1
|
Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem 2017; 292:18747-18759. [PMID: 28900035 PMCID: PMC5704461 DOI: 10.1074/jbc.m117.787283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
The expression of normal cellular prion protein (PrP) is required for the pathogenesis of prion diseases. However, the physiological functions of PrP remain ambiguous. Here, we identified PrP as being critical for tumor necrosis factor (TNF) α-triggered signaling in a human melanoma cell line, M2, and a pancreatic ductal cell adenocarcinoma cell line, BxPC-3. In M2 cells, TNFα up-regulates the expression of p-IκB-kinase α/β (p-IKKα/β), p-p65, and p-JNK, but down-regulates the IκBα protein, all of which are downstream signaling intermediates in the TNF receptor signaling cascade. When PRNP is deleted in M2 cells, the effects of TNFα are no longer detectable. More importantly, p-p65 and p-JNK responses are restored when PRNP is reintroduced into the PRNP null cells. TNFα also activates NF-κB and increases TNFα production in wild-type M2 cells, but not in PrP-null M2 cells. Similar results are obtained in the BxPC-3 cells. Moreover, TNFα activation of NF-κB requires ubiquitination of receptor-interacting serine/threonine kinase 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). TNFα treatment increases the binding between PrP and the deubiquitinase tumor suppressor cylindromatosis (CYLD), in these treated cells, binding of CYLD to RIP1 and TRAF2 is reduced. We conclude that PrP traps CYLD, preventing it from binding and deubiquitinating RIP1 and TRAF2. Our findings reveal that PrP enhances the responses to TNFα, promoting proinflammatory cytokine production, which may contribute to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Gui-Ru Wu
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China.,the University of Chinese Academy of Sciences, Beijing 100000, China
| | - Tian-Chen Mu
- the Department of Life Sciences, Wuhan University, Wuhan 430010, China
| | - Zhen-Xing Gao
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Jun Wang
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Man-Sun Sy
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Chao-Yang Li
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China, .,the Wuhan Brain Hospital, No. 5 Huiji Road, Jiang'an District, Wuhan 430010, China
| |
Collapse
|
2
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
3
|
Baskakov IV, Katorcha E. Multifaceted Role of Sialylation in Prion Diseases. Front Neurosci 2016; 10:358. [PMID: 27551257 PMCID: PMC4976111 DOI: 10.3389/fnins.2016.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Mammalian prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein, or PrP(C). Sialylation of the prion protein N-linked glycans was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis remains poorly understood. Recent years have witnessed extraordinary growth in interest in sialylation and established a critical role for sialic acids in host invasion and host-pathogen interactions. This review article summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss the correlation between sialylation of PrP(Sc) glycans and prion infectivity and describe the factors that control sialylation of PrP(Sc). Second, we explain how glycan sialylation contributes to the prion replication barrier, defines strain-specific glycoform ratios, and imposes constraints for PrP(Sc) structure. Third, several topics, including a possible role for sialylation in animal-to-human prion transmission, prion lymphotropism, toxicity, strain interference, and normal function of PrP(C), are critically reviewed. Finally, a metabolic hypothesis on the role of sialylation in the etiology of sporadic prion diseases is proposed.
Collapse
Affiliation(s)
- Ilia V. Baskakov
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
4
|
Strup-Perrot C, Vozenin MC, Monceau V, Pouzoulet F, Petit B, Holler V, Perrot S, Desquibert L, Fouquet S, Souquere S, Pierron G, Rousset M, Thenet S, Cardot P, Benderitter M, Deutsch E, Aigueperse J. PrP(c) deficiency and dasatinib protect mouse intestines against radiation injury by inhibiting of c-Src. Radiother Oncol 2016; 120:175-83. [PMID: 27406443 DOI: 10.1016/j.radonc.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 04/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIM Despite extensive study of the contribution of cell death and apoptosis to radiation-induced acute intestinal injury, our knowledge of the signaling mechanisms involved in epithelial barrier dysfunction remains inadequate. Because PrP(c) plays a key role in intestinal homeostasis by renewing epithelia, we sought to study its role in epithelial barrier function after irradiation. DESIGN Histology, morphometry and plasma FD-4 levels were used to examine ileal architecture, wound healing, and intestinal leakage in PrP(c)-deficient (KO) and wild-type (WT) mice after total-body irradiation. Impairment of the PrP(c) Src pathway after irradiation was explored by immunofluorescence and confocal microscopy, with Caco-2/Tc7 cells. Lastly, dasatinib treatment was used to switch off the Src pathway in vitro and in vivo. RESULTS The decrease in radiation-induced lethality, improved intestinal wound healing, and reduced intestinal leakage promoted by PrP(c) deficiency demonstrate its involvement in acute intestinal damage. Irradiation of Cacao2/Tc7 cells induced PrP(c) to target the nuclei associated with Src activation. Finally, the protective effect triggered by dasatinib confirmed Src involvement in radiation-induced acute intestinal toxicity. CONCLUSION Our data are the first to show a role for the PrP(c)-Src pathway in acute intestinal response to radiation injury and offer a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Carine Strup-Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Marie-Catherine Vozenin
- Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France; Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Virginie Monceau
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France; Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France
| | - Frederic Pouzoulet
- Institut Curie, Translational Research Department, Hopital St Louis, Paris, France
| | - Benoit Petit
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Service Commun d'Expérimentation Animale, Institut Gustave Roussy, Villejuif, France
| | - Valérie Holler
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Sébastien Perrot
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Institut de Recherche Clinique Animale, Maisons-Alfort Cedex, France
| | - Loïc Desquibert
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Institut de Recherche Clinique Animale, Maisons-Alfort Cedex, France
| | - Stéphane Fouquet
- Stéphane FOUQUET, Centre de Recherche Institut de la Vision, UMR_S968 Inserm/UPMC/CHNO des Quinze-Vingts, Paris, France
| | | | - Gérard Pierron
- CNRS, UMR-8122, Institut Gustave Roussy, Villejuif, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France; Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France
| | - Philippe Cardot
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Eric Deutsch
- Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France
| | - Jocelyne Aigueperse
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, Fontenay-aux-Roses, France
| |
Collapse
|
5
|
Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLoS Pathog 2014; 10:e1004366. [PMID: 25211026 PMCID: PMC4161476 DOI: 10.1371/journal.ppat.1004366] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/28/2014] [Indexed: 12/15/2022] Open
Abstract
The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches. The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into disease-associated, transmissible form (PrPSc). The amino acid sequence of PrPC and strain-specific structure of PrPSc are among the key parameters that control prion replication and transmission. The current study showed that PrPC posttranslational modification, specifically sialylation of N-linked glycans, plays a key role in regulating prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. A decrease in PrPC sialylation level increased the rate of prion replication in a strain-specific manner and reduced or eliminated a species barrier when prion replication was seeded by heterologous seeds. At the same time, a decrease in sialylation correlated with a drop in infectivity of PrPSc material produced in vitro. The current study also demonstrated that the PrPSc glycoform ratio, which is an important feature used for strain typing, is not only controlled by prion strain or host but also the sialylation status of PrPC. This study opens multiple new directions in prion research, including development of new therapeutic approaches.
Collapse
|
6
|
Yang X, Zhang Y, Zhang L, He T, Zhang J, Li C. Prion protein and cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:431-40. [PMID: 24681883 DOI: 10.1093/abbs/gmu019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang 330029, China
| | - Yan Zhang
- Department of Molecular Endocrinology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lihua Zhang
- Department of Pathology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Tianlin He
- Department of General Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Jie Zhang
- Department of Stomatology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi 832000, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
7
|
Li C, Xin W, Sy MS. Binding of pro-prion to filamin A: by design or an unfortunate blunder. Oncogene 2010; 29:5329-45. [PMID: 20697352 DOI: 10.1038/onc.2010.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decades, cancer research has focused on tumor suppressor genes and oncogenes. Genes in other cellular pathways has received less attention. Between 0.5% to 1% of the mammalian genome encodes for proteins that are tethered on the cell membrane via a glycosylphosphatidylinositol (GPI)-anchor. The GPI modification pathway is complex and not completely understood. Prion (PrP), a GPI-anchored protein, is infamous for being the only normal protein that when misfolded can cause and transmit a deadly disease. Though widely expressed and highly conserved, little is known about the functions of PrP. Pancreatic cancer and melanoma cell lines express PrP. However, in these cell lines the PrP exists as a pro-PrP as defined by retaining its GPI anchor peptide signal sequence (GPI-PSS). Unexpectedly, the GPI-PSS of PrP has a filamin A (FLNA) binding motif and binds FLNA. FLNA is a cytolinker protein, and an integrator of cell mechanics and signaling. Binding of pro-PrP to FLNA disrupts the normal FLNA functions. Although normal pancreatic ductal cells lack PrP, about 40% of patients with pancreatic ductal cell adenocarcinoma express PrP in their cancers. These patients have significantly shorter survival time compared with patients whose cancers lack PrP. Pro-PrP is also detected in melanoma in situ but is undetectable in normal melanocyte, and invasive melanoma expresses more pro-PrP. In this review, we will discuss the underlying mechanisms by which binding of pro-PrP to FLNA disrupts normal cellular physiology and contributes to tumorigenesis, and the potential mechanisms that cause the accumulation of pro-PrP in cancer cells.
Collapse
Affiliation(s)
- C Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | | | | |
Collapse
|
8
|
Sy MS, Li C, Yu S, Xin W. The fatal attraction between pro-prion and filamin A: prion as a marker in human cancers. Biomark Med 2010. [PMID: 20550479 DOI: 10.2217/bmm.10.14]available] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is the fourth leading cancer causing deaths in the USA, with more than 30,000 deaths per year. The overall median survival for all pancreatic cancer is 6 months and the 5-year survival rate is less than 10%. This dismal outcome reflects the inefficacy of the chemotherapeutic agents, as well as the lack of an early diagnostic marker. A protein known as prion (PrP) is expressed in human pancreatic cancer cell lines. However, in these cell lines, the PrP is incompletely processed and exists as pro-PrP. The pro-PrP binds to a molecule inside the cell, filamin A (FLNa), which is an integrator of cell signaling and mechanics. The binding of pro-PrP to FLNa disrupts the normal functions of FLNa, altering the cell's cytoskeleton and signal transduction machineries. As a result, the tumor cells grow more aggressively. Approximately 40% of patients with pancreatic cancer express PrP in their cancer. These patients have significantly shorter survival compared with patients whose pancreatic cancers lack PrP. Therefore, expression of pro-PrP and its binding to FLNa provide a growth advantage to pancreatic cancers. In this article, we discuss the following points: the biology of PrP, the consequences of binding of pro-PrP to FLNa in pancreatic cancer, the detection of pro-PrP in other cancers, the potential of using pro-PrP as a diagnostic marker, and prevention of the binding between pro-PrP and FLNa as a target for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
9
|
Sy MS, Li C, Yu S, Xin W. The fatal attraction between pro-prion and filamin A: prion as a marker in human cancers. Biomark Med 2010; 4:453-64. [PMID: 20550479 PMCID: PMC2925173 DOI: 10.2217/bmm.10.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is the fourth leading cancer causing deaths in the USA, with more than 30,000 deaths per year. The overall median survival for all pancreatic cancer is 6 months and the 5-year survival rate is less than 10%. This dismal outcome reflects the inefficacy of the chemotherapeutic agents, as well as the lack of an early diagnostic marker. A protein known as prion (PrP) is expressed in human pancreatic cancer cell lines. However, in these cell lines, the PrP is incompletely processed and exists as pro-PrP. The pro-PrP binds to a molecule inside the cell, filamin A (FLNa), which is an integrator of cell signaling and mechanics. The binding of pro-PrP to FLNa disrupts the normal functions of FLNa, altering the cell's cytoskeleton and signal transduction machineries. As a result, the tumor cells grow more aggressively. Approximately 40% of patients with pancreatic cancer express PrP in their cancer. These patients have significantly shorter survival compared with patients whose pancreatic cancers lack PrP. Therefore, expression of pro-PrP and its binding to FLNa provide a growth advantage to pancreatic cancers. In this article, we discuss the following points: the biology of PrP, the consequences of binding of pro-PrP to FLNa in pancreatic cancer, the detection of pro-PrP in other cancers, the potential of using pro-PrP as a diagnostic marker, and prevention of the binding between pro-PrP and FLNa as a target for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
10
|
Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 2009; 19:507-14. [PMID: 19699080 PMCID: PMC7127376 DOI: 10.1016/j.sbi.2009.06.003] [Citation(s) in RCA: 533] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 05/20/2009] [Accepted: 06/24/2009] [Indexed: 12/16/2022]
Abstract
The wide occurrence of sialic acids (Sia) in various chemical forms linked as monomers or polymers in an outstanding position in a multitude of complex carbohydrates of animals and microorganisms renders them as most versatile function modulators in cell biology and pathology. A survey is presented of recent advances in the study of the influences that Sias have as bulky hydrophilic and electronegatively charged monosaccharides on animal cells and on their interaction with microorganisms. Some highlights are: sialylation leads to increased anti-inflammatory activity of IgG antibodies, facilitates the escape of microorganisms from the host's immune system, and in polymeric form is involved in the regulation of embryogenesis and neuronal growth and function. The role of siglecs in immunoregulation, the dynamics of lymphocyte binding to selectins and the interactions of toxins, viruses, and other microorganisms with the host's Sia are now better understood. N-Glycolylneuraminic acid from food is antigenic in man and seems to have pathogenic potential. Sia O-acetylation mediated by various eukaryotic and prokaryotic O-acetyltransferases modulates the affinity of these monosaccharides to mammalian and microbial receptors and hinders apoptosis. The functionally versatile O-acetylated ganglioside GD3 is an onco-fetal antigen.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, D-24098 Kiel, Germany.
| |
Collapse
|
11
|
Li C, Yu S, Nakamura F, Yin S, Xu J, Petrolla AA, Singh N, Tartakoff A, Abbott DW, Xin W, Sy MS. Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J Clin Invest 2009; 119:2725-36. [PMID: 19690385 PMCID: PMC2735930 DOI: 10.1172/jci39542] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/17/2009] [Indexed: 01/02/2023] Open
Abstract
The cellular prion protein (PrP) is a highly conserved, widely expressed, glycosylphosphatidylinositol-anchored (GPI-anchored) cell surface glycoprotein. Since its discovery, most studies on PrP have focused on its role in neurodegenerative prion diseases, whereas its function outside the nervous system remains unclear. Here, we report that human pancreatic ductal adenocarcinoma (PDAC) cell lines expressed PrP. However, the PrP was neither glycosylated nor GPI-anchored, existing as pro-PrP and retaining its GPI anchor peptide signal sequence (GPI-PSS). We also showed that the PrP GPI-PSS has a filamin A-binding (FLNa-binding) motif and interacted with FLNa, an actin-associated protein that integrates cell mechanics and signaling. Binding of pro-PrP to FLNa disrupted cytoskeletal organization. Inhibition of PrP expression by shRNA in the PDAC cell lines altered the cytoskeleton and expression of multiple signaling proteins; it also reduced cellular proliferation and invasiveness in vitro as well as tumor growth in vivo. A subgroup of human patients with pancreatic cancer was found to have tumors that expressed pro-PrP. Most importantly, PrP expression in tumors correlated with a marked decrease in patient survival. We propose that binding of pro-PrP to FLNa perturbs FLNa function, thus contributing to the aggressiveness of PDAC. Prevention of this interaction could provide an attractive target for therapeutic intervention in human PDAC.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fumihiko Nakamura
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shaoman Yin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jinghua Xu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amber A. Petrolla
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alan Tartakoff
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Derek W. Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Ermonval M, Petit D, Le Duc A, Kellermann O, Gallet PF. Glycosylation-related genes are variably expressed depending on the differentiation state of a bioaminergic neuronal cell line: implication for the cellular prion protein. Glycoconj J 2008; 26:477-93. [PMID: 18937066 DOI: 10.1007/s10719-008-9198-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/17/2008] [Accepted: 10/01/2008] [Indexed: 12/26/2022]
Abstract
A striking feature of the cellular prion protein (PrP(C)) is the heterogeneity of its glycoforms, whose contribution to PrP(C) function has yet to be defined. Using the 1C11 neuronal bioaminergic differentiation model and a glycomics approach, we show here a correlation between differential PrP(C) N-glycosylations in 1C11(5-HT) serotonergic and 1C11(NE) noradrenergic cells compared to their 1C11 precursor cells and a variation of the glycogenome expression status in these cells. In particular, expression of genes involved in N-glycan synthesis or in the modeling of chondroitin and heparan sulfate proteoglycans appeared to be modulated. Our results highlight that, the expression of glycosylation-related genes is regulated during bioaminergic neuronal differentiation, consistent with a participation of glycoconjugates in neuronal development and plasticity. A neuronal regulation of glycosylation processes may have direct implications on some neurospecific functions of PrP(C) and may participate in specific brain targeting of prion strains.
Collapse
Affiliation(s)
- Myriam Ermonval
- Différenciation Cellulaire et Prions, Département de Biologie Cellulaire et Infections, Institut Pasteur, 75015, Paris, France.
| | | | | | | | | |
Collapse
|
13
|
Yin S, Fan X, Yu S, Li C, Sy MS. Binding of recombinant but not endogenous prion protein to DNA causes DNA internalization and expression in mammalian cells. J Biol Chem 2008; 283:25446-25454. [PMID: 18622017 DOI: 10.1074/jbc.m800814200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant prion protein, rPrP, binds DNA. Both the KKRPK motif and the octapeptide repeat region of rPrP are essential for maximal binding. rPrP with pathogenic insertional mutations binds more DNA than wild-type rPrP. DNA promotes the aggregation of rPrP and protects its N terminus from proteinase K digestion. When rPrP is mixed with an expression plasmid and Ca(2+), the rPrP.DNA complex is taken up by mammalian cells leading to gene expression. In the presence of Ca(2+), rPrP by itself is also taken up by cells in a temperature- and pinocytosis-dependent manner. Cells do not take up rPrP(DeltaKKRPK), which lacks the KKRPK motif. Thus, rPrP is the carrier for DNA and the KKRPK motif is essential for its uptake. When mixed with DNA, a pentapeptide KKRPK, but not KKKKK, is sufficient for DNA internalization and expression. In contrast, whereas the normal cellular prion protein, PrP(C), on the cell surface can also internalize DNA, the imported DNA is not expressed. These findings may have relevance to the normal functions of PrP(C) and the pathogenic mechanisms of human prion disease.
Collapse
Affiliation(s)
- Shaoman Yin
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Xingjun Fan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Shuiliang Yu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Chaoyang Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120.
| |
Collapse
|
14
|
Terra-Granado E, Berbert LR, de Meis J, Nomizo R, Martins VR, Savino W, Silva-Barbosa SD. Is there a role for cellular prion protein in intrathymic T cell differentiation and migration? Neuroimmunomodulation 2007; 14:213-9. [PMID: 18073517 DOI: 10.1159/000110649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cellular prion protein (PrP(C)) is expressed in the nervous and immune systems. Functionally, PrP(C) has been suggested to participate in neuron survival, neuritogenesis and T lymphocyte activation. Moreover, PrP(C) interaction with laminin influences neuronal adhesion and neurite extension. Nevertheless, so far the physiological role of PrP(C) has not been completely elucidated, particularly in the immune system. The aim of the study was to evaluate the possible participation of PrP(C) in intrathymic T cell development. We evaluated T cell differentiation markers in thymocytes and peripheral lymphocytes, as well as thymocyte death in PrP(C)-null or PrP(C)-overexpressing (Tga20) mice, compared to wild-type controls. In these same animals, we ascertained laminin-driven thymocyte migration. Compared to controls, only marginal differences were found in PrP(C)-null animals. However, Tga20 mice exhibited a severe thymic hypoplasia, with 10-20% lymphocytes compared to wild-type counterparts. In particular, the frequency of CD4+CD8+ cells was largely reduced, and this was accompanied by a dramatic increase in the frequency of CD4-CD8- thymocytes, which could be as high as 60-65% of the whole-cell suspensions. Moreover, Tga20 mice exhibited an increase in thymocyte death, comprising the CD4+CD8+, as well as CD4+ and CD8+ single-positive cells. Additionally, laminin-driven migration was largely impaired in Tga20 mice, in which we also found a significant decrease in total T lymphocytes in the spleen and lymph nodes. Our results show that PrP(C) overexpression alters intrathymic T cell development, a defect that likely has a negative impact in the formation of the T cell peripheral pool.
Collapse
Affiliation(s)
- Eugênia Terra-Granado
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|