1
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
2
|
Jia W, Li Y, Cheung KCP, Zheng X. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:865-878. [PMID: 37515688 DOI: 10.1007/s11427-023-2353-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/23/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BAs) play a crucial role in nutrient absorption and act as key regulators of lipid and glucose metabolism and immune homeostasis. Through the enterohepatic circulation, BAs are synthesized, metabolized, and reabsorbed, with a portion entering the vascular circulation and distributing systemically. This allows BAs to interact with receptors in all major organs, leading to organ-organ interactions that regulate both local and global metabolic processes, as well as the immune system. This review focuses on the whole-body effects of BA-mediated metabolic and immunological regulation, including in the brain, heart, liver, intestine, eyes, skin, adipose tissue, and muscle. Targeting BA synthesis and receptor signaling is a promising strategy for the development of novel therapies for various diseases throughout the body.
Collapse
Affiliation(s)
- Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kenneth C P Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Yang Y, Hsiao YC, Liu CW, Lu K. The Role of the Nuclear Receptor FXR in Arsenic-Induced Glucose Intolerance in Mice. TOXICS 2023; 11:833. [PMID: 37888683 PMCID: PMC10611046 DOI: 10.3390/toxics11100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Inorganic arsenic in drinking water is prioritized as a top environmental contaminant by the World Health Organization, with over 230 million people potentially being exposed. Arsenic toxicity has been well documented and is associated with a plethora of human diseases, including diabetes, as established in numerous animal and epidemiological studies. Our previous study revealed that arsenic exposure leads to the inhibition of nuclear receptors, including LXR/RXR. To this end, FXR is a nuclear receptor central to glucose and lipid metabolism. However, limited studies are available for understanding arsenic exposure-FXR interactions. Herein, we report that FXR knockout mice developed more profound glucose intolerance than wild-type mice upon arsenic exposure, supporting the regulatory role of FXR in arsenic-induced glucose intolerance. We further exposed mice to arsenic and tested if GW4064, a FXR agonist, could improve glucose intolerance and dysregulation of hepatic proteins and serum metabolites. Our data showed arsenic-induced glucose intolerance was remarkably diminished by GW4064, accompanied by a significant ratio of alleviation of dysregulation in hepatic proteins (83%) and annotated serum metabolites (58%). In particular, hepatic proteins "rescued" from arsenic toxicity by GW4064 featured members of glucose and lipid utilization. For instance, the expression of PCK1, a candidate gene for diabetes and obesity that facilitates gluconeogenesis, was repressed under arsenic exposure in the liver, but revived with the GW4064 supplement. Together, our comprehensive dataset indicates FXR plays a key role and may serve as a potential therapeutic for arsenic-induced metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
5
|
Wu J, Nagy LE, Wang L. The long and the small collide: LncRNAs and small heterodimer partner (SHP) in liver disease. Mol Cell Endocrinol 2021; 528:111262. [PMID: 33781837 PMCID: PMC8087644 DOI: 10.1016/j.mce.2021.111262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a large and diverse class of RNA molecules that are transcribed but not translated into proteins, with a length of more than 200 nucleotides. LncRNAs are involved in gene expression and regulation. The abnormal expression of lncRNAs is associated with disease pathogenesis. Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that plays a pivotal role in many biological processes by acting as a transcriptional repressor. In this review, we present the critical roles of SHP and summarize recent findings demonstrating the regulation between lncRNAs and SHP in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Li Wang
- Independent Researcher, Tucson, AZ, USA
| |
Collapse
|
6
|
Kim S, Lee N, Park ES, Yun H, Ha TU, Jeon H, Yu J, Choi S, Shin B, Yu J, Rhee SD, Choi Y, Rho J. T-Cell Death Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis. Mol Cells 2021; 44:1-12. [PMID: 33335079 PMCID: PMC7854182 DOI: 10.14348/molcells.2020.0143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 11/27/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.
Collapse
Affiliation(s)
- Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Nari Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Eui-Soon Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyeongseok Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Tae-Uk Ha
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyeon Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Seunga Choi
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Bongjin Shin
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jungeun Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sang Dal Rhee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
7
|
Flynn CR, Albaugh VL, Abumrad NN. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cell Mol Gastroenterol Hepatol 2019; 8:235-246. [PMID: 31075353 PMCID: PMC6664228 DOI: 10.1016/j.jcmgh.2019.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Bariatric surgery is the most effective and durable treatment for morbid obesity, with an unexplained yet beneficial side effect of restoring insulin sensitivity and improving glycemia, often before weight loss is observed. Among the many contributing mechanisms often cited, the altered handling of intestinal bile acids is of considerable therapeutic interest. Here, we review a growing body of literature examining the metabolic effects of bile acids ranging from their physical roles in dietary fat handling within the intestine to their functions as endocrine and paracrine hormones in potentiating responses to bariatric surgery. The roles of 2 important bile acid receptors, Takeda G-protein coupled receptor (also known as G-protein coupled bile acid receptor) and farnesoid X receptor, are highlighted as is downstream signaling through glucagon-like polypeptide 1 and its cognate receptor. Additional improvements in other phenotypes and potential contributions of commensal gut bacteria, such as Akkermansia muciniphila, which are manifest after Roux-en-Y gastric bypass and other emulations, such as gallbladder bile diversion to the ileum, are also discussed.
Collapse
Affiliation(s)
- Charles R. Flynn
- Correspondence Address correspondence to: Charles R. Flynn, PhD, 1161 21st Avenue S, CCC-2308 MCN, Nashville, Tennessee 37232-2730. fax: (615) 343-6456.
| | | | | |
Collapse
|
8
|
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that are involved in various biological processes including metabolism, reproduction, and development. Upon activation by their ligands, NRs bind to their specific DNA elements, exerting their biological functions by regulating their target gene expression. Bile acids are detergent-like molecules that are synthesized in the liver. They not only function as a facilitator for the digestion of lipids and fat-soluble vitamins but also serve as signaling molecules for several nuclear receptors to regulate diverse biological processes including lipid, glucose, and energy metabolism, detoxification and drug metabolism, liver regeneration, and cancer. The nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and small heterodimer partner (SHP) constitute an integral part of the bile acid signaling. This chapter reviews the role of the NRs in bile acid homeostasis, highlighting the regulatory functions of the NRs in lipid and glucose metabolism in addition to bile acid metabolism.
Collapse
|
9
|
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. J Hepatol 2018; 69:1099-1109. [PMID: 29981427 DOI: 10.1016/j.jhep.2018.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Embedded into a complex signaling network that coordinates glucose uptake, usage and production, the nuclear bile acid receptor FXR is expressed in several glucose-processing organs including the liver. Hepatic gluconeogenesis is controlled through allosteric regulation of gluconeogenic enzymes and by glucagon/cAMP-dependent transcriptional regulatory pathways. We aimed to elucidate the role of FXR in the regulation of fasting hepatic gluconeogenesis. METHODS The role of FXR in hepatic gluconeogenesis was assessed in vivo and in mouse primary hepatocytes. Gene expression patterns in response to glucagon and FXR agonists were characterized by quantitative reverse transcription PCR and microarray analysis. FXR phosphorylation by protein kinase A was determined by mass spectrometry. The interaction of FOXA2 with FXR was identified by cistromic approaches and in vitro protein-protein interaction assays. The functional impact of the crosstalk between FXR, the PKA and FOXA2 signaling pathways was assessed by site-directed mutagenesis, transactivation assays and restoration of FXR expression in FXR-deficient hepatocytes in which gene expression and glucose production were assessed. RESULTS FXR positively regulates hepatic glucose production through two regulatory arms, the first one involving protein kinase A-mediated phosphorylation of FXR, which allowed for the synergistic activation of gluconeogenic genes by glucagon, agonist-activated FXR and CREB. The second arm involves the inhibition of FXR's ability to induce the anti-gluconeogenic nuclear receptor SHP by the glucagon-activated FOXA2 transcription factor, which physically interacts with FXR. Additionally, knockdown of Foxa2 did not alter glucagon-induced and FXR agonist enhanced expression of gluconeogenic genes, suggesting that the PKA and FOXA2 pathways regulate distinct subsets of FXR responsive genes. CONCLUSIONS Thus, hepatic glucose production is regulated during physiological fasting by FXR, which integrates the glucagon/cAMP signal and the FOXA2 signal, by being post-translationally modified, and by engaging in protein-protein interactions, respectively. LAY SUMMARY Activation of the nuclear bile acid receptor FXR regulates gene expression networks, controlling lipid, cholesterol and glucose metabolism, which are mostly effective after eating. Whether FXR exerts critical functions during fasting is unknown. The results of this study show that FXR transcriptional activity is regulated by the glucagon/protein kinase A and the FOXA2 signaling pathways, which act on FXR through phosphorylation and protein-protein interactions, respectively, to increase hepatic glucose synthesis.
Collapse
|
10
|
Rudraiah S, Zhang X, Wang L. Nuclear Receptors as Therapeutic Targets in Liver Disease: Are We There Yet? Annu Rev Pharmacol Toxicol 2016; 56:605-626. [PMID: 26738480 DOI: 10.1146/annurev-pharmtox-010715-103209] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NR) are ligand-modulated transcription factors that play diverse roles in cell differentiation, development, proliferation, and metabolism and are associated with numerous liver pathologies such as cancer, steatosis, inflammation, fibrosis, cholestasis, and xenobiotic/drug-induced liver injury. The network of target proteins associated with NRs is extremely complex, comprising coregulators, small noncoding microRNAs, and long noncoding RNAs. The importance of NRs as targets of liver disease is exemplified by the number of NR ligands that are currently used in the clinics or in clinical trials with promising results. Understanding the regulation by NR during pathophysiological conditions, and identifying ligands for orphan NR, points to a potential therapeutic approach for patients with liver diseases. An overview of complex NR metabolic networks and their pharmacological implications in liver disease is presented here.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Xi Zhang
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Li Wang
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
11
|
Zhang HM, Wang X, Wu ZH, Liu HL, Chen W, Zhang ZZ, Chen D, Zeng TS. Beneficial effect of farnesoid X receptor activation on metabolism in a diabetic rat model. Mol Med Rep 2016; 13:2135-42. [PMID: 26782298 DOI: 10.3892/mmr.2016.4761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022] Open
Abstract
Farnesoid X receptor (FXR) is an important regulator of glucose and lipid homeostasis. However, the exact role of FXR in diabetes remains to be fully elucidated. The present study examined the effects of chenodeoxycholic acid (CDCA), an agonist of FXR, on metabolism profile in a rat model of type 2 diabetes mellitus (T2DM). Male Wistar rats (8‑week‑old; n=40) were randomized into the following four groups (n=10): Untreated control, CDCA‑treated, T2DM, and CDCA‑treated T2DM. To establish the T2DM model, the rats were fed a high‑fat diet (HFD) for 4 weeks and received a single low‑dose intraperitoneal injection of streptozotocin (30 mg/kg), followed by an additional 4 weeks of HFD feeding. CDCA was administrated (10 mg/kg/d) intraperitoneally for 10 days. Reverse transcription‑quantitative polymerase chain reaction and western blotting assays were performed to determine the RNA and protein expression of FXR, phosphoenolpyruvate carboxykinase, G6Pase, proliferator‑activated receptor‑γ coactivator‑1 and short heterodimer partner in rat liver tissue. The results revealed that FXR activation by CDCA did not reduce body weight, but it lowered the plasma levels of fasting glucose, insulin and triglycerides in the T2DM rats. CDCA administration reversed the downregulation of the mRNA and protein expression of FXR in the T2DM rat liver tissue samples. Furthermore, treatment with CDCA reduced the mRNA and protein expression levels of phosphoenolpyruvate carboxykinase, glucose 6‑phosphatase and peroxisome proliferator‑activated receptor‑γ coactivator‑1 in the liver tissue samples of the T2DM rats. By contrast, CDCA treatment increased the mRNA and protein expression levels of short heterodimer partner in the liver tissue samples of the T2DM rats. In conclusion, FXR agonist treatment induces beneficial effects on metabolism in the rat T2DM model. In conclusion, the present study indicated that the FXR agonist may be useful for the treatment of T2DM and hypertriglyceridemia.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Xuan Wang
- Department of Clinical Teaching and Research, College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan, Hubei 430015, P.R. China
| | - Zhao-Hong Wu
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Hui-Ling Liu
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Wei Chen
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Zhong-Zhi Zhang
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Dan Chen
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Tian-Shu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
12
|
Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 2015; 104:9-21. [PMID: 26706784 DOI: 10.1016/j.phrs.2015.12.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
Abstract
For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that these receptors regulate.
Collapse
|
13
|
Zou A, Lehn S, Magee N, Zhang Y. New Insights into Orphan Nuclear Receptor SHP in Liver Cancer. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26504773 PMCID: PMC4618403 DOI: 10.11131/2015/101162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small heterodimer partner (SHP; NR0B2) is a unique orphan nuclear receptor (NR) that contains a putative ligand-binding domain but lacks a DNA-binding domain. SHP is a transcriptional corepressor affecting diverse metabolic processes including bile acid synthesis, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology via interaction with multiple NRs and transcriptional factors (TFs). Hepatocellular carcinoma (HCC) is one of the most deadly human cancers worldwide with few therapeutic options and poor prognosis. Recently, it is becoming clear that SHP plays an antitumor role in the development of liver cancer. In this review, we summarize the most recent findings regarding the new SHP interaction partners, new structural insights into SHP’s gene repressing activity, and SHP protein posttranslational modifications by bile acids. We also discuss the pleiotropic role of SHP in regulating cell proliferation, apoptosis, DNA methylation, and inflammation that are related to antitumor role of SHP in HCC. Improving our understanding of SHP’s antitumor role in the development of liver cancer will provide new insights into developing novel treatments or prevention strategies. Future research will focus on developing more efficacious and specific synthetic SHP ligands for pharmaceutical applications in liver cancer and several metabolic diseases such as hypercholesterolemia, obesity, diabetes, and fatty liver disease.
Collapse
Affiliation(s)
- An Zou
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sarah Lehn
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
14
|
Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol 2013; 380:65-78. [PMID: 23523966 DOI: 10.1016/j.mce.2013.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 01/28/2023]
Abstract
In the past decades, glucocorticoid (GC) hormones and their cognate, intracellular receptor, the glucocorticoid receptor (GR), have been well established as critical checkpoints in mammalian energy homeostasis. Whereas many aspects in healthy nutrient metabolism require physiological levels and/or action of GC, aberrant GC/GR signalling has been linked to severe metabolic dysfunction, including obesity, insulin resistance and type 2 diabetes. Consequently, studies of the molecular mechanisms within the GC signalling axis have become a major focus in biomedical research, up-to-date particularly focusing on systemic glucose and lipid handling. However, with the availability of novel high throughput technologies and more sophisticated metabolic phenotyping capabilities, as-yet non-appreciated, metabolic functions of GC have been recently discovered, including regulatory roles of the GC/GR axis in protein and bile acid homeostasis as well as metabolic inter-organ communication. Therefore, this review summarises recent advances in GC/GR biology, and summarises findings relevant for basic and translational metabolic research.
Collapse
Affiliation(s)
- Adam J Rose
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | | |
Collapse
|
15
|
Kim TH, Kim MY, Jo SH, Park JM, Ahn YH. Modulation of the transcriptional activity of peroxisome proliferator-activated receptor gamma by protein-protein interactions and post-translational modifications. Yonsei Med J 2013; 54:545-59. [PMID: 23549795 PMCID: PMC3635639 DOI: 10.3349/ymj.2013.54.3.545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a nuclear receptor superfamily; members of which play key roles in the control of body metabolism principally by acting on adipose tissue. Ligands of PPARγ, such as thiazolidinediones, are widely used in the treatment of metabolic syndromes and type 2 diabetes mellitus (T2DM). Although these drugs have potential benefits in the treatment of T2DM, they also cause unwanted side effects. Thus, understanding the molecular mechanisms governing the transcriptional activity of PPARγ is of prime importance in the development of new selective drugs or drugs with fewer side effects. Recent advancements in molecular biology have made it possible to obtain a deeper understanding of the role of PPARγ in body homeostasis. The transcriptional activity of PPARγ is subject to regulation either by interacting proteins or by modification of the protein itself. New interacting partners of PPARγ with new functions are being unveiled. In addition, post-translational modification by various cellular signals contributes to fine-tuning of the transcriptional activities of PPARγ. In this review, we will summarize recent advancements in our understanding of the post-translational modifications of, and proteins interacting with, PPARγ, both of which affect its transcriptional activities in relation to adipogenesis.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Seong-Ho Jo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Man Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Maqdasy S, Baptissart M, Vega A, Baron S, Lobaccaro JMA, Volle DH. Cholesterol and male fertility: what about orphans and adopted? Mol Cell Endocrinol 2013; 368:30-46. [PMID: 22766106 DOI: 10.1016/j.mce.2012.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022]
Abstract
The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.
Collapse
|
17
|
A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J Lipids 2012; 2012:304292. [PMID: 22577560 PMCID: PMC3346990 DOI: 10.1155/2012/304292] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/05/2011] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptors (NRs) comprise one of the most abundant classes of transcriptional regulators of metabolic diseases and have emerged as promising pharmaceutical targets. Small heterodimer partner (SHP; NR0B2) is a unique orphan NR lacking a DNA-binding domain but contains a putative ligand-binding domain. SHP is a transcriptional regulator affecting multiple key biological functions and metabolic processes including cholesterol, bile acid, and fatty acid metabolism, as well as reproductive biology and glucose-energy homeostasis. About half of all mammalian NRs and several transcriptional coregulators can interact with SHP. The SHP-mediated repression of target transcription factors includes at least three mechanisms including direct interference with the C-terminal activation function 2 (AF2) coactivator domains of NRs, recruitment of corepressors, or direct interaction with the surface of NR/transcription factors. Future research must focus on synthetic ligands acting on SHP as a potential therapeutic target in a series of metabolic abnormalities. Current understanding about the pleiotropic role of SHP is examined in this paper, and principal metabolic aspects connected with SHP function will be also discussed.
Collapse
|
18
|
Bile Acid signaling in liver metabolism and diseases. J Lipids 2011; 2012:754067. [PMID: 21991404 PMCID: PMC3185234 DOI: 10.1155/2012/754067] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/04/2011] [Indexed: 12/12/2022] Open
Abstract
Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.
Collapse
|
19
|
Zhang Y, Hagedorn CH, Wang L. Role of nuclear receptor SHP in metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:893-908. [PMID: 20970497 PMCID: PMC3043166 DOI: 10.1016/j.bbadis.2010.10.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023]
Abstract
Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NR) superfamily that contains the dimerization and ligand-binding domain found in other family members, but lacks the conserved DNA-binding domain. The ability of SHP to bind directly to multiple NRs is crucial for its physiological function as a transcriptional inhibitor of gene expression. A wide variety of interacting partners for SHP have been identified, indicating the potential for SHP to regulate an array of genes in different biological pathways. In this review, we summarize studies concerning the structure and target genes of SHP and discuss recent progress in understanding the function of SHP in bile acid, cholesterol, triglyceride, glucose, and drug metabolism. In addition, we review the regulatory role of SHP in microRNA (miRNA) regulation, liver fibrosis and cancer progression. The fact that SHP controls a complex set of genes in multiple metabolic pathways suggests the intriguing possibility of developing new therapeutics for metabolic diseases, including fatty liver, dyslipidemia and obesity, by regulating SHP with small molecules. To achieve this goal, more progress regarding SHP ligands and protein structure will be required. Besides its metabolic regulatory function, studies by us and other groups provide strong evidence that SHP plays a critical role in the development of cancer, particularly liver and breast cancer. An increased understanding of the fundamental mechanisms by which SHP regulates the development of cancers will be critical in applying knowledge of SHP in diagnostic, therapeutic or preventive strategies for specific cancers. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
20
|
Wei D, Tao R, Zhang Y, White MF, Dong XC. Feedback regulation of hepatic gluconeogenesis through modulation of SHP/Nr0b2 gene expression by Sirt1 and FoxO1. Am J Physiol Endocrinol Metab 2011; 300:E312-20. [PMID: 21081708 PMCID: PMC3043623 DOI: 10.1152/ajpendo.00524.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein deacetylase Sirt1 has been implicated in the regulation of hepatic gluconeogenesis; however, the mechanisms are not fully understood. To further elucidate how Sirt1 regulates gluconeogenesis, we took a loss-of-function approach by deleting the coding DNA sequence for the catalytic domain of the Sirt1 gene in the liver of a wild-type mouse (LKO(Sirt)¹) or a genetic diabetic mouse in which hepatic insulin receptor substrates 1 and 2 are deleted (DKO(Irs½)). Whereas LKO(Sirt)¹ mice exhibited normal levels of fasting and fed blood glucose, inactivation of Sirt1 in DKO(Irs½) mice (TKO(Irs½:Sirt)¹) reduced blood glucose levels and moderately improved systemic glucose tolerance. Pyruvate tolerance was also significantly improved in TKO(Irs½:Sirt)¹ mice, suggesting that Sirt1 promotes hepatic gluconeogenesis in this diabetic mouse model. To understand why inactivation of hepatic Sirt1 does not alter blood glucose levels in the wild-type background, we searched for a potential cause and found that expression of small heterodimer partner (SHP, encoded by the Nr0b2 gene), an orphan nuclear receptor, which has been shown to suppress the activity of forkhead transcription factor FoxO1, was decreased in the liver of LKO(Sirt)¹ mice. Furthermore, our luciferase reporter assays and chromatin immunoprecipitation analysis revealed that the Nr0b2 gene is a target of FoxO1, which is also regulated by Sirt1. After the gene is upregulated, Nr0b2 can feed back and repress FoxO1- and Sirt1-activated G6pc and Pdk4 gene expression. Thus, our results suggest that Sirt1 can both positively and negatively regulate hepatic gluconeogenesis through FoxO1 and Nr0b2 and keep this physiological process in control.
Collapse
Affiliation(s)
- Dan Wei
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | |
Collapse
|
21
|
Lee JM, Seo WY, Song KH, Chanda D, Kim YD, Kim DK, Lee MW, Ryu D, Kim YH, Noh JR, Lee CH, Chiang JYL, Koo SH, Choi HS. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner. J Biol Chem 2010; 285:32182-91. [PMID: 20688914 DOI: 10.1074/jbc.m110.134890] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Orphan nuclear receptor small heterodimer partner (SHP) plays a key role in transcriptional repression of gluconeogenic enzyme gene expression. Here, we show that SHP inhibited protein kinase A-mediated transcriptional activity of cAMP-response element-binding protein (CREB), a major regulator of glucose metabolism, to modulate hepatic gluconeogenic gene expression. Deletion analysis of phosphoenolpyruvate carboxykinase (PEPCK) promoter demonstrated that SHP inhibited forskolin-mediated induction of PEPCK gene transcription via inhibition of CREB transcriptional activity. In vivo imaging demonstrated that SHP inhibited CREB-regulated transcription coactivator 2 (CRTC2)-mediated cAMP-response element-driven promoter activity. Furthermore, overexpression of SHP using adenovirus SHP decreased CRTC2-dependent elevations in blood glucose levels and PEPCK or glucose-6-phosphatase (G6Pase) expression in mice. SHP and CREB physically interacted and were co-localized in vivo. Importantly, SHP inhibited both wild type CRTC2 and S171A (constitutively active form of CRTC2) coactivator activity and disrupted CRTC2 recruitment on the PEPCK gene promoter. In addition, metformin or overexpression of a constitutively active form of AMPK (Ad-CA-AMPK) inhibited S171A-mediated PEPCK and G6Pase gene expression, and hepatic glucose production and knockdown of SHP partially relieved the metformin- and Ad-CA-AMPK-mediated repression of hepatic gluconeogenic enzyme gene expression in primary rat hepatocytes. In conclusion, our results suggest that a delayed effect of metformin-mediated induction of SHP gene expression inhibits CREB-dependent hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Ji-Min Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cao R, Cronk ZX, Zha W, Sun L, Wang X, Fang Y, Studer E, Zhou H, Pandak WM, Dent P, Gil G, Hylemon PB. Bile acids regulate hepatic gluconeogenic genes and farnesoid X receptor via G(alpha)i-protein-coupled receptors and the AKT pathway. J Lipid Res 2010; 51:2234-44. [PMID: 20305288 PMCID: PMC2903791 DOI: 10.1194/jlr.m004929] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bile acids are important regulatory molecules that can activate specific nuclear receptors and cell signaling pathways in the liver and gastrointestinal tract. In the current study, the chronic bile fistula (CBF) rat model and primary rat hepatocytes (PRH) were used to study the regulation of gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) and the gene encoding short heterodimeric partner (SHP) by taurocholate (TCA). The intestinal infusion of TCA into the CBF rat rapidly (1h) activated the AKT (approximately 9-fold) and ERK1/2 (3- to 5-fold) signaling pathways, downregulated (approximately 50%, 30 min) the mRNA levels of PEPCK and G-6-Pase, and induced (14-fold in 3 h) SHP mRNA. TCA rapidly ( approximately 50%, 1-2 h) downregulated PEPCK and G-6-Pase mRNA levels in PRH. The downregulation of these genes by TCA was blocked by pretreatment of PRH with pertussis toxin (PTX). In PRH, TCA plus insulin showed a significantly stronger inhibition of glucose secretion/synthesis from lactate and pyruvate than either alone. The induction of SHP mRNA in PRH was strongly blocked by inhibition of PI3 kinase or PKCzeta by specific chemical inhibitors or knockdown of PKCzeta by siRNA encoded by a recombinant lentivirus. Activation of the insulin signaling pathway appears to be linked to the upregulation of farnesoid X receptor functional activity and SHP induction.
Collapse
Affiliation(s)
- Risheng Cao
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Zhumei Xu Cronk
- Departments of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Weibin Zha
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Lixin Sun
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Xuan Wang
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Youwen Fang
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Elaine Studer
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Huiping Zhou
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298,McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - William M. Pandak
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298,McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Paul Dent
- Departments of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Gregorio Gil
- Departments of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Phillip B. Hylemon
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298,McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298,To whom correspondence should be addressed. e-mail
| |
Collapse
|
23
|
Kim K, Kim KH, Cheong J. Hepatitis B virus X protein impairs hepatic insulin signaling through degradation of IRS1 and induction of SOCS3. PLoS One 2010; 5:e8649. [PMID: 20351777 PMCID: PMC2843628 DOI: 10.1371/journal.pone.0008649] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/18/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a major cause of chronic liver diseases, and frequently results in hepatitis, cirrhosis, and ultimately hepatocellular carcinoma. The role of HCV in associations with insulin signaling has been elucidated. However, the pathogenesis of HBV-associated insulin signaling remains to be clearly characterized. Therefore, we have attempted to determine the mechanisms underlying the HBV-associated impairment of insulin signaling. METHODOLOGY The expressions of insulin signaling components were investigated in HBx-transgenic mice, HBx-constitutive expressing cells, and transiently HBx-transfected cells. Protein and gene expression was examined by Western blot, immunohistochemistry, RT-PCR, and promoter assay. Protein-protein interaction was detected by coimmunoprecipitation. PRINCIPAL FINDINGS HBx induced a reduction in the expression of IRS1, and a potent proteasomal inhibitor blocked the downregulation of IRS1. Additionally, HBx enhanced the expression of SOCS3 and induced IRS1 ubiquitination. Also, C/EBPalpha and STAT3 were involved in the HBx-induced expression of SOCS3. HBx interfered with insulin signaling activation and recovered the insulin-mediated downregulation of gluconeogenic genes. CONCLUSIONS/SIGNIFICANCE These results provide direct experimental evidences for the contribution of HBx in the impairment of insulin signaling.
Collapse
Affiliation(s)
- KyeongJin Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kook Hwan Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - JaeHun Cheong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
24
|
Seo HY, Kim MK, Min AK, Kim HS, Ryu SY, Kim NK, Lee KM, Kim HJ, Choi HS, Lee KU, Park KG, Lee IK. Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases cAMP-stimulated hepatic gluconeogenesis via inhibition of CREB. Endocrinology 2010; 151:561-8. [PMID: 20022930 DOI: 10.1210/en.2009-0641] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of genes encoding key hepatic gluconeogenic enzymes, including phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), is regulated at the transcriptional level by a network of transcription factors and cofactors, including cAMP response element-binding protein (CREB). It has been suggested that increased endoplasmic reticulum (ER) stress in the liver impairs hepatic glucose metabolism. However, the direct effect of ER stress on hepatic gluconeogenesis is still not clear. Here, we investigated whether ER stress influences hepatic gluconeogenesis and whether this process is mediated by activating transcription factor 6 (ATF6) through the inhibition of cAMP-mediated activation of CREB. A cAMP stimulant, forskolin, and 8-bromoadenosine-cAMP increased PEPCK and G6Pase mRNA expression in H4IIE rat hepatoma cells, and ER stress induced by tunicamycin or thapsigargin decreased the expression of these genes in forskolin or 8-bromoadenosine-cAMP-treated cells. In a transient transfection study, ATF6 inhibited the PEPCK and G6Pase promoters. Also, adenovirus-mediated overexpression of ATF6 in H4IIE cells decreased forskolin-stimulated PEPCK and G6Pase gene expression. Moreover, the inhibition of endogenous ATF6 expression by small interfering RNAs restored the ER stress-induced suppression of PEPCK and G6Pase gene expression. Transient transfection of ATF6 inhibited transactivation by CREB on the PEPCK and G6Pase promoters, and a gel shift assay showed that Ad-ATF6 inhibits forskolin-stimulated CREB DNA-binding activity. Finally, we found that expression of ATF6 decreased fasting-induced PEPCK, G6Pase mRNA expression, and blood glucose levels in mice. Taken together, these data extend our understanding of ER stress and the regulation of liver gluconeogenesis by ATF6.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Keimyung University School of Medicine, 194 Dongsan-dong, Jung-gu, Daegu, 700-712, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res 2009; 50:1509-20. [PMID: 19346331 PMCID: PMC2724047 DOI: 10.1194/jlr.r900007-jlr200] [Citation(s) in RCA: 526] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/03/2009] [Indexed: 02/06/2023] Open
Abstract
In the past, bile acids were considered to be just detergent molecules derived from cholesterol in the liver. They were known to be important for the solubilization of cholesterol in the gallbladder and for stimulating the absorption of cholesterol, fat-soluble vitamins, and lipids from the intestines. However, during the last two decades, it has been discovered that bile acids are regulatory molecules. Bile acids have been discovered to activate specific nuclear receptors (farnesoid X receptor, preganane X receptor, and vitamin D receptor), G protein coupled receptor TGR5 (TGR5), and cell signaling pathways (c-jun N-terminal kinase 1/2, AKT, and ERK 1/2) in cells in the liver and gastrointestinal tract. Activation of nuclear receptors and cell signaling pathways alter the expression of numerous genes encoding enzyme/proteins involved in the regulation of bile acid, glucose, fatty acid, lipoprotein synthesis, metabolism, transport, and energy metabolism. They also play a role in the regulation of serum triglyceride levels in humans and rodents. Bile acids appear to function as nutrient signaling molecules primarily during the feed/fast cycle as there is a flux of these molecules returning from the intestines to the liver following a meal. In this review, we will summarize the current knowledge of how bile acids regulate hepatic lipid and glucose metabolism through the activation of specific nuclear receptors and cell signaling pathways.
Collapse
Affiliation(s)
- Phillip B Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0678, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Kim K, Choi YH, Kim HH, Cheong J. The orphan nuclear receptor SHP inhibits apoptosis during the monocytic differentiation by inducing p21WAF1. Exp Mol Med 2009; 41:429-39. [PMID: 19322021 DOI: 10.3858/emm.2009.41.6.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Small heterodimer partner (SHP) is an atypical member of nuclear receptor superfamily that lacks a DNA-binding domain. In previous study, we showed that SHP, c-jun, p65 of NF-gammaB subunits, and p21WAF1 expression was increased during monocytic differentiaton with the exposure of human leukemia cells to a differentiation agent, PMA. In this study, c-Jun and p65 were shown to mediate the transcriptional activation of the SHP promoter. In addition, SHP induced the cell cycle regulatory protein levels and cooperatively increased an induction of p21WAF1 expression with p65. Furthermore, SHP protected differentiated cells from etoposide-induced cellular apoptosis through the induction and cytoplasmic sequestration of p21WAF1. Complex formation between SHP and p21WAF1 was demonstrated by means of coimmunoprecipitation. These results suggest that SHP prolongs a cellular survival of differentiating monocytes through the transcriptional regulation of target genes of cell survival and differentiation.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea
| | | | | | | |
Collapse
|
27
|
Kim K, Kim HY, Son EJ, Heo J, Cheong J. Oleic acid inhibits hepatic insulin signaling through deregulation of STAT3 activation and C/EBPalpha expression. Cell Signal 2009; 21:1269-76. [PMID: 19332118 DOI: 10.1016/j.cellsig.2009.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 02/25/2009] [Accepted: 03/10/2009] [Indexed: 01/12/2023]
Abstract
Elevated free fatty acids (FFAs) are known to induce the impairment of insulin signaling. However, the insulin signaling components that are deregulated by FFAs in the liver remain unknown. Here, we examined the mechanisms of disruption of oleic acid on insulin signaling in hepatic cell lines. Oleic acid decreased the expression of insulin receptor substrate (IRS) 1 and augmented the expression of suppressor of cytokine signaling (SOCS) 3, which can induce the proteasome-mediated degradation of IRS. Moreover, oleic acid enhanced the phosphorylation of signal transducer and activator of transcription (STAT) 3 and induced the expression of CCAAT/enhancer-binding protein alpha (C/EBPalpha). The interaction between STAT3 and C/EBPalpha was increased by oleic acid; these proteins subsequently enhanced the promoter activity of SOCS3 in the presence of oleic acid. Finally, oleic acid impaired the insulin signaling cascades through inhibition of the alpha-associated signaling pathway.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Wen YA, Liu D, Xiao YY, Luo D, Dong YF, Zhang LP. Enhanced glucose synthesis in three-dimensional hepatocyte collagen matrix. Toxicol In Vitro 2009; 23:744-7. [PMID: 19268699 DOI: 10.1016/j.tiv.2009.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 12/31/2008] [Accepted: 02/22/2009] [Indexed: 10/21/2022]
Abstract
Three-dimensional (3D) cell culture model offers a unique opportunity to study hepatocytes that require extracellular matrix to keep the cells at the differentiated state. In this report, we cultured isolated mouse hepatocytes in a 3D collagen matrix system and developed a protocol to measure glucose production at 3h, 6h, 18h and 24h after culture. The results demonstrated that hepatocytes cultured under 3D collagen matrix condition consistently produced glucose at 240-290 mg/10(6) cells for up to 24h. Contrarily, hepatocytes cultured under traditional monolayer condition produced less than 50 mg/10(6) cells glucose. We demonstrated higher expression of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme for the synthesis of glucose from pyruvate, and CCAAT/enhancer-binding protein alpha (C/EBPalpha), an important liver-specific transcription factor, under the 3D collagen matrix culture condition in comparison to the monolayer condition. Thus, the 3D collagen matrix system preserved metabolic function of hepatocytes and can be used as an in vitro model for studying hepatocyte glucose production and gluconeogenesis.
Collapse
Affiliation(s)
- Yang-an Wen
- Dept. of Clinical Laboratory Medicine, The First Affiliated Hospital, Chongqing Medical University, Yuzhong District, Chongqing 400016, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89:147-91. [PMID: 19126757 DOI: 10.1152/physrev.00010.2008] [Citation(s) in RCA: 1222] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an increased risk of cardiovascular disease and diabetes. The metabolic syndrome can be defined as a cluster of cardiovascular disease risk factors including visceral obesity, insulin resistance, dyslipidemia, increased blood pressure, and hypercoagulability. The farnesoid X receptor (FXR) belongs to the superfamily of ligand-activated nuclear receptor transcription factors. FXR is activated by bile acids, and FXR-deficient (FXR(-/-)) mice display elevated serum levels of triglycerides and high-density lipoprotein cholesterol, demonstrating a critical role of FXR in lipid metabolism. In an opposite manner, activation of FXR by bile acids (BAs) or nonsteroidal synthetic FXR agonists lowers plasma triglycerides by a mechanism that may involve the repression of hepatic SREBP-1c expression and/or the modulation of glucose-induced lipogenic genes. A cross-talk between BA and glucose metabolism was recently identified, implicating both FXR-dependent and FXR-independent pathways. The first indication for a potential role of FXR in diabetes came from the observation that hepatic FXR expression is reduced in animal models of diabetes. While FXR(-/-) mice display both impaired glucose tolerance and decreased insulin sensitivity, activation of FXR improves hyperglycemia and dyslipidemia in vivo in diabetic mice. Finally, a recent report also indicates that BA may regulate energy expenditure in a FXR-independent manner in mice, via activation of the G protein-coupled receptor TGR5. Taken together, these findings suggest that modulation of FXR activity and BA metabolism may open new attractive pharmacological approaches for the treatment of the metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Institut National de la Sante et de la Recherche Medicale, Lille, France
| | | | | | | | | |
Collapse
|
30
|
SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation. Biochem J 2009; 416:463-73. [PMID: 18657049 DOI: 10.1042/bj20080782] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SHP (small heterodimer partner) is a well-known NR (nuclear receptor) co-regulator. In the present study, we have identified a new SHP-interacting protein, termed SMILE (SHP-interacting leucine zipper protein), which was previously designated as ZF (Zhangfei) via a yeast two-hybrid system. We have determined that the SMILE gene generates two isoforms [SMILE-L (long isoform of SMILE) and SMILE-S (short isoform of SMILE)]. Mutational analysis has demonstrated that the SMILE isoforms arise from the alternative usage of initiation codons. We have confirmed the in vivo interaction and co-localization of the SMILE isoforms and SHP. Domain-mapping analysis indicates that the entire N-terminus of SHP and the middle region of SMILE-L are involved in this interaction. Interestingly, the SMILE isoforms counteract the SHP repressive effect on the transactivation of ERs (estrogen receptors) in HEK-293T cells (human embryonic kidney cells expressing the large T-antigen of simian virus 40), but enhance the SHP-repressive effect in MCF-7, T47D and MDA-MB-435 cells. Knockdown of SMILE gene expression using siRNA (small interfering RNA) in MCF-7 cells increases ER-mediated transcriptional activity. Moreover, adenovirus-mediated overexpression of SMILE and SHP down-regulates estrogen-induced mRNA expression of the critical cell-cycle regulator E2F1. Collectively, these results indicate that SMILE isoforms regulate the inhibition of ER transactivation by SHP in a cell-type-specific manner and act as a novel transcriptional co-regulator in ER signalling.
Collapse
|
31
|
Chanda D, Park JH, Choi HS. Molecular basis of endocrine regulation by orphan nuclear receptor Small Heterodimer Partner. Endocr J 2008; 55:253-68. [PMID: 17984569 DOI: 10.1507/endocrj.k07e-103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nuclear receptors (NRs) are a unique superfamily of transcription factors (TFs) which are involved in and play a crucial role in almost all aspects of mammalian physiology. Small Heterodimer Partner (SHP; NR0B2), an exceptional member of this superfamily of NRs, have been identified as a key regulatory factor of the transcription of a variety of genes involved in diverse metabolic pathways, and are thereby an important factor in a variety of physiological functions. Since its discovery a decade ago, considerable progress has been made in the elucidation of the underlying mechanism by which SHP regulates various metabolic processes, and the results of previous studies support its importance in the maintenance of metabolic homeostasis. In this review, we have evaluated the current state of understanding of the molecular mechanisms and the resultant physiological interpretations governed by SHP.
Collapse
Affiliation(s)
- Dipanjan Chanda
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | | | | |
Collapse
|
32
|
Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 2007; 275:43-61. [PMID: 17624658 DOI: 10.1016/j.mce.2007.05.015] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 12/14/2022]
Abstract
Since the discovery of the beneficial effects of adrenocortical extracts for treating adrenal insufficiency more than 80 years ago, glucocorticoids (GC) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical components of the delicate hormonal control system that determines energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, excessive GC action has been tied to a variety of pandemic metabolic diseases, such as type II diabetes and obesity. Highlighted by its importance for human health, the investigation of molecular mechanisms of GC/GR action has become a major focus in biomedical research. In particular, the understanding of tissue-specific functions of the GC-GR pathway has been proven to be of substantial value for the identification of novel therapeutic options in the treatment of severe metabolic disorders. Therefore, this review focuses on the role of the GC-GR axis for metabolic homeostasis and dysregulation, emphasizing tissue-specific functions of GCs in the control of energy metabolism.
Collapse
|