- Anhui Agricultural University, Hefei 230036, China
| | - Chunlin Yin
- Anhui Agricultural University, Hefei 230036, China
| | - Yinglu Ge
- Anhui Agricultural University, Hefei 230036, China
| | - Fenglin Hu
- Anhui Agricultural University, Hefei 230036, China.
| | - Bo Huang
- Anhui Agricultural University, Hefei 230036, China
| | - Hong Zhou
- Naval Postgraduate School, Monterey, CA 93943, USA
| | - Guanhu Bao
- Anhui Agricultural University, Hefei 230036, China
| | - Bin Wang
- Anhui Agricultural University, Hefei 230036, China
| | - Ruili Lu
- Anhui Agricultural University, Hefei 230036, China.
| | - Zengzhi Li
- Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
17
|
Wyatt TT, van Leeuwen MR, Wösten HAB, Dijksterhuis J. Mannitol is essential for the development of stress-resistant ascospores in Neosartorya fischeri (Aspergillus fischeri). Fungal Genet Biol 2014; 64:11-24. [PMID: 24412483 DOI: 10.1016/j.fgb.2013.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 12/24/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022]
Abstract
The polyol mannitol is one of the main compatible solutes in Neosartorya fischeri and accumulates in conidia and ascospores. Here, it is shown that biosynthesis of mannitol in N. fischeri mainly depends on mannitol 1-phosphate dehydrogenase (MpdA). Reporter studies and qPCR analysis demonstrated that mpdA is moderately expressed in vegetative hyphae and conidiophores, while it is highly expressed during development of ascospores. Deletion of mpdA reduced mannitol in whole cultures as much as 85% of the wild type, while trehalose levels had increased more than 4-fold. Decreased mannitol accumulation had no effect on mycelial growth irrespective of heat- or oxidative stress. Notably, conidia of the ΔmpdA strain had higher mannitol and lower trehalose levels. They were more sensitive to heat stress. The most distinct phenotype of mpdA deletion was the absence of full development of ascospores. Formation of cleistothecia, and asci was not affected. The ascus cell wall, however, did not dissolve and asci contained incompletely formed or aborted ascospores. Addition of the Mpd inhibitor nitrophenide to the wild type strain also resulted in disturbed ascospore formation. Taken together, these results show that mannitol has a role in sexual development of N. fischeri and in stress resistance of conidia.
Collapse
Affiliation(s)
- T T Wyatt
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - M R van Leeuwen
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - H A B Wösten
- Utrecht University, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - J Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
18
|
Abstract
Gene transfer has been identified as a prevalent and pervasive phenomenon and an important source of genomic innovation in bacteria. The role of gene transfer in microbial eukaryotes seems to be of a reduced magnitude but in some cases can drive important evolutionary innovations, such as new functions that underpin the colonization of different niches. The aim of this review is to summarize published cases that support the hypothesis that horizontal gene transfer (HGT) has played a role in the evolution of phytopathogenic traits in fungi and oomycetes. Our survey of the literature identifies 46 proposed cases of transfer of genes that have a putative or experimentally demonstrable phytopathogenic function. When considering the life-cycle steps through which a pathogen must progress, the majority of the HGTs identified are associated with invading, degrading, and manipulating the host. Taken together, these data suggest HGT has played a role in shaping how fungi and oomycetes colonize plant hosts.
Collapse
Affiliation(s)
- Darren Soanes
- Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom;
| | | |
Collapse
|
19
|
Mead O, Thynne E, Winterberg B, Solomon PS. Characterising the role of GABA and its metabolism in the wheat pathogen Stagonospora nodorum. PLoS One 2013; 8:e78368. [PMID: 24265684 PMCID: PMC3827059 DOI: 10.1371/journal.pone.0078368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 01/13/2023] Open
Abstract
A reverse genetics approach was used to investigate the role of γ-aminobutyric acid metabolism in the wheat pathogenic fungus Stagonospora nodorum. The creation of mutants lacking Sdh1, the gene encoding succinic semialdehyde dehydrogenase, resulted in strains that grew poorly on γ-aminobutyric acid as a nitrogen source. The sdh1 mutants were more susceptible to reactive oxygen stress but were less affected by increased growth temperatures. Pathogenicity assays revealed that the metabolism of γ-aminobutyric acid is required for complete pathogenicity. Growth assays of the wild-type and mutant strains showed that the inclusion of γ-aminobutyric acid as a supplement in minimal media (i.e., not as a nitrogen or carbon source) resulted in restricted growth but increased sporulation. The addition of glutamate, the precursor to GABA, had no effect on either growth or sporulation. The γ-aminobutyric acid effect on sporulation was found to be dose dependent and not restricted to Stagonospora nodorum with a similar effect observed in the dothideomycete Botryosphaeria sp. The positive effect on sporulation was assayed using isomers of γ-aminobutyric acid and other metabolites known to influence asexual development in Stagonospora nodorum but no effect was observed. These data demonstrate that γ-aminobutyric acid plays an important role in Stagonospora nodorum in responding to environmental stresses while also having a positive effect on asexual development.
Collapse
Affiliation(s)
- Oliver Mead
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Eli Thynne
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Britta Winterberg
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Peter S. Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
20
|
Du Fall LA, Solomon PS. The necrotrophic effector SnToxA induces the synthesis of a novel phytoalexin in wheat. THE NEW PHYTOLOGIST 2013; 200:185-200. [PMID: 23782173 DOI: 10.1111/nph.12356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/03/2013] [Indexed: 05/03/2023]
Abstract
Stagonospora nodorum and Pyrenophora tritici-repentis produce the effector ToxA that interacts with the dominant susceptibility gene in wheat, Tsn1. However, the way in which ToxA induces cell death and causes disease is unclear. Here, we performed comprehensive metabolite profiling of ToxA-infiltrated wheat (Triticum aestivum) to observe the secondary metabolite response to this effector. A strong induction of secondary metabolism subsequent to SnToxA infiltration was observed, including the monoamine serotonin. We established a novel role for serotonin as a phytoalexin in wheat and demonstrated that serotonin strongly inhibited sporulation of S. nodorum. Microscopy revealed that serotonin interferes with spore formation and maturation within pycnidial structures of the fungus. Subsequent analysis of S. nodorum exposed to serotonin revealed metabolites changes previously associated with sporulation, including trehalose and alternariol. Furthermore, we identified significantly lower concentrations of serotonin during infection compared with infiltration with ToxA, providing evidence that S. nodorum may suppress plant defence. This is the first study demonstrating induction of plant secondary metabolites in response to a necrotrophic effector that have significant antifungal potential against the pathogen. While it is generally accepted that necrotrophs exploit host cell responses, the current research strengthens the notion that necrotrophs require mechanisms to overcome plant defence to survive initial stages of infection.
Collapse
Affiliation(s)
- Lauren A Du Fall
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | - Peter S Solomon
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
21
|
Gummer JPA, Trengove RD, Oliver RP, Solomon PS. Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum. Microbiology (Reading) 2013; 159:1972-1985. [DOI: 10.1099/mic.0.067009-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Joel P. A. Gummer
- Metabolomics Australia, Murdoch University, Perth 6150, WA, Australia
- Separation Science and Metabolomics Laboratory, Murdoch University, Perth 6150, WA, Australia
| | - Robert D. Trengove
- Metabolomics Australia, Murdoch University, Perth 6150, WA, Australia
- Separation Science and Metabolomics Laboratory, Murdoch University, Perth 6150, WA, Australia
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Perth 6102, WA, Australia
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, Australian National University, ACT 0200, Australia
| |
Collapse
|
22
|
Luo F, Lu R, Zhou H, Hu F, Bao G, Huang B, Li Z. Metabolic effect of an exogenous gene on transgenic Beauveria bassiana using liquid chromatography-mass spectrometry-based metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7008-7017. [PMID: 23822565 DOI: 10.1021/jf401703b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetic modification of Beauveria bassiana with the scorpion neurotoxin aaIT gene can distinctly increase its insecticidal activity, whereas the effect of this exogenous gene on the metabolism of B. bassiana is unknown until now. Thus, we investigate the global metabolic profiling of mycelia and conidia of transgenic and wild-type B. bassiana by liquid chromatography-mass spectrometry (LC-MS). Principal component analysis (PCA) and orthogonal projection to latent structure discriminant analysis (OPLS-DA) reveal clear discrimination of wild-type mycelia and conidia from transgenic mycelia and conidia. The decrease of glycerophospholipids, carnitine, and fatty acids and the increase of oxylipins, glyoxylate, pyruvic acid, acetylcarnitine, fumarate, ergothioneine, and trehalose in transgenic mycelia indicate the enhanced oxidative reactions. In contrast, most metabolites related to oxidative stress are not altered significantly in conidia, which implies that there will be no significant oxidative stress reaction when the aaIT gene is quiescent in cells.
Collapse
Affiliation(s)
- Feifei Luo
- Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Calmes B, Guillemette T, Teyssier L, Siegler B, Pigné S, Landreau A, Iacomi B, Lemoine R, Richomme P, Simoneau P. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. FRONTIERS IN PLANT SCIENCE 2013; 4:131. [PMID: 23717316 PMCID: PMC3652318 DOI: 10.3389/fpls.2013.00131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/20/2013] [Indexed: 05/29/2023]
Abstract
In this study, the physiological functions of fungal mannitol metabolism in the pathogenicity and protection against environmental stresses were investigated in the necrotrophic fungus Alternaria brassicicola. Mannitol metabolism was examined during infection of Brassica oleracea leaves by sequential HPLC quantification of the major soluble carbohydrates and expression analysis of genes encoding two proteins of mannitol metabolism, i.e., a mannitol dehydrogenase (AbMdh), and a mannitol-1-phosphate dehydrogenase (AbMpd). Knockout mutants deficient for AbMdh or AbMpd and a double mutant lacking both enzyme activities were constructed. Their capacity to cope with various oxidative and drought stresses and their pathogenic behavior were evaluated. Metabolic and gene expression profiling indicated an increase in mannitol production during plant infection. Depending on the mutants, distinct pathogenic processes, such as leaf and silique colonization, sporulation, survival on seeds, were impaired by comparison to the wild-type. This pathogenic alteration could be partly explained by the differential susceptibilities of mutants to oxidative and drought stresses. These results highlight the importance of mannitol metabolism with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle.
Collapse
Affiliation(s)
- Benoit Calmes
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Thomas Guillemette
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Lény Teyssier
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Benjamin Siegler
- Plateforme d'Ingénierie et Analyses Moléculaires, Université d'AngersAngers Cedex, France
| | - Sandrine Pigné
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Anne Landreau
- SONAS EA 921, SFR 4207, QUASAV UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Université d'AngersAngers Cedex, France
| | | | - Rémi Lemoine
- Ecologie, Biologie des Interactions, UMR 7267 CNRS/Université de PoitiersPoitiers, France
| | - Pascal Richomme
- SONAS EA 921, SFR 4207, QUASAV UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Université d'AngersAngers Cedex, France
| | - Philippe Simoneau
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| |
Collapse
|
24
|
Oliver RP, Friesen TL, Faris JD, Solomon PS. Stagonospora nodorum: from pathology to genomics and host resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:23-43. [PMID: 22559071 DOI: 10.1146/annurev-phyto-081211-173019] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stagonospora nodorum is a major necrotrophic pathogen of wheat that causes the diseases S. nodorum leaf and glume blotch. A series of tools and resources, including functional genomics, a genome sequence, proteomics and metabolomics, host-mapping populations, and a worldwide collection of isolates, have enabled the dissection of pathogenicity mechanisms. Metabolic and signaling genes required for pathogenicity have been defined. Interaction with the host is dominated by interplay of fungal effectors that induce necrosis on wheat lines carrying specific sensitivity loci. As such, the pathogen has emerged as a model for the Pleosporales group of pathogens.
Collapse
Affiliation(s)
- Richard P Oliver
- Australian Center for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia.
| | | | | | | |
Collapse
|
25
|
Wang ZL, Lu JD, Feng MG. Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungus Beauveria bassiana. Environ Microbiol 2011; 14:2139-50. [DOI: 10.1111/j.1462-2920.2011.02654.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Use of 1H nuclear magnetic resonance to measure intracellular metabolite levels during growth and asexual sporulation in Neurospora crassa. EUKARYOTIC CELL 2011; 10:820-31. [PMID: 21460191 DOI: 10.1128/ec.00231-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conidiation is an asexual sporulation pathway that is a response to adverse conditions and is the main mode of dispersal utilized by filamentous fungal pathogens for reestablishment in a more favorable environment. Heterotrimeric G proteins (consisting of α, β, and γ subunits) have been shown to regulate conidiation in diverse fungi. Previous work has demonstrated that all three of the Gα subunits in the filamentous fungus Neurospora crassa affect the accumulation of mass on poor carbon sources and that loss of gna-3 leads to the most dramatic effects on conidiation. In this study, we used (1)H nuclear magnetic resonance (NMR) to profile the metabolome of N. crassa in extracts isolated from vegetative hyphae and conidia from cultures grown under conditions of high or low sucrose. We compared wild-type and Δgna-3 strains to determine whether lack of gna-3 causes a significant difference in the global metabolite profile. The results demonstrate that the global metabolome of wild-type hyphae is influenced by carbon availability. The metabolome of the Δgna-3 strain cultured on both high and low sucrose is similar to that of the wild type grown on high sucrose, suggesting an overall defect in nutrient sensing in the mutant. However, analysis of individual metabolites revealed differences in wild-type and Δgna-3 strains cultured under conditions of low and high sucrose.
Collapse
|
27
|
Krahulec S, Armao GC, Klimacek M, Nidetzky B. Enzymes of mannitol metabolism in the human pathogenic fungus Aspergillus fumigatus--kinetic properties of mannitol-1-phosphate 5-dehydrogenase and mannitol 2-dehydrogenase, and their physiological implications. FEBS J 2011; 278:1264-76. [PMID: 21299839 DOI: 10.1111/j.1742-4658.2011.08047.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human pathogenic fungus Aspergillus fumigatus accumulates large amounts of intracellular mannitol to enhance its resistance against defense strategies of the infected host. To explore their currently unknown roles in mannitol metabolism, we studied A. fumigatus mannitol-1-phosphate 5-dehydrogenase (AfM1PDH) and mannitol 2-dehydrogenase (AfM2DH), each recombinantly produced in Escherichia coli, and performed a detailed steady-state kinetic characterization of the two enzymes at 25 °C and pH 7.1. Primary kinetic isotope effects resulting from deuteration of alcohol substrate or NADH showed that, for AfM1PDH, binding of D-mannitol 1-phosphate and NAD(+) is random, whereas D-fructose 6-phosphate binds only after NADH has bound to the enzyme. Binding of substrate and NAD(H) by AfM2DH is random for both D-mannitol oxidation and D-fructose reduction. Hydride transfer is rate-determining for D-mannitol 1-phosphate oxidation by AfM1PDH (k(cat) = 10.6 s(-1)) as well as D-fructose reduction by AfM2DH (k(cat) = 94 s(-1)). Product release steps control the maximum rates in the other direction of the two enzymatic reactions. Free energy profiles for the enzymatic reaction under physiological boundary conditions suggest that AfM1PDH primarily functions as a D-fructose-6-phosphate reductase, whereas AfM2DH acts in D-mannitol oxidation, thus establishing distinct routes for production and mobilization of mannitol in A. fumigatus. ATP, ADP and AMP do not affect the activity of AfM1PDH, suggesting the absence of flux control by cellular energy charge at the level of D-fructose 6-phosphate reduction. AfM1PDH is remarkably resistant to inactivation by heat (half-life at 40 °C of 20 h), consistent with the idea that formation of mannitol is an essential component of the temperature stress response of A. fumigatus. Inhibition of AfM1PDH might be a useful target for therapy of A. fumigatus infections.
Collapse
Affiliation(s)
- Stefan Krahulec
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| | | | | | | |
Collapse
|
28
|
Ceccaroli P, Buffalini M, Saltarelli R, Barbieri E, Polidori E, Ottonello S, Kohler A, Tisserant E, Martin F, Stocchi V. Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. THE NEW PHYTOLOGIST 2011; 189:751-764. [PMID: 21039570 DOI: 10.1111/j.1469-8137.2010.03520.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Primary carbohydrate metabolism plays a special role related to carbon/nitrogen exchange, as well as metabolic support of fruiting body development, in ectomycorrhizal macrofungi. In this study, we used information retrieved from the recently sequenced Tuber melanosporum genome, together with transcriptome analysis data and targeted validation experiments, to construct the first genome-wide catalogue of the proteins supporting carbohydrate metabolism in a plant-symbiotic ascomycete. • More than 100 genes coding for enzymes of the glycolysis, pentose phosphate, tricarboxylic acid, glyoxylate and methylcitrate pathways, glycogen, trehalose and mannitol metabolism and cell wall precursor were annotated. Transcriptional regulation of these pathways in different stages of the T. melanosporum lifecycle was investigated using whole-genome oligoarray expression data together with real-time reverse transcription-polymerase chain reaction analysis of selected genes. • The most significant results were the identification of methylcitrate cycle genes and of an acid invertase, the first enzyme of this kind to be described in a plant-symbiotic filamentous fungus. • A subset of transcripts coding for trehalose, glyoxylate and methylcitrate enzymes was up-regulated in fruiting bodies, whereas genes involved in mannitol and glycogen metabolism were preferentially expressed in mycelia and ectomycorrhizas, respectively. These data indicate a high degree of lifecycle stage specialization for particular branches of carbohydrate metabolism in T. melanosporum.
Collapse
Affiliation(s)
- P Ceccaroli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - M Buffalini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - R Saltarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - E Barbieri
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - E Polidori
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - S Ottonello
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - A Kohler
- INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, 54280 Champenoux, France
| | - E Tisserant
- INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, 54280 Champenoux, France
| | - F Martin
- INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, 54280 Champenoux, France
| | - V Stocchi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| |
Collapse
|
29
|
Lowe RGT, Allwood JW, Galster AM, Urban M, Daudi A, Canning G, Ward JL, Beale MH, Hammond-Kosack KE. A combined ¹H nuclear magnetic resonance and electrospray ionization-mass spectrometry analysis to understand the basal metabolism of plant-pathogenic Fusarium spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1605-18. [PMID: 20718668 DOI: 10.1094/mpmi-04-10-0092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many ascomycete Fusarium spp. are plant pathogens that cause disease on both cereal and noncereal hosts. Infection of wheat ears by Fusarium graminearum and F. culmorum typically results in bleaching and a subsequent reduction in grain yield. Also, a large proportion of the harvested grain can be spoiled when the colonizing Fusarium mycelia produce trichothecene mycotoxins, such as deoxynivalenol (DON). In this study, we have explored the intracellular polar metabolome of Fusarium spp. in both toxin-producing and nonproducing conditions in vitro. Four Fusarium spp., including nine well-characterized wild-type field isolates now used routinely in laboratory experimentation, were explored. A metabolic "triple-fingerprint" was recorded using (1)H nuclear magnetic resonance and direct-injection electrospray ionization-mass spectroscopy in both positive- and negative-ionization modes. These combined metabolomic analyses revealed that this technique is sufficient to resolve different wild-type isolates and different growth conditions. Principal components analysis was able to resolve the four species explored-F. graminearum, F. culmorum, F. pseudograminearum, and F. venenatum-as well as individual isolate differences from the same species. The external nutritional environment was found to have a far greater influence on the metabolome than the genotype of the organism. Conserved responses to DON-inducing medium were evident and included increased abundance of key compatible solutes, such as glycerol and mannitol. In addition, the concentration of γ-aminobutyric acid was elevated, indicating that the cellular nitrogen status may be affected by growth on DON-inducing medium.
Collapse
Affiliation(s)
- Rohan G T Lowe
- Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum. EUKARYOTIC CELL 2010; 9:1100-8. [PMID: 20495056 DOI: 10.1128/ec.00064-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Stagonospora nodorum StuA transcription factor gene SnStuA was identified by homology searching in the genome of the wheat pathogen Stagonospora nodorum. Gene expression analysis revealed that SnStuA transcript abundance increased throughout infection and in vitro growth to peak during sporulation. To investigate its role, the gene was deleted by homologous recombination. The growth of the resulting mutants was retarded on glucose compared to the wild-type growth, and the mutants also failed to sporulate. Glutamate as a sole carbon source restored the growth rate defect observed on glucose, although sporulation remained impaired. The SnstuA strains were essentially nonpathogenic, with only minor growth observed around the point of inoculation. The role of SnstuA was investigated using metabolomics, which revealed that this gene's product played a key role in regulating central carbon metabolism, with glycolysis, the TCA cycle, and amino acid synthesis all affected in the mutants. SnStuA was also found to positively regulate the synthesis of the mycotoxin alternariol. Gene expression studies on the recently identified effectors in Stagonospora nodorum found that SnStuA was a positive regulator of SnTox3 but was not required for the expression of ToxA. This study has uncovered a multitude of novel regulatory targets of SnStuA and has highlighted the critical role of this gene product in the pathogenicity of Stagonospora nodorum.
Collapse
|
31
|
Carollo CA, Calil ALA, Schiave LA, Guaratini T, Roberts DW, Lopes NP, Braga GU. Fungal tyrosine betaine, a novel secondary metabolite from conidia of entomopathogenic Metarhizium spp. fungi. Fungal Biol 2010; 114:473-80. [DOI: 10.1016/j.funbio.2010.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 02/05/2010] [Accepted: 03/19/2010] [Indexed: 11/30/2022]
|
32
|
Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Biochem J 2010; 427:323-32. [DOI: 10.1042/bj20091813] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to redefine the mannitol pathway in the necrotrophic plant pathogen Botrytis cinerea, we used a targeted deletion strategy of genes encoding two proteins of mannitol metabolism, BcMTDH (B. cinerea mannitol dehydrogenase) and BcMPD (B. cinerea mannitol-1-phosphate dehydrogenase). Mobilization of mannitol and quantification of Bcmpd and Bcmtdh gene transcripts during development and osmotic stress confirmed a role for mannitol as a temporary and disposable carbon storage compound. In order to study metabolic fluxes, we followed conversion of labelled hexoses in wild-type and ΔBcmpd and ΔBcmtdh mutant strains by in vivo NMR spectroscopy. Our results revealed that glucose and fructose were metabolized via the BcMPD and BcMTDH pathways respectively. The existence of a novel mannitol phosphorylation pathway was also suggested by the NMR investigations. This last finding definitively challenged the existence of the originally postulated mannitol cycle in favour of two simultaneously expressed pathways. Finally, physiological and biochemical studies conducted on double deletion mutants (ΔBcmpdΔBcmtdh) showed that mannitol was still produced despite a complete alteration of both mannitol biosynthesis pathways. This strongly suggests that one or several additional undescribed pathways could participate in mannitol metabolism in B. cinerea.
Collapse
|
33
|
Spatial and developmental differentiation of mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase in Aspergillus niger. EUKARYOTIC CELL 2010; 9:1398-402. [PMID: 20305000 DOI: 10.1128/ec.00363-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of a mannitol cycle in fungi has been subject to discussion for many years. Recent studies have found no evidence for the presence of this cycle and its putative role in regenerating NADPH. However, all enzymes of the cycle could be measured in cultures of Aspergillus niger. In this study we have analyzed the localization of two enzymes from the pathway, mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase, and the expression of their encoding genes in nonsporulating and sporulating cultures of A. niger. Northern analysis demonstrated that mpdA was expressed in both sporulating and nonsporulating mycelia, while expression of mtdA was expressed only in sporulating mycelium. More detailed studies using green fluorescent protein and dTomato fused to the promoters of mtdA and mpdA, respectively, demonstrated that expression of mpdA occurs in vegetative hyphae while mtdA expression occurs in conidiospores. Activity assays for MtdA and MpdA confirmed the expression data, indicating that streaming of these proteins is not likely to occur. These results confirm the absence of the putative mannitol cycle in A. niger as two of the enzymes of the cycle are not present in the same part of A. niger colonies. The results also demonstrate the existence of spore-specific genes and enzymes in A. niger.
Collapse
|
34
|
Casey T, Solomon PS, Bringans S, Tan KC, Oliver RP, Lipscombe R. Quantitative proteomic analysis of G-protein signalling inStagonospora nodorumusing isobaric tags for relative and absolute quantification. Proteomics 2010; 10:38-47. [DOI: 10.1002/pmic.200900474] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. J Mol Evol 2009; 70:85-97. [PMID: 20033398 DOI: 10.1007/s00239-009-9311-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Moniliophthora perniciosa and Moniliophthora roreri are phytopathogenic basidiomycete species that infect cacao causing two important diseases in this crop: "Witches' Broom" and "Frosty Pod Rot", respectively. The ability of species from this genus (Moniliophthora) to cause disease is exceptional in the family Marasmiaceae. Species in closely related genera including, Marasmius, Crinipellis, and Chaetocalathus, are mainly saprotrophs and are not known to cause disease. In this study, the possibility that this phytopathogenic lifestyle has been acquired by horizontal gene transfer (HGT) was investigated. A stringent genome comparison pipeline was used to identify potential genes that have been obtained by Moniliophthora through HGT. This search led to the identification of three genes: a metallo-dependent hydrolase (MDH), a mannitol phosphate dehydrogenase (MPDH), and a family of necrosis-inducing proteins (NEPs). Phylogenetic analysis of these genes suggests that Moniliophthora acquired NEPs from oomycetes, MDH from actinobacteria and MPDH from firmicutes. Based on the known gene functions and on previous studies of M. perniciosa infection and development, a correlation between gene acquisition and the evolution of the phytopathogenic genus Moniliophthora can be postulated.
Collapse
|
36
|
Tan KC, Ipcho SVS, Trengove RD, Oliver RP, Solomon PS. Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. MOLECULAR PLANT PATHOLOGY 2009; 10:703-15. [PMID: 19694958 PMCID: PMC6640398 DOI: 10.1111/j.1364-3703.2009.00565.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of data that could occupy a laboratory for years. When used in combination, they have the potential to comprehensively dissect a system at the transcriptional and translational level. Transcriptomics, or quantitative gene expression profiling, is arguably the most familiar to researchers in the field of fungal plant pathology. Microarrays have been the primary technique for the last decade, but others are now emerging. Proteomics has also been exploited by the fungal phytopathogen community, but perhaps not to its potential. A lack of genome sequence information has frustrated proteomics researchers and has largely contributed to this technique not fulfilling its potential. The coming of the genome sequencing era has partially alleviated this problem. Metabolomics is the most recent of these techniques to emerge and is concerned with the non-targeted profiling of all metabolites in a given system. Metabolomics studies on fungal plant pathogens are only just beginning to appear, although its potential to dissect many facets of the pathogen and disease will see its popularity increase quickly. This review assesses the impact of transcriptomics, proteomics and metabolomics on fungal plant pathology over the last decade and discusses their futures. Each of the techniques is described briefly with further reading recommended. Key examples highlighting the application of these technologies to fungal plant pathogens are also reviewed.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Australian Centre for Necrotrophic Fungal Pathogens, SABC, Faculty of Health Sciences, Murdoch University, Murdoch 6150, Australia
| | | | | | | | | |
Collapse
|
37
|
Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Virus Res 2009; 144:96-106. [PMID: 19374926 DOI: 10.1016/j.virusres.2009.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/28/2009] [Accepted: 04/05/2009] [Indexed: 11/23/2022]
Abstract
Fusarium graminearum virus-DK21 (FgV-DK21), which infects the plant pathogenic F. graminearum, perturbs host developmental processes such as sporulation, morphology, pigmentation, and attenuates the virulence (hypovirulence) of the host. To identify the differentially expressed F. graminearum proteins by FgV-DK21 infection, we have used two-dimensional electrophoresis with mass spectrometry using proteins extracted from virus-free and FgV-DK21-infected strains. A total of 148 spots showing an altered expression were identified by PDQuest program. Among these spots, 33 spots were exclusively analyzed including 14 spots from FgV-DK21-infected and 19 spots from virus-free strains by ESI-MS/MS analyses and successfully identified 23 proteins. Seven proteins including sporulation-specific gene SPS2, triose phosphate isomerase, nucleoside diphosphate kinase, and woronin body major protein precursor were induced or significantly up-regulated by FgV-DK21 infection. A significant decrease or down regulation of 16 proteins including enolase, saccharopine dehydrogenase, flavohemoglobin, mannitol dehydrogenase and malate dehydrogenase caused by FgV-DK21 infection was also identified. Variations of protein expression were also further investigated at the mRNA level by real-time RT-PCR analysis, which confirmed the proteomic data for 9 out of the representative 11 selected proteins including 5 proteins from up-regulated group and 6 proteins from down-regulated group. Further investigation of these differentially expressed proteins will provide novel insights into the molecular responses of F. graminearum to FgV-DK21 infection.
Collapse
|
38
|
Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum. Fungal Genet Biol 2009; 46:381-9. [PMID: 19233304 DOI: 10.1016/j.fgb.2009.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/30/2009] [Accepted: 02/08/2009] [Indexed: 11/21/2022]
Abstract
Stagonospora nodorum is a necrotrophic fungal pathogen that is the causal agent of leaf and glume blotch on wheat. S. nodorum is a polycyclic pathogen, whereby rain-splashed pycnidiospores attach to and colonise wheat tissue and subsequently sporulate again within 2-3weeks. As several cycles of infection are needed for a damaging infection, asexual sporulation is a critical phase of its infection cycle. A non-targeted metabolomics screen for sporulation-associated metabolites identified that trehalose accumulated significantly in concert with asexual sporulation both in vitro and in planta. A reverse-genetics approach was used to investigate the role of trehalose in asexual sporulation. Trehalose biosynthesis was disrupted by deletion of the gene Tps1, encoding a trehalose 6-phosphate synthase, resulting in almost total loss of trehalose during in vitro growth and in planta. In addition, lesion development and pycnidia formation were also significantly reduced in tps1 mutants. Reintroduction of the Tps1 gene restored trehalose biosynthesis, pathogenicity and sporulation to wild-type levels. Microscopic examination of tps1 infected wheat leaves showed that pycnidial formation often halted at an early stage of development. Further examination of the tps1 phenotype revealed that tps1 pycnidiospores exhibited a reduced germination rate while under heat stress, and tps1 mutants had a reduced growth rate while under oxidative stress. This study confirms a link between trehalose biosynthesis and pathogen fitness in S.nodorum.
Collapse
|
39
|
Dulermo T, Rascle C, Chinnici G, Gout E, Bligny R, Cotton P. Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. THE NEW PHYTOLOGIST 2009; 183:1149-1162. [PMID: 19500266 DOI: 10.1111/j.1469-8137.2009.02890.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The main steps for carbon acquisition and conversion by Botrytis cinerea during pathogenesis of sunflower cotyledon were investigated here. A sequential view of soluble carbon metabolites detected by NMR spectroscopy during infection is presented. Disappearance of plant hexoses and their conversion to fungal metabolites were investigated by expression analysis of an extended gene family of hexose transporters (Bchxts) and of the mannitol pathway, using quantitative PCR. In order to analyse the main fungal metabolic routes used by B. cinerea in real time, we performed, for the first time, in vivo NMR analyses during plant infection. During infection, B. cinerea converts plant hexoses into mannitol. Expression analysis of the sugar porter gene family suggested predominance for transcription induced upon low glucose conditions and regulated according to the developmental phase. Allocation of plant hexoses by the pathogen revealed a conversion to mannitol, trehalose and glycogen for glucose and a preponderant transformation of fructose to mannitol by a more efficient metabolic pathway. Uptake of plant hexoses by B. cinerea is based on a multigenic flexible hexose uptake system. Their conversion into mannitol, enabled by two simultaneously expressed pathways, generates a dynamic intracellular carbon pool.
Collapse
Affiliation(s)
- Thierry Dulermo
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Christine Rascle
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Gaetan Chinnici
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Elisabeth Gout
- UMR 5168 Réponse & Dynamique Cellulaires, Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier-CEA-CNRS-INRA, 17 rue des Martyrs, Grenoble F-38054, France
| | - Richard Bligny
- UMR 5168 Réponse & Dynamique Cellulaires, Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier-CEA-CNRS-INRA, 17 rue des Martyrs, Grenoble F-38054, France
| | - Pascale Cotton
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| |
Collapse
|
40
|
Li W, Csukai M, Corran A, Crowley P, Solomon PS, Oliver RP. Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease. PEST MANAGEMENT SCIENCE 2008; 64:1294-1302. [PMID: 18683907 DOI: 10.1002/ps.1632] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Malayamycin is a novel perhydrofuropyran C-nucleoside isolated from Streptomyces malaysiensis that shows promising antifungal activity, fully controlling a range of diseases when applied to plants at 100 microg mL(-1). The goal of this study was to determine the mode of action. RESULTS Malayamycin exhibited in vitro antifungal activity against Stagonospora nodorum (Berk) Castell & Germano, the cause of stagonospora nodorum blotch of wheat. Growth in liquid minimum medium was merely delayed at 50 microg mL(-1), but sporulation was suppressed by more than 50% by 10 microg mL(-1) of malayamycin. When applied to wheat seedlings 36 h prior to infection, 10 microg mL(-1) of malayamycin reduced lesion size and significantly reduced pycnidiation to only 5% of the non-treated level. A transcription factor gene, Mrg1 (malayamycin response gene) whose expression was upregulated by application of malayamycin, was identified. Both Mrg1 knockout and overexpression strains were created. These strains were fully pathogenic, suggesting that the expression of Mrg1 did not affect pathogenicity. Interestingly, a strain that expressed Mrg1 50 times more than wild type showed a significant reduction in sporulation. However, all the tested knockout and overexpression strains retained sensitivity to malayamycin. CONCLUSIONS Malayamycin is a new type of antifungal compound that acts primarily by inhibiting sporulation. Although Mrg1 may be involved in the sporulation process, it is not the major contributor for sporulation inhibition caused by malayamycin treatment.
Collapse
Affiliation(s)
- Wenfeng Li
- Australian Centre for Necrotrophic Fungal Pathogens, SABC, School of Veterinary and Biomedical Sciences, Murdoch University, Perth, WA, Australia
| | | | | | | | | | | |
Collapse
|
41
|
A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum. Fungal Genet Biol 2008; 45:1479-86. [DOI: 10.1016/j.fgb.2008.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/01/2008] [Accepted: 08/21/2008] [Indexed: 11/18/2022]
|
42
|
Tan KC, Heazlewood JL, Millar AH, Thomson G, Oliver RP, Solomon PS. A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development. EUKARYOTIC CELL 2008; 7:1916-29. [PMID: 18776038 PMCID: PMC2583533 DOI: 10.1128/ec.00237-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 08/22/2008] [Indexed: 11/20/2022]
Abstract
The fungus Stagonospora nodorum is a causal agent of leaf and glume blotch disease of wheat. It has been previously shown that inactivation of heterotrimeric G protein signaling in Stagonospora nodorum caused development defects and reduced pathogenicity [P. S. Solomon et al., Mol. Plant-Microbe Interact. 17:456-466, 2004]. In this study, we sought to identify targets of the signaling pathway that may have contributed to phenotypic defects of the signaling mutants. A comparative analysis of Stagonospora nodorum wild-type and Galpha-defective mutant (gna1) intracellular proteomes was performed via two-dimensional polyacrylamide gel electrophoresis. Several proteins showed significantly altered abundances when comparing the two strains. One such protein, the short-chain dehydrogenase Sch1, was 18-fold less abundant in the gna1 strain, implying that it is positively regulated by Galpha signaling. Gene expression and transcriptional enhanced green fluorescent protein fusion analyses of Sch1 indicates strong expression during asexual development. Mutant strains of Stagonospora nodorum lacking Sch1 demonstrated poor growth on minimal media and exhibited a significant reduction in asexual sporulation on all growth media examined. Detailed histological experiments on sch1 pycnidia revealed that the gene is required for the differentiation of the subparietal layers of asexual pycnidia resulting in a significant reduction in both pycnidiospore size and numbers.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, South Street, Murdoch 6150, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Vélëz H, Glassbrook NJ, Daub ME. Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata. FEMS Microbiol Lett 2008; 285:122-9. [PMID: 18549402 DOI: 10.1111/j.1574-6968.2008.01224.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mannitol has been hypothesized to play a role in antioxidant defense. In previous work, we confirmed the presence of the two mannitol biosynthetic enzymes, mannitol dehydrogenase (MtDH) and mannitol 1-phosphate 5-dehydrogenase (MPDH), in the fungus Alternaria alternata and created disruption mutants for both enzymes. These mutants were used to investigate the role of mannitol in pathogenicity of A. alternata on its host, tobacco. Conidia of all mutants were viable and germinated normally. GC-MS analysis demonstrated elevated levels of trehalose in the mutants, suggesting that trehalose may substitute for mannitol as a storage compound for germination. Tobacco inoculation showed no reduction in lesion severity caused by the MtDH mutant as compared with wild type; however, the MPDH mutant and a mutant in both enzymes caused significantly less disease. Microscopy analysis indicated that the double mutant was unaffected in the ability to germinate and produce appressoria on tobacco leaves and elicited a defense response from the host, indicating that it was able to penetrate and infect the host. We conclude that mannitol biosynthesis is required for pathogenesis of A. alternata on tobacco, but is not required for spore germination either in vitro or in planta or for initial infection.
Collapse
Affiliation(s)
- Heriberto Vélëz
- Department of Plant Pathology, NC State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
44
|
Characterization of recombinant Aspergillus fumigatus mannitol-1-phosphate 5-dehydrogenase and its application for the stereoselective synthesis of protio and deuterio forms of D-mannitol 1-phosphate. Carbohydr Res 2008; 343:1414-23. [PMID: 18452897 DOI: 10.1016/j.carres.2008.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/02/2008] [Accepted: 04/04/2008] [Indexed: 11/22/2022]
Abstract
A putative long-chain mannitol-1-phosphate 5-dehydrogenase from Aspergillus fumigatus (AfM1PDH) was overexpressed in Escherichia coli to a level of about 50% of total intracellular protein. The purified recombinant protein was a approximately 40-kDa monomer in solution and displayed the predicted enzymatic function, catalyzing NAD(H)-dependent interconversion of d-mannitol 1-phosphate and d-fructose 6-phosphate with a specific reductase activity of 170 U/mg at pH 7.1 and 25 degrees C. NADP(H) showed a marginal activity. Hydrogen transfer from formate to d-fructose 6-phosphate, mediated by NAD(H) and catalyzed by a coupled enzyme system of purified Candida boidinii formate dehydrogenase and AfM1PDH, was used for the preparative synthesis of d-mannitol 1-phosphate or, by applying an analogous procedure using deuterio formate, the 5-[2H] derivative thereof. Following the precipitation of d-mannitol 1-phosphate as barium salt, pure product (>95% by HPLC and NMR) was obtained in isolated yields of about 90%, based on 200 mM of d-fructose 6-phosphate employed in the reaction. In situ proton NMR studies of enzymatic oxidation of d-5-[2H]-mannitol 1-phosphate demonstrated that AfM1PDH was stereospecific for transferring the deuterium to NAD+, producing (4S)-[2H]-NADH. Comparison of maximum initial rates for NAD+-dependent oxidation of protio and deuterio forms of D-mannitol 1-phosphate at pH 7.1 and 25 degrees C revealed a primary kinetic isotope effect of 2.9+/-0.2, suggesting that the hydride transfer was strongly rate-determining for the overall enzymatic reaction under these conditions.
Collapse
|
45
|
Cao M, Koulman A, Johnson LJ, Lane GA, Rasmussen S. Advanced data-mining strategies for the analysis of direct-infusion ion trap mass spectrometry data from the association of perennial ryegrass with its endophytic fungus, Neotyphodium lolii. PLANT PHYSIOLOGY 2008; 146:1501-14. [PMID: 18287492 PMCID: PMC2287329 DOI: 10.1104/pp.107.112458] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 02/18/2008] [Indexed: 05/22/2023]
Abstract
Direct-infusion mass spectrometry (MS) was applied to study the metabolic effects of the symbiosis between the endophytic fungus Neotyphodium lolii and its host perennial ryegrass (Lolium perenne) in three different tissues (immature leaf, blade, and sheath). Unbiased direct-infusion MS using a linear ion trap mass spectrometer allowed metabolic effects to be determined free of any preconceptions and in a high-throughput fashion. Not only the full MS(1) mass spectra (range 150-1,000 mass-to-charge ratio) were obtained but also MS(2) and MS(3) product ion spectra were collected on the most intense MS(1) ions as described previously (Koulman et al., 2007b). We developed a novel computational methodology to take advantage of the MS(2) product ion spectra collected. Several heterogeneous MS(1) bins (different MS(2) spectra from the same nominal MS(1)) were identified with this method. Exploratory data analysis approaches were also developed to investigate how the metabolome differs in perennial ryegrass infected with N. lolii in comparison to uninfected perennial ryegrass. As well as some known fungal metabolites like peramine and mannitol, several novel metabolites involved in the symbiosis, including putative cyclic oligopeptides, were identified. Correlation network analysis revealed a group of structurally related oligosaccharides, which differed significantly in concentration in perennial ryegrass sheaths due to endophyte infection. This study demonstrates the potential of the combination of unbiased metabolite profiling using ion trap MS and advanced data-mining strategies for discovering unexpected perturbations of the metabolome, and generating new scientific questions for more detailed investigations in the future.
Collapse
Affiliation(s)
- Mingshu Cao
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | | | | | | | | |
Collapse
|
46
|
Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA. Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. PLANT PHYSIOLOGY 2008; 146:1440-53. [PMID: 18218971 PMCID: PMC2259065 DOI: 10.1104/pp.107.111898] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 01/17/2008] [Indexed: 05/04/2023]
Abstract
Lolium perenne cultivars differing in their capacity to accumulate water soluble carbohydrates (WSCs) were infected with three strains of fungal Neotyphodium lolii endophytes or left uninfected. The endophyte strains differed in their alkaloid profiles. Plants were grown at two different levels of nitrogen (N) supply in a controlled environment. Metabolic profiles of blades were analyzed using a variety of analytical methods. A total of 66 response variables were subjected to a principle components analysis and factor rotation. The first three rotated factors (46% of the total variance) were subsequently analyzed by analysis of variance. At high N supply nitrogenous compounds, organic acids and lipids were increased; WSCs, chlorogenic acid (CGA), and fibers were decreased. The high-sugar cultivar 'AberDove' had reduced levels of nitrate, most minor amino acids, sulfur, and fibers compared to the control cultivar 'Fennema', whereas WSCs, CGA, and methionine were increased. In plants infected with endophytes, nitrate, several amino acids, and, magnesium were decreased; WSCs, lipids, some organic acids, and CGA were increased. Regrowth of blades was stimulated at high N, and there was a significant endophyte x cultivar interaction on regrowth. Mannitol, a fungal specific sugar alcohol, was significantly correlated with fungal biomass. Our findings suggest that effects of endophytes on metabolic profiles of L. perenne can be considerable, depending on host plant characteristics and nutrient supply, and we propose that a shift in carbon/N ratios and in secondary metabolite production as seen in our study is likely to have impacts on herbivore responses.
Collapse
|
47
|
Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl Environ Microbiol 2007; 74:245-50. [PMID: 17981948 DOI: 10.1128/aem.02068-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypocrea atroviridis is frequently used as a photomorphogenetic model due to its ability to conidiate upon exposure to light. Light is thereby believed to be the primary trigger for spore formation. In contrast, we show here that conidiation is primarily carbon source dependent and that illumination plays a catalytic role; of a total of 95 tested carbon sources, only a small set of carbohydrates, polyols, and sugar acids allowed conidiation in darkness, and on most of them, conidiation was significantly more strongly expressed in light. In addition, there are also a number of carbon sources on which H. atroviridis conidiates in darkness, but light does not further stimulate the process. Yet on another small set of carbon sources (L-sorbitol, D-fucose, D- and L-arabinose, and erythritol), H. atroviridis shows better sporulation in darkness than in light. No sporulation was observed on organic acids and amino acids. Mutants with deletions in the two blue-light receptor proteins BLR-1 and BLR-2 generally showed weaker conidiation on a smaller number of carbon sources than did the parental strain, yet they clearly sporulated on 15 and 27 of the 95 carbon sources tested, respectively. Of the carbon sources supporting sporulation, only 11 supported the conidiation of both mutants, suggesting that the BLR-1 and BLR-2 receptors are variously involved in the carbon source-dependent regulation of spore formation. The addition of cyclic AMP, which has been reported to lead to conidiation in darkness, both positively and negatively affected sporulation and resulted in different effects in the parental strain and the two Deltablr mutants. Our data show that the carbon source is the prime determinant for conidiation and that it influences the organism's regulation of conidiation by means of BLR-1 and BLR-2 and their cross talk with cyclic AMP.
Collapse
|
48
|
Jobic C, Boisson AM, Gout E, Rascle C, Fèvre M, Cotton P, Bligny R. Metabolic processes and carbon nutrient exchanges between host and pathogen sustain the disease development during sunflower infection by Sclerotinia sclerotiorum. PLANTA 2007; 226:251-65. [PMID: 17219185 DOI: 10.1007/s00425-006-0470-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 12/15/2006] [Indexed: 05/11/2023]
Abstract
Interactions between the necrotrophic fungus Sclerotinia sclerotiorum and one of its hosts, Helianthus annuus L., were analyzed during fungal colonization of plant tissues. Metabolomic analysis, based on (13)C- and (31)P-NMR spectroscopy, was used to draw up the profiles of soluble metabolites of the two partners before interaction, and to trace the fate of metabolites specific of each partner during colonization. In sunflower cotyledons, the main soluble carbohydrates were glucose, fructose, sucrose and glutamate. In S. sclerotiorum extracts, glucose, trehalose and mannitol were the predominant soluble carbon stores. During infection, a decline in sugars and amino acids was observed in the plant and fungus total content. Sucrose and fructose, initially present almost exclusively in plant, were reduced by 85%. We used a biochemical approach to correlate the disappearance of sucrose with the expression and the activity of fungal invertase. The expression of two hexose transporters, Sshxt1 and Sshxt2, was enhanced during infection. A database search for hexose transporters homologues in the S. sclerotiorum genome revealed a multigenic sugar transport system. Furthermore, the composition of the pool of reserve sugars and polyols during infection was investigated. Whereas mannitol was produced in vitro and accumulated in planta, glycerol was exclusively produced in infected tissues and increased during colonization. The hypothesis that the induction of glycerol synthesis in S. sclerotiorum exerts a positive effect on osmotic protection of fungal cells and favors fungal growth in plant tissues is discussed. Taken together, our data revealed the importance of carbon-nutrient exchanges during the necrotrophic pathogenesis of S. sclerotiorum.
Collapse
Affiliation(s)
- Cécile Jobic
- Laboratoire de Pathogénie des Champignons Nécrotrophes, CNRS, UMR5122, Unité Microbiologie et Génétique, Université Lyon 1, Bat Lwoff, 10 rue Raphaël Dubois, Villeurbanne, 69622, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Solomon PS, Waters ODC, Oliver RP. Decoding the mannitol enigma in filamentous fungi. Trends Microbiol 2007; 15:257-62. [PMID: 17442575 DOI: 10.1016/j.tim.2007.04.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/19/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Mannitol is a 6-carbon polyol that is among the most abundant biochemical compounds in the biosphere. Mannitol has been ascribed a multitude of roles in filamentous fungi including carbohydrate storage, reservoir of reducing power, stress tolerance and spore dislodgement and/or dispersal. The advancement of genetic manipulation techniques in filamentous fungi has rapidly accelerated our understanding of the roles and metabolism of mannitol. The targeted deletion of genes encoding proteins of mannitol metabolism in several fungi, including phytopathogens, has proven that the metabolism of mannitol does not exist as a cycle and that many of the postulated roles are unsupported. These recent studies have provided a much needed focus on this mysterious metabolite and make this a fitting time to review the roles and metabolism of mannitol in filamentous fungi.
Collapse
Affiliation(s)
- Peter S Solomon
- Australian Centre for Necrotrophic Fungal Pathogens, SABC, Division of Health Sciences, Murdoch University, Perth, WA 6150, Australia.
| | | | | |
Collapse
|
50
|
Ceccaroli P, Saltarelli R, Guescini M, Polidori E, Buffalini M, Menotta M, Pierleoni R, Barbieri E, Stocchi V. Identification and characterization of the Tuber borchii D-mannitol dehydrogenase which defines a new subfamily within the polyol-specific medium chain dehydrogenases. Fungal Genet Biol 2007; 44:965-78. [PMID: 17317242 DOI: 10.1016/j.fgb.2007.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/28/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
A novel NADP(+)-dependent D-mannitol dehydrogenase and the corresponding gene from the plant symbiotic ascomycete fungus Tuber borchii was identified and characterized. The enzyme, called TbMDH, is a homotetramer with two zinc atoms per subunit. It catalyzed both D-fructose reduction and D-mannitol oxidation, although it showed the highest substrate specificity and catalytic efficiency for D-fructose. Co-factor specificity was restricted to NADP(H) and the reaction proceeded via a sequential ordered Bi Bi mechanism. The carbon responsive transcriptional pattern showed that Tbmdh is up-regulated when mycelia are transferred to a culture medium containing D-mannitol or D-fructose. The phylogenetic analysis showed TbMDH to be the first example of a fungal D-mannitol-2-dehydrogenase belonging to the medium-chain dehydrogenase/reductases (MDRs). The enzyme identified a new group of proteins, most of them annotated in databases as hypothetical zinc-dependent dehydrogenases, forming a distinct subfamily among the polyol dehydrogenase family.
Collapse
Affiliation(s)
- Paola Ceccaroli
- Istituto di Chimica Biologica Giorgio Fornaini, Università degli Studi di Urbino Carlo Bo, Via A Saffi 2, 61029, Urbino (PU), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|