1
|
Golbourn B, Ho B, Bondoc A, Luck A, Fan X, Richardson E, Marcellus R, Prakesch M, Halbert M, Agrawal N, Smith C, Huang A, Rutka JT. A kinome drug screen identifies multi-TKI synergies and ERBB2 signaling as a therapeutic vulnerability in MYC/TYR subgroup atypical teratoid rhabdoid tumors. Neuro Oncol 2024; 26:1895-1911. [PMID: 38981018 PMCID: PMC11448967 DOI: 10.1093/neuonc/noae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered 3 molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated. METHODS We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multiomics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups. RESULTS We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and polo-like kinase 1. We identified 2 classes of multikinase inhibitors predominantly targeting receptor tyrosine kinases including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression, which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells. CONCLUSIONS Taken together, our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.
Collapse
Affiliation(s)
- Brian Golbourn
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ben Ho
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Bondoc
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Luck
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaolian Fan
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Richardson
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mathew Halbert
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nishant Agrawal
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Parkhurst A, Wang SZ, Findlay TR, Malebranche KJ, Odabas A, Alt J, Maxwell MJ, Kaur H, Peer CJ, Figg WD, Warren KE, Slusher BS, Eberhart CG, Raabe EH, Rubens JA. Dual mTORC1/2 inhibition compromises cell defenses against exogenous stress potentiating Obatoclax-induced cytotoxicity in atypical teratoid/rhabdoid tumors. Cell Death Dis 2022; 13:410. [PMID: 35484114 PMCID: PMC9050713 DOI: 10.1038/s41419-022-04868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
AbstractAtypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors of infancy and have a dismal 4-year event-free survival (EFS) of 37%. We have previously shown that mTOR activation contributes to AT/RT’s aggressive growth and poor survival. Targeting the mTOR pathway with the dual mTORC1/2 inhibitor TAK-228 slows tumor growth and extends survival in mice bearing orthotopic xenografts. However, responses are primarily cytostatic with limited durability. The aim of this study is to understand the impact of mTOR inhibitors on AT/RT signaling pathways and design a rational combination therapy to drive a more durable response to this promising therapy. We performed RNASeq, gene expression studies, and protein analyses to identify pathways disrupted by TAK-228. We find that TAK-228 decreases the expression of the transcription factor NRF2 and compromises AT/RT cellular defenses against oxidative stress and apoptosis. The BH3 mimetic, Obatoclax, is a potent inducer of oxidative stress and apoptosis in AT/RT. These complementary mechanisms of action drive extensive synergies between TAK-228 and Obatoclax slowing AT/RT cell growth and inducing apoptosis and cell death. Combination therapy activates the integrative stress response as determined by increased expression of phosphorylated EIF2α, ATF4, and CHOP, and disrupts the protective NOXA.MCL-1.BIM axis, forcing stressed cells to undergo apoptosis. Combination therapy is well tolerated in mice bearing orthotopic xenografts of AT/RT, slows tumor growth, and extends median overall survival. This novel combination therapy could be added to standard upfront therapies or used as a salvage therapy for relapsed disease to improve outcomes in AT/RT.
Collapse
|
3
|
Shahab S, Rubens J, Kaur H, Sweeney H, Eberhart CG, Raabe EH. MEK Inhibition Suppresses Growth of Atypical Teratoid/Rhabdoid Tumors. J Neuropathol Exp Neurol 2020; 79:746-753. [PMID: 32472116 DOI: 10.1093/jnen/nlaa042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/05/2020] [Accepted: 04/25/2020] [Indexed: 11/12/2022] Open
Abstract
Atypical teratoid/rhabdoid (AT/RT) tumors are the most common malignant brain tumor of infancy and have a poor prognosis. We have previously identified very high expression of LIN28A and/or LIN28B in AT/RT tumors and showed that AT/RT have corresponding increased expression of the mitogen-activated protein (MAP) kinase pathway. Binimetinib is a novel inhibitor of mitogen-activated protein kinase (MAP2K1 or MEK), and is currently in pediatric phase II clinical trials for low-grade glioma. We hypothesized that binimetinib would inhibit growth of AT/RT cells by suppressing the MAP kinase pathway. Binimetinib inhibited AT/RT growth at nanomolar concentrations. Binimetinib decreased cell proliferation and induced apoptosis in AT/RT cells and significantly reduced AT/RT tumor growth in flank xenografts. Our data suggest that MAP kinase pathway inhibition could offer a potential avenue for treating these highly aggressive tumors.
Collapse
Affiliation(s)
- Shubin Shahab
- Division of Pediatric Oncology, Department of Oncology.,Sidney Kimmel Comprehensive Cancer Center
| | - Jeffrey Rubens
- Division of Pediatric Oncology, Department of Oncology.,Sidney Kimmel Comprehensive Cancer Center
| | - Harpreet Kaur
- Division of Pediatric Oncology, Department of Oncology.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Charles G Eberhart
- Sidney Kimmel Comprehensive Cancer Center.,Division of Neuropathology, Department of Pathology (CGE, EHR), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eric H Raabe
- Division of Pediatric Oncology, Department of Oncology.,Sidney Kimmel Comprehensive Cancer Center.,Division of Neuropathology, Department of Pathology (CGE, EHR), Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Oberlick EM, Rees MG, Seashore-Ludlow B, Vazquez F, Nelson GM, Dharia NV, Weir BA, Tsherniak A, Ghandi M, Krill-Burger JM, Meyers RM, Wang X, Montgomery P, Root DE, Bieber JM, Radko S, Cheah JH, Hon CSY, Shamji AF, Clemons PA, Park PJ, Dyer MA, Golub TR, Stegmaier K, Hahn WC, Stewart EA, Schreiber SL, Roberts CWM. Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Rep 2020; 28:2331-2344.e8. [PMID: 31461650 DOI: 10.1016/j.celrep.2019.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 02/09/2023] Open
Abstract
Cancer is often seen as a disease of mutations and chromosomal abnormalities. However, some cancers, including pediatric rhabdoid tumors (RTs), lack recurrent alterations targetable by current drugs and need alternative, informed therapeutic options. To nominate potential targets, we performed a high-throughput small-molecule screen complemented by a genome-scale CRISPR-Cas9 gene-knockout screen in a large number of RT and control cell lines. These approaches converged to reveal several receptor tyrosine kinases (RTKs) as therapeutic targets, with RTK inhibition effective in suppressing RT cell growth in vitro and against a xenograft model in vivo. RT cell lines highly express and activate (phosphorylate) different RTKs, creating dependency without mutation or amplification. Downstream of RTK signaling, we identified PTPN11, encoding the pro-growth signaling protein SHP2, as a shared dependency across all RT cell lines. This study demonstrates that large-scale perturbational screening can uncover vulnerabilities in cancers with "quiet" genomes.
Collapse
Affiliation(s)
- Elaine M Oberlick
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | - Brinton Seashore-Ludlow
- Broad Institute, Cambridge, MA 02142, USA; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | - Geoffrey M Nelson
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | - Xiaofeng Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | - Sandi Radko
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Harvard Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Todd R Golub
- Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Boston Children's Hospital, Boston, MA 02115, USA
| | - William C Hahn
- Broad Institute, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stuart L Schreiber
- Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
5
|
Obaid H, Kannappan S, Gupta M, Ruan Y, Zhang C, Bose P, Narendran A. In Vitro Investigation Demonstrates IGFR/VEGFR Receptor Cross Talk and Potential of Combined Inhibition in Pediatric Central Nervous System Atypical Teratoid Rhabdoid Tumors. Curr Cancer Drug Targets 2019; 20:295-305. [PMID: 31713485 DOI: 10.2174/1568009619666191111153049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor of the central nervous system (CNS ATRT) is a malignancy that commonly affects young children. The biological mechanisms contributing to tumor aggressiveness and resistance to conventional therapies in ATRT are unknown. Previous studies have shown the activity of insulin like growth factor-I receptor (IGF-1R) in ATRT tumor specimens and cell lines. IGF-1R has been shown to cross-talk with other receptor tyrosine kinases (RTKs) in a number of cancer types, leading to enhanced cell proliferation. OBJECTIVE This study aims to evaluate the role of IGF-1 receptor cross-talk in ATRT biology and the potential for therapeutic targeting. METHODS Cell lines derived from CNS ATRT specimens were analyzed for IGF-1 mediated cell proliferation. A comprehensive receptor tyrosine kinase (RTK) screen was conducted following IGF-1 stimulation. Bioinformatic analysis of publicly available cancer growth inhibition data to identify correlation between IC50 of a VEGFR inhibitor and IGF-1R expression. RESULTS Comprehensive RTK screen identified VEGFR-2 cross-activation following IGF-1 stimulation. Bioinformatics analysis demonstrated a positive correlation between IC50 values of VEGFR inhibitor Axitinib and IGF-1R expression, supporting the critical influence of IGF-1R in modulating response to anti-angiogenic therapies. CONCLUSION Overall, our data present a novel experimental framework to evaluate and utilize receptor cross-talk mechanisms to select effective drugs and combinations for future therapeutic trials in ATRT.
Collapse
Affiliation(s)
- Halah Obaid
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Sunand Kannappan
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Mehul Gupta
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Yibing Ruan
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Chunfen Zhang
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| |
Collapse
|
6
|
Wang SZ, Poore B, Alt J, Price A, Allen SJ, Hanaford AR, Kaur H, Orr BA, Slusher BS, Eberhart CG, Raabe EH, Rubens JA. Unbiased Metabolic Profiling Predicts Sensitivity of High MYC-Expressing Atypical Teratoid/Rhabdoid Tumors to Glutamine Inhibition with 6-Diazo-5-Oxo-L-Norleucine. Clin Cancer Res 2019; 25:5925-5936. [PMID: 31300448 DOI: 10.1158/1078-0432.ccr-19-0189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Atypical teratoid/rhabdoid tumors (AT/RT) are aggressive infantile brain tumors with poor survival. Recent advancements have highlighted significant molecular heterogeneity in AT/RT with an aggressive subgroup featuring overexpression of the MYC proto-oncogene. We perform the first comprehensive metabolic profiling of patient-derived AT/RT cell lines to identify therapeutic susceptibilities in high MYC-expressing AT/RT. EXPERIMENTAL DESIGN Metabolites were extracted from AT/RT cell lines and separated in ultra-high performance liquid chromatography mass spectrometry. Glutamine metabolic inhibition with 6-diazo-5-oxo-L-norleucine (DON) was tested with growth and cell death assays and survival studies in orthotopic mouse models of AT/RT. Metabolic flux analysis was completed to identify combination therapies to act synergistically to improve survival in high MYC AT/RT. RESULTS Unbiased metabolic profiling of AT/RT cell models identified a unique dependence of high MYC AT/RT on glutamine for survival. The glutamine analogue, DON, selectively targeted high MYC cell lines, slowing cell growth, inducing apoptosis, and extending survival in orthotopic mouse models of AT/RT. Metabolic flux experiments with isotopically labeled glutamine revealed DON inhibition of glutathione (GSH) synthesis. DON combined with carboplatin further slowed cell growth, induced apoptosis, and extended survival in orthotopic mouse models of high MYC AT/RT. CONCLUSIONS Unbiased metabolic profiling of AT/RT identified susceptibility of high MYC AT/RT to glutamine metabolic inhibition with DON therapy. DON inhibited glutamine-dependent synthesis of GSH and synergized with carboplatin to extend survival in high MYC AT/RT. These findings can rapidly translate into new clinical trials to improve survival in high MYC AT/RT.
Collapse
Affiliation(s)
- Sabrina Z Wang
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Brad Poore
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Antoinette Price
- Division of Neuropathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Sariah J Allen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Allison R Hanaford
- Division of Neuropathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Harpreet Kaur
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Charles G Eberhart
- Division of Neuropathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Eric H Raabe
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Division of Neuropathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jeffrey A Rubens
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Vella V, Milluzzo A, Scalisi NM, Vigneri P, Sciacca L. Insulin Receptor Isoforms in Cancer. Int J Mol Sci 2018; 19:ijms19113615. [PMID: 30453495 PMCID: PMC6274710 DOI: 10.3390/ijms19113615] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
The insulin receptor (IR) mediates both metabolic and mitogenic effects especially when overexpressed or in clinical conditions with compensatory hyperinsulinemia, due to the metabolic pathway resistance, as obesity diabetes. In many cancers, IR is overexpressed preferentially as IR-A isoform, derived by alternative splicing of exon 11. The IR-A overexpression, and the increased IR-A:IR-B ratio, are mechanisms that promote the mitogenic response of cancer cells to insulin and IGF-2, which is produced locally by both epithelial and stromal cancer cells. In cancer IR-A, isoform predominance may occur for dysregulation at both mRNA transcription and post-transcription levels, including splicing factors, non-coding RNAs and protein degradation. The mechanisms that regulate IR isoform expression are complex and not fully understood. The IR isoform overexpression may play a role in cancer cell stemness, in tumor progression and in resistance to target therapies. From a clinical point of view, the IR-A overexpression in cancer may be a determinant factor for the resistance to IGF-1R target therapies for this issue. IR isoform expression in cancers may have the meaning of a predictive biomarker and co-targeting IGF-1R and IR-A may represent a new more efficacious treatment strategy.
Collapse
Affiliation(s)
- Veronica Vella
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, Garibaldi-Nesima Hospital, via Palermo 636, 95122 Catania, Italy.
- School of Human and Social Science, University "Kore" of Enna, 94100 Enna, Italy.
| | - Agostino Milluzzo
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, Garibaldi-Nesima Hospital, via Palermo 636, 95122 Catania, Italy.
| | - Nunzio Massimo Scalisi
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, Garibaldi-Nesima Hospital, via Palermo 636, 95122 Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania Medical School, Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, via Santa Sofia, 78, 95123 Catania, Italy.
| | - Laura Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, Garibaldi-Nesima Hospital, via Palermo 636, 95122 Catania, Italy.
| |
Collapse
|
8
|
Rubens JA, Wang SZ, Price A, Weingart MF, Allen SJ, Orr BA, Eberhart CG, Raabe EH. The TORC1/2 inhibitor TAK228 sensitizes atypical teratoid rhabdoid tumors to cisplatin-induced cytotoxicity. Neuro Oncol 2018; 19:1361-1371. [PMID: 28582547 DOI: 10.1093/neuonc/nox067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RTs) are deadly pediatric brain tumors driven by LIN28. Mammalian target of rapamycin (mTOR) is activated in many deadly, drug-resistant cancers and governs important cellular functions such as metabolism and survival. LIN28 regulates mTOR in normal cells. We therefore hypothesized that mTOR is activated downstream of LIN28 in AT/RT, and the brain-penetrating mTOR complex 1 and 2 (mTORC1/2) kinase inhibitor TAK228 would reduce AT/RT tumorigenicity. Methods Activation of mTOR in AT/RT was determined by measuring pS6 and pAKT (Ser473) by immunohistochemistry on tissue microarray of 18 primary AT/RT tumors. In vitro growth assays (BrdU and MTS), death assays (CC3, c-PARP by western blot), and survival curves of AT/RT orthotopic xenograft models were used to measure the efficacy of TAK228 alone and in combination with cisplatin. Results Lentiviral short hairpin RNA-mediated knockdown of LIN28A led to decreased mTOR activation. Primary human AT/RT had high levels of pS6 and pAKT (Ser473) in 21% and 87% of tumors by immunohistochemistry. TAK228 slowed cell growth, induced apoptosis in vitro, and nearly doubled median survival of orthotopic xenograft models of AT/RT. TAK228 combined with cisplatin synergistically slowed cell growth and enhanced cisplatin-induced apoptosis. Suppression of AKT sensitized cells to cisplatin-induced apoptosis and forced activation of AKT protected cells. Combined treatment with TAK228 and cisplatin significantly extended survival of orthotopic xenograft models of AT/RT compared with each drug alone. Conclusions TAK228 has efficacy in AT/RT as a single agent and synergizes with conventional chemotherapies by sensitizing tumors to cisplatin-induced apoptosis. These results suggest TAK228 may be an effective new treatment for AT/RT.
Collapse
Affiliation(s)
- Jeffrey A Rubens
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Sabrina Z Wang
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Antoinette Price
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Melanie F Weingart
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Sariah J Allen
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Brent A Orr
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Eberhart
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Eric H Raabe
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center and Division of Pediatric Oncology and Bloomberg Children's Hospital, Johns Hopkins Hospital, Baltimore, Maryland; St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
9
|
Richardson EA, Ho B, Huang A. Atypical Teratoid Rhabdoid Tumour : From Tumours to Therapies. J Korean Neurosurg Soc 2018; 61:302-311. [PMID: 29742888 PMCID: PMC5957315 DOI: 10.3340/jkns.2018.0061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 12/29/2022] Open
Abstract
Atypical teratoid rhabdoid tumours (ATRTs) are the most common malignant central nervous system tumours in children ≤1 year of age and represent approximately 1–2% of all pediatric brain tumours. ATRT is a primarily monogenic disease characterized by the bi-allelic loss of the SMARCB1 gene, which encodes the hSNF5 subunit of the SWI/SNF chromatin remodeling complex. Though conventional dose chemotherapy is not effective in most ATRT patients, high dose chemotherapy with autologous stem cell transplant, radiotherapy and/or intrathecal chemotherapy all show significant potential to improve patient survival. Recent epigenetic and transcriptional studies highlight three subgroups of ATRT, each with distinct clinical and molecular characteristics with corresponding therapeutic sensitivities, including epigenetic targeting, and inhibition of tyrosine kinases or growth/lineage specific pathways.
Collapse
Affiliation(s)
- Elizabeth Anne Richardson
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.,Department of Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Ben Ho
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.,Department of Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.,Department of Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada.,Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
10
|
The therapeutic potential of targeting the PI3K pathway in pediatric brain tumors. Oncotarget 2018; 8:2083-2095. [PMID: 27926496 PMCID: PMC5356782 DOI: 10.18632/oncotarget.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 01/12/2023] Open
Abstract
Central nervous system tumors are the most common cancer type in children and the leading cause of cancer related deaths. There is therefore a need to develop novel treatments. Large scale profiling studies have begun to identify alterations that could be targeted therapeutically, including the phosphoinositide 3-kinase (PI3K) signaling pathway, which is one of the most commonly activated pathways in cancer with many inhibitors under clinical development. PI3K signaling has been shown to be aberrantly activated in many pediatric CNS neoplasms. Pre-clinical analysis supports a role for PI3K signaling in the control of tumor growth, survival and migration as well as enhancing the cytotoxic effects of current treatments. Based on this evidence agents targeting PI3K signaling have begun to be tested in clinical trials of pediatric cancer patients. Overall, targeting the PI3K pathway presents as a promising strategy for the treatment of pediatric CNS tumors. In this review we examine the genetic alterations found in the PI3K pathway in pediatric CNS tumors and the pathological role it plays, as well as summarizing the current pre-clinical and clinical data supporting the use of PI3K pathway inhibitors for the treatment of these tumors.
Collapse
|
11
|
Wargny M, Balkau B, Lange C, Charles MA, Giral P, Simon D. Association of fasting serum insulin and cancer mortality in a healthy population - 28-year follow-up of the French TELECOM Study. DIABETES & METABOLISM 2017; 44:30-37. [PMID: 28455114 DOI: 10.1016/j.diabet.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/18/2022]
Abstract
AIMS Epidemiologic, pharmacoepidemiologic and pathophysiologic evidence points consistently to an association between type 2 diabetes and cancer. This association could be explained by hyperinsulinemia induced by insulin resistance. We studied the association between fasting serum insulin (FSI) and cancer mortality in a population of non-diabetic individuals. METHODS We followed 3117 healthy workers (50.2% women), included in the TELECOM cohort study, between 1985 and 1987; their median age was 38 years (Q1-Q3=30-50). Baseline FSI was measured by radioimmunoassay, the INSI-PR method. People with diabetes or cancer at baseline were excluded. Vital status and causes of death were available until December 2013. The association between FSI and cancer deaths was analysed by sex, using a Cox proportional hazards model with age as the time scale, adjusting for body mass index, smoking habits, alcohol consumption, occupational category and ethnic origin. RESULTS After a 28-year follow-up, 330 (10.6%) deaths were reported, among which, 150 were cancer-related (80 men, 70 women). In men, the association between FSI and death by cancer was J-shaped: compared to the average FSI of 7.1mU/L, men with 5mU/L and 12.9mU/L had respectively adjusted hazard-ratios (HR) of 1.88 (95% confidence interval, 1.00-3.56) and 2.30 (95% CI, 1.34-3.94). Among women, no significant association was found (adjusted HR, 1.03; 95% CI, 0.96-1.11) for an increase of 1mU/L in FSI. CONCLUSION These results strengthen the hypothesis of an independent risk of cancer death associated with extreme values of FSI, mainly the highest, among men, but not among women.
Collapse
Affiliation(s)
- M Wargny
- ICAN, Epidemiology laboratory, 47-83, boulevard de l'hôpital, 75013 Paris, France; Inserm UMR 1087, clinique d'endocrinologie, institut du thorax, université de Nantes, CHU de Nantes, 8, Quai Moncousu, 44000 Nantes, France
| | - B Balkau
- CESP, Faculty of Medicine, University Paris South, 94270 Le Kremlin-Bicêtre, France; Faculty of Medicine, University of Versailles St-Quentin-en-Yvelines, 78280 St-Quentin-en-Yvelines, France; Inserm U1018, team5, University Paris-Saclay, 94800 Villejuif, France.
| | - C Lange
- CESP, Faculty of Medicine, University Paris South, 94270 Le Kremlin-Bicêtre, France; Faculty of Medicine, University of Versailles St-Quentin-en-Yvelines, 78280 St-Quentin-en-Yvelines, France; Inserm U1018, team5, University Paris-Saclay, 94800 Villejuif, France.
| | - M-A Charles
- CRESS-Inserm U1153, bâtiment Inserm, hôpital Paul-Brousse, 16, avenue Paul-Vaillant-Couturier, 94807 Villejuif cedex, France.
| | - P Giral
- ICAN, Epidemiology laboratory, 47-83, boulevard de l'hôpital, 75013 Paris, France.
| | - D Simon
- ICAN, Epidemiology laboratory, 47-83, boulevard de l'hôpital, 75013 Paris, France.
| |
Collapse
|
12
|
Ma Y, Tang N, Thompson RC, Mobley BC, Clark SW, Sarkaria JN, Wang J. InsR/IGF1R Pathway Mediates Resistance to EGFR Inhibitors in Glioblastoma. Clin Cancer Res 2015; 22:1767-76. [PMID: 26561558 DOI: 10.1158/1078-0432.ccr-15-1677] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/23/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE Aberrant activation of EGFR is a hallmark of glioblastoma. However, EGFR inhibitors exhibit at best modest efficacy in glioblastoma. This is in sharp contrast with the observations in EGFR-mutant lung cancer. We examined whether activation of functionally redundant receptor tyrosine kinases (RTKs) conferred resistance to EGFR inhibitors in glioblastoma. EXPERIMENTAL DESIGN We collected a panel of patient-derived glioblastoma xenograft (PDX) lines that maintained expression of wild-type or mutant EGFR in serial xenotransplantation and tissue cultures. Using this physiologically relevant platform, we tested the abilities of several RTK ligands to protect glioblastoma cells against an EGFR inhibitor, gefitinib. Based on the screening results, we further developed a combination therapy cotargeting EGFR and insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF1R). RESULTS Insulin and IGF1 induced significant protection against gefitinib in the majority of EGFR-dependent PDX lines with one exception that did not express InsR or IGF1R. Blockade of the InsR/IGF1R pathway synergistically improved sensitivity to gefitinib or dacomitinib. Gefitinib alone effectively attenuated EGFR activities and the downstream MEK/ERK pathway. However, repression of AKT and induction of apoptosis required concurrent inhibition of both EGFR and InsR/IGF1R. A combination of gefitinib and OSI-906, a dual InsR/IGF1R inhibitor, was more effective than either agent alone to treat subcutaneous glioblastoma xenograft tumors. CONCLUSIONS Our results suggest that activation of the InsR/IGF1R pathway confers resistance to EGFR inhibitors in EGFR-dependent glioblastoma through AKT regulation. Concurrent blockade of these two pathways holds promise to treat EGFR-dependent glioblastoma.
Collapse
Affiliation(s)
- Yufang Ma
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nan Tang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Steven W Clark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jialiang Wang
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
13
|
Gong Y, Ma Y, Sinyuk M, Loganathan S, Thompson RC, Sarkaria JN, Chen W, Lathia JD, Mobley BC, Clark SW, Wang J. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro Oncol 2015; 18:48-57. [PMID: 26136493 DOI: 10.1093/neuonc/nov096] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/07/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Metabolic complications such as obesity, hyperglycemia, and type 2 diabetes are associated with poor outcomes in patients with glioblastoma. To control peritumoral edema, use of chronic high-dose steroids in glioblastoma patients is common, which can result in de novo diabetic symptoms. These metabolic complications may affect tumors via profound mechanisms, including activation of insulin receptor (InsR) and the related insulin-like growth factor 1 receptor (IGF1R) in malignant cells. METHODS In the present study, we assessed expression of InsR in glioblastoma surgical specimens and glioblastoma response to insulin at physiologically relevant concentrations. We further determined whether genetic or pharmacological targeting of InsR affected oncogenic functions of glioblastoma in vitro and in vivo. RESULTS We showed that InsR was commonly expressed in glioblastoma surgical specimens and xenograft tumor lines, with mitogenic isoform-A predominating. Insulin at physiologically relevant concentrations promoted glioblastoma cell growth and survival, potentially via Akt activation. Depletion of InsR impaired cellular functions and repressed orthotopic tumor growth. The absence of InsR compromised downstream Akt activity, but yet stimulated IGF1R expression. Targeting both InsR and IGF1R with dual kinase inhibitors resulted in effective blockade of downstream signaling, loss of cell viability, and repression of xenograft tumor growth. CONCLUSIONS Taken together, our work suggests that glioblastoma is sensitive to the mitogenic functions of insulin, thus significant insulin exposure imposes risks to glioblastoma patients. Additionally, dual inhibition of InsR and IGF1R exhibits promise for treating glioblastoma.
Collapse
Affiliation(s)
- Yuanying Gong
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Yufang Ma
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Maksim Sinyuk
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Sudan Loganathan
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Reid C Thompson
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Jann N Sarkaria
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Wenbiao Chen
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Justin D Lathia
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Bret C Mobley
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Stephen W Clark
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Jialiang Wang
- Department of Neurological Surgery (Y.G., Y.M., R.C.T., S.W.C., J.W.), Department of Molecular Physiology and Biophysics (W.C.), Department of Neurology (S.W.C.), Department of Pathology, Microbiology and Immunology (B.C.M.), and Department of Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (J.W.); Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio (M.S., J.D.L.); Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee (S.L.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| |
Collapse
|
14
|
Yamaguchi T, Oka H, Kijima C, Sano H, Watanabe H, Okamoto M. A case of atypical teratoid/rhabdoid tumor in the internal auditory canal. Auris Nasus Larynx 2014; 42:163-6. [PMID: 25450856 DOI: 10.1016/j.anl.2014.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/11/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The case of a thirteen-year-old woman showing an atypical teratoid/rhabdoid tumor (AT/RT) primarily occurred in the internal auditory canal was presented. RESULTS There was a delay in diagnosing AT/RT because of the first histological diagnosis of benign neurofibroma. If we had changed the surgical approach to one which was middle cranial fossa-based or translabyrinthine in the second or third operation, we might have reached an earlier final diagnosis. Although we faced a dilemma about whether to sacrifice facial nerve function for dissection of the tumor, we should have considered the possibility of malignancy at an earlier stage. CONCLUSION This is a case report of AT/RT in the internal auditory canal presenting with progressive hearing loss as the initial symptom. Although no previous reports of AT/RT primarily occurring in the internal auditory canal are existent, this rare form of the disease should be considered in future evaluations as a differential diagnosis for internal auditory canal tumor.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- Department of Otolaryngology of the Kitasato University Hospital, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan.
| | - Hidehiro Oka
- Department of Neurosurgery of the Kitasato University Hospital, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Chihiro Kijima
- Department of Neurosurgery of the Kitasato University Hospital, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Hajime Sano
- Department of Otolaryngology of the Kitasato University Hospital, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Watanabe
- Department of Otolaryngology of the Kitasato University Hospital, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Makito Okamoto
- Department of Otolaryngology of the Kitasato University Hospital, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
15
|
Imura Y, Yasui H, Outani H, Wakamatsu T, Hamada K, Nakai T, Yamada S, Myoui A, Araki N, Ueda T, Itoh K, Yoshikawa H, Naka N. Combined targeting of mTOR and c-MET signaling pathways for effective management of epithelioid sarcoma. Mol Cancer 2014; 13:185. [PMID: 25098767 PMCID: PMC4249599 DOI: 10.1186/1476-4598-13-185] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/28/2014] [Indexed: 02/24/2023] Open
Abstract
Background Epithelioid sarcoma (EpS) is a high-grade malignant soft-tissue sarcoma characterized by local recurrences and distant metastases. Effective treatments for EpS have not been established and thus novel therapeutic approaches against EpS are urgently required. mTOR inhibitors exert antitumor effects on several malignancies but AKT reactivation by mTOR inhibition attenuates the antitumor effects of mTOR inhibitors. This reactivation is receptor tyrosine kinase (RTK)-dependent due to a release of negative feedback inhibition. We found that c-MET was the most highly activated RTK in two human EpS cell lines, Asra-EPS and VAESBJ. Here we investigated the functional and therapeutic relevance of mTOR and/or c-MET signaling pathways in EpS both in vitro and in vivo. Methods We first examined the effects of an mTOR inhibitor, RAD001 (everolimus), on cell proliferation, cell cycle, AKT/mTOR signaling, and xenograft tumor growth in EpS cell lines. Next, we determined whether RAD001-induced AKT reactivation was blocked by silencing of c-MET or treatment with a selective c-MET inhibitor, INC280. Finally, we evaluated the antitumor effects of RAD001 combined with INC280 on EpS cell lines compared with either single agent or control in vitro and in vivo. Results Constitutive AKT phosphorylation was observed in Asra-EPS and VAESBJ cells. RAD001 suppressed EpS cell growth by inducing cell cycle arrest but enhanced AKT phosphorylation, which resulted in intrinsic resistance to mTOR inhibitors. In both EpS cell lines, RAD001-induced AKT phosphorylation was dependent on c-MET signaling. INC280 inhibited phosphorylation of c-MET and its downstream molecules, and decreased RAD001-induced phosphorylation of both AKT and ERK in EpS. Compared with a single agent or control, the combination of RAD001 and INC280 exerted superior antitumor effects on the growth of EpS cell lines in vitro and in vivo. Conclusions Targeting of mTOR and c-MET signaling pathways significantly abrogates the growth of EpS in preclinical models and may be a promising therapeutic approach for patients with EpS. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-185) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Norifumi Naka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
16
|
Hsieh TH, Chien CL, Lee YH, Lin CI, Hsieh JY, Chao ME, Liu DJ, Chu SS, Chen W, Lin SC, Ho DMT, Liu RS, Lin CH, Wong TT, Wang HW. Downregulation of SUN2, a novel tumor suppressor, mediates miR-221/222-induced malignancy in central nervous system embryonal tumors. Carcinogenesis 2014; 35:2164-74. [DOI: 10.1093/carcin/bgu105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
17
|
Höland K, Boller D, Hagel C, Dolski S, Treszl A, Pardo OE, Ćwiek P, Salm F, Leni Z, Shepherd PR, Styp-Rekowska B, Djonov V, von Bueren AO, Frei K, Arcaro A. Targeting class IA PI3K isoforms selectively impairs cell growth, survival, and migration in glioblastoma. PLoS One 2014; 9:e94132. [PMID: 24718026 PMCID: PMC3981776 DOI: 10.1371/journal.pone.0094132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 03/13/2014] [Indexed: 12/13/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.
Collapse
Affiliation(s)
- Katrin Höland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Danielle Boller
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Dolski
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - András Treszl
- Department of Medical Biometry and Epidemiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olivier E. Pardo
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Paulina Ćwiek
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Fabiana Salm
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Zaira Leni
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Peter R. Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | | | - André O. von Bueren
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Goettingen, Germany
| | - Karl Frei
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Alexandre Arcaro
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Darr J, Klochendler A, Isaac S, Eden A. Loss of IGFBP7 expression and persistent AKT activation contribute to SMARCB1/Snf5-mediated tumorigenesis. Oncogene 2013; 33:3024-32. [PMID: 23851500 DOI: 10.1038/onc.2013.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
Abstract
SMARCB1 (Snf5/Ini1/Baf47) is a potent tumor suppressor, the loss of which serves as the diagnostic feature in malignant rhabdoid tumors (MRT) and atypical teratoid/rhabdoid tumors (AT/RT), two highly aggressive forms of pediatric neoplasms. SMARCB1 is a core subunit of Swi/Snf chromatin remodeling complexes, and loss of SMARCB1 or other subunits of these complexes has been observed in a variety of tumor types. Here, we restore Smarcb1 expression in cells derived from Smarcb1-deficient tumors, which developed in Smarcb1 heterozygous p53(-/-) mice. We find that while re-introduction of Smarcb1 does not induce growth arrest, it restores sensitivity to programmed cell death and completely abolishes the ability of the tumor cells to grow as xenografts. We describe persistent activation of AKT signaling in Smarcb1-deficient cells, which stems from PI3K (phosphatidylinositol 3'-kinase)-mediated signaling and which contributes to the survival and proliferation of the tumor cells. We further demonstrate that inhibition of AKT is effective in preventing proliferation of Smarcb1-deficient cells in vitro and inhibits the development of xenografted tumors in vivo. Profiling Smarcb1-dependent gene expression, we find genes that require Smarcb1 and Swi/Snf for their expression to be enriched for extracellular matrix and cell adhesion functions. We find that Smarcb1 is required for transcriptional activation of Igfbp7, a member of the insulin-like growth factor-binding proteins family and a tumor suppressor in itself, and show that re-introduction of Igfbp7 alone can hinder tumor development. Our results define a novel mechanism for Smarcb1-mediated tumorigenesis and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- J Darr
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Klochendler
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Isaac
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Eden
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Arcaro A. Targeting the insulin-like growth factor-1 receptor in human cancer. Front Pharmacol 2013; 4:30. [PMID: 23525758 PMCID: PMC3605519 DOI: 10.3389/fphar.2013.00030] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays a crucial role in human cancer and the IGF-1 receptor (IGF-1R) is an attractive drug target against which a variety of novel anti-tumor agents are being developed. Deregulation of the IGF signaling pathway frequently occurs in human cancer and involves the establishment of autocrine loops comprising IGF-1 or IGF-2 and/or IGF-1R over-expression. Epidemiologic studies have documented a link between elevated IGF levels and the development of solid tumors, such as breast, colon, and prostate cancer. Anti-cancer strategies targeting the IGF signaling system involve two main approaches, namely neutralizing antibodies and small molecule inhibitors of the IGF-1R kinase activity. There are numerous reports describing anti-tumor activity of these agents in pre-clinical models of major human cancers. In addition, multiple clinical trials have started to evaluate the safety and efficacy of selected IGF-1R inhibitors, in combination with standard chemotherapeutic regimens or other targeted agents in cancer patients. In this mini review, I will discuss the role of the IGF signaling system in human cancer and the main strategies which have been so far evaluated to target the IGF-1R.
Collapse
Affiliation(s)
- Alexandre Arcaro
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern Bern, Switzerland
| |
Collapse
|
20
|
Singh A, Lun X, Jayanthan A, Obaid H, Ruan Y, Strother D, Chi SN, Smith A, Forsyth P, Narendran A. Profiling pathway-specific novel therapeutics in preclinical assessment for central nervous system atypical teratoid rhabdoid tumors (CNS ATRT): favorable activity of targeting EGFR- ErbB2 signaling with lapatinib. Mol Oncol 2013; 7:497-512. [PMID: 23375777 DOI: 10.1016/j.molonc.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 01/09/2023] Open
Abstract
Despite intensifying multimodal treatments, children with central nervous system atypical teratoid/rhabdoid tumor (CNS ATRT) continue to endure unacceptably high mortality rates. At present, concerted efforts are focusing on understanding the characteristic INI1 mutation and its implications for the growth and survival of these tumors. Additionally, pharmaceutical pipeline libraries constitute a significant source of potential agents that can be taken to clinical trials in a timely manner. However, this process requires efficient target validation and relevant preclinical studies. As an initial screening approach, a panel of 129 small molecule inhibitors from multiple pharmaceutical pipeline libraries was tested against three ATRT cell lines by in vitro cytotoxicity assays. Based on these data, agents that have strong activity and corresponding susceptible cellular pathways were identified. Target modulation, antibody array analysis, drug combination and in vivo xenograft studies were performed on one of the pathway inhibitors found in this screening. Approximately 20% of agents in the library showed activity with IC(50) values of 1 μM or less and many showed IC(50) values less than 0.05 μM. Intra cell line variability was also noted among some of the drugs. However, it was determined that agents capable of affecting pathways constituting ErbB2, mTOR, proteasomes, Hsp90, Polo like kinases and Aurora kinases were universally effective against the three ATRT cell lines. The first target selected for further analysis, the inhibition of ErbB2-EGFR pathway by the small molecule inhibitor lapatinib, indicated inhibition of cell migration properties and the initiation of apoptosis. Synergy between lapatinib and IGF-IR inhibition was also demonstrated by combination index (CI) values. Xenograft studies showed effective antitumor activity of lapatinib in vivo. We present an experimental approach to identifying agents and drug combinations for future clinical trials and provide evidence for the potential of lapatinib as an effective agent in the context of the biology and heterogeneity of its targets in ATRT.
Collapse
Affiliation(s)
- Anjali Singh
- Pediatric Oncology Experimental Therapeutics Investigators Consortium (POETIC), Laboratory for Pre-Clinical and Drug Discovery Studies, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wojtalla A, Salm F, Christiansen DG, Cremona T, Cwiek P, Shalaby T, Gross N, Grotzer MA, Arcaro A. Novel agents targeting the IGF-1R/PI3K pathway impair cell proliferation and survival in subsets of medulloblastoma and neuroblastoma. PLoS One 2012; 7:e47109. [PMID: 23056595 PMCID: PMC3466180 DOI: 10.1371/journal.pone.0047109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/10/2012] [Indexed: 12/31/2022] Open
Abstract
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.
Collapse
Affiliation(s)
- Anna Wojtalla
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Fabiana Salm
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ditte G. Christiansen
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Tiziana Cremona
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Paulina Cwiek
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Tarek Shalaby
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nicole Gross
- Department of Pediatrics, Pediatric Oncology Research, University Hospital CHUV, Lausanne, Switzerland
| | - Michael A. Grotzer
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alexandre Arcaro
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Ginn KF, Gajjar A. Atypical teratoid rhabdoid tumor: current therapy and future directions. Front Oncol 2012; 2:114. [PMID: 22988546 PMCID: PMC3439631 DOI: 10.3389/fonc.2012.00114] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/22/2012] [Indexed: 01/28/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRTs) are rare central nervous system tumors that comprise approximately 1-2% of all pediatric brain tumors; however, in patients less than 3 years of age this tumor accounts for up to 20% of cases. ATRT is characterized by loss of the long arm of chromosome 22 which results in loss of the hSNF5/INI-1 gene. INI1, a member of the SWI/SNF chromatin remodeling complex, is important in maintenance of the mitotic spindle and cell cycle control. Overall survival in ATRT is poor with median survival around 17 months. Radiation is an effective component of therapy but is avoided in patients younger than 3 years of age due to long term neurocognitive sequelae. Most long term survivors undergo radiation therapy as a part of their upfront or salvage therapy, and there is a suggestion that sequencing the radiation earlier in therapy may improve outcome. There is no standard curative chemotherapeutic regimen, but anecdotal reports advocate the use of intensive therapy with alkylating agents, high-dose methotrexate, or therapy that includes high-dose chemotherapy with stem cell rescue. Due to the rarity of this tumor and the lack of randomized controlled trials it has been challenging to define optimal therapy and advance treatment. Recent laboratory investigations have identified aberrant function and/or regulation of cyclin D1, aurora kinase, and insulin-like growth factor pathways in ATRT. There has been significant interest in identifying and testing therapeutic agents that target these pathways.
Collapse
Affiliation(s)
- Kevin F. Ginn
- Division of Neuro-Oncology, St. Jude Children’s Research HospitalMemphis, TN, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, St. Jude Children’s Research HospitalMemphis, TN, USA
| |
Collapse
|
23
|
Jayanthan A, Bernoux D, Bose P, Riabowol K, Narendran A. Multi-tyrosine kinase inhibitors in preclinical studies for pediatric CNS AT/RT: Evidence for synergy with Topoisomerase-I inhibition. Cancer Cell Int 2011; 11:44. [PMID: 22206574 PMCID: PMC3278350 DOI: 10.1186/1475-2867-11-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 12/29/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Currently, Atypical Teratoid Rhabdoid Tumor (AT/RT) constitutes one of the most difficult to treat malignancies in pediatrics. Hence, new knowledge of potential targets for therapeutics and the development of novel treatment approaches are urgently needed. We have evaluated the presence of cytokine pathways and the effects of two clinically available multi-tyrosine kinase inhibitors for cytotoxicity, target modulation and drug combinability against AT/RT cell lines. RESULTS AT/RT cell lines expressed measurable quantities of VEGF, FGF, PDGF and SDF-1, although the absolute amounts varied between the cell lines. The targeted receptor tyrosine kinase inhibitor sorafenib inhibited the key signaling molecule Erk, which was activated following the addition of own conditioned media, suggesting the existence of autocrine/paracrine growth stimulatory pathways. The multi-tyrosine kinase inhibitors sorafenib and sunitinib also showed significant growth inhibition of AT/RT cells and their activity was enhanced by combination with the topoisomerase inhibitor, irinotecan. The loss of cytoplasmic NF-kappa-B in response to irinotecan was diminished by sorafenib, providing evidence for a possible benefit for this drug combination. CONCLUSIONS In addition to previously described involvement of insulin like growth factor (IGF) family of cytokines, a multitude of other growth factors may contribute to the growth and survival of AT/RT cells. However, consistent with the heterogeneous nature of this tumor, quantitative and qualitative differences may exist among different tumor samples. Multi-tyrosine kinase inhibitors appear to have effective antitumor activity against all cell lines studied. In addition, the target modulation studies and drug combinability data provide the groundwork for additional studies and support the evaluation of these agents in future treatment protocols.
Collapse
Affiliation(s)
- Aarthi Jayanthan
- Laboratory for Pre-clinical and Drug Discovery Studies, Pediatric Oncology Experimental Therapeutics Investigators Consortium (POETIC) and Division of Pediatric Oncology, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, T3B 6A8, Canada.
| | | | | | | | | |
Collapse
|
24
|
Guerreiro AS, Fattet S, Kulesza DW, Atamer A, Elsing AN, Shalaby T, Jackson SP, Schoenwaelder SM, Grotzer MA, Delattre O, Arcaro A. A sensitized RNA interference screen identifies a novel role for the PI3K p110γ isoform in medulloblastoma cell proliferation and chemoresistance. Mol Cancer Res 2011; 9:925-35. [PMID: 21652733 DOI: 10.1158/1541-7786.mcr-10-0200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant brain tumor in children and is associated with a poor outcome. We were interested in gaining further insight into the potential of targeting the human kinome as a novel approach to sensitize medulloblastoma to chemotherapeutic agents. A library of small interfering RNA (siRNA) was used to downregulate the known human protein and lipid kinases in medulloblastoma cell lines. The analysis of cell proliferation, in the presence or absence of a low dose of cisplatin after siRNA transfection, identified new protein and lipid kinases involved in medulloblastoma chemoresistance. PLK1 (polo-like kinase 1) was identified as a kinase involved in proliferation in medulloblastoma cell lines. Moreover, a set of 6 genes comprising ATR, LYK5, MPP2, PIK3CG, PIK4CA, and WNK4 were identified as contributing to both cell proliferation and resistance to cisplatin treatment in medulloblastoma cells. An analysis of the expression of the 6 target genes in primary medulloblastoma tumor samples and cell lines revealed overexpression of LYK5 and PIK3CG. The results of the siRNA screen were validated by target inhibition with specific pharmacological inhibitors. A pharmacological inhibitor of p110γ (encoded by PIK3CG) impaired cell proliferation in medulloblastoma cell lines and sensitized the cells to cisplatin treatment. Together, our data show that the p110γ phosphoinositide 3-kinase isoform is a novel target for combinatorial therapies in medulloblastoma.
Collapse
Affiliation(s)
- Ana S Guerreiro
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Capoluongo E. Insulin-like growth factor system and sporadic malignant melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:26-31. [PMID: 21224039 DOI: 10.1016/j.ajpath.2010.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 07/15/2010] [Accepted: 08/10/2010] [Indexed: 11/18/2022]
Abstract
Insulin and insulin-like growth factors (IGFs) are important regulators of energy metabolism and growth. Several findings have outlined an important role played by this family of molecules in both tumor maintenance and development. Despite the established contribution of the IGF system in carcinogenesis, little and contrasting data have been reported concerning the intertwined relationships between melanoma and this family of molecules. The present minireview aims to summarize the main topics and evidence concerning this malignant skin cancer, with a focus on the following: i) melanoma and cell proliferation effects induced by the IGF system, ii) in vitro and in vivo experimental data, and iii) targeting studies. Because of consistent findings regarding the role of the IGF-1 receptor in the modulation of IGF-1 activity, possible therapeutic strategies combining the use of antisense oligonucleotides against IGF-1 receptor mRNA could be applied in the future.
Collapse
Affiliation(s)
- Ettore Capoluongo
- Laboratory of Clinical Molecular Diagnostic, Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy.
| |
Collapse
|
26
|
Bikowska B, Grajkowska W, Jóźwiak J. Atypical teratoid/rhabdoid tumor: short clinical description and insight into possible mechanism of the disease. Eur J Neurol 2010; 18:813-8. [PMID: 21159066 DOI: 10.1111/j.1468-1331.2010.03277.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant tumor typically appearing in childhood. Differentiation of AT/RT from other brain tumors is extremely important because of grim prognosis and necessity of more aggressive treatment. On the other hand, investigation is essential for new therapeutic agents based on continuously developing knowledge of AT/RT development mechanisms. Most AT/RT tumors have been demonstrated to harbor a chromosome 22 mutation in the region of hSNF5/INI1 gene, whose protein product participates in chromatin remodeling. Although the presence of this mutation is rather undisputable, additional molecular pathways underlying AT/RT development are poorly understood. Current paper discusses current views on molecular pathophysiology of the tumor.
Collapse
Affiliation(s)
- B Bikowska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
27
|
Furuse C, Miguita L, Rosa ACG, Soares AB, Martinez EF, Altemani A, de Araújo VC. Study of growth factors and receptors in carcinoma ex pleomorphic adenoma. J Oral Pathol Med 2010; 39:540-547. [PMID: 20149060 DOI: 10.1111/j.1600-0714.2009.00858.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoma ex pleomorphic adenoma (CXPA) is a rare malignant salivary gland tumor derived from a pre-existing pleomorphic adenoma. It is a good model to study the evolution of carcinogenesis, starting with in situ areas to frankly invasive carcinoma. Growth factors are associated with several biological and neoplastic processes by transmembrane receptors. In order to investigate, by immunohistochemistry, the expression of some growth factors and its receptors [EGF receptor, fibroblast growth factor, fibroblast growth factor receptor 1, fibroblast growth factor receptor 2, hepatocyte growth factor, c-Met, transforming growth factor (TGF) beta1, TGFbetaR-II and insulin-like growth factor receptor 1] in the progression of CXPA, we have used ten cases of CXPA in several degrees of invasion- intracapsular, minimally and frankly invasive carcinoma- with only epithelial component. Slides were qualitatively and semi-quantitatively evaluated according to the percentage of stained tumor cells from 0 to 3 (0 = less than 10%; 1 = 10-25%; 2 = 25-50%; 3 = more than 50% of cells). Malignant epithelial cells starting with in situ areas showed stronger expression than luminal cells of pleomorphic adenoma for all antibodies. Most of the intracapsular, minimally and frankly invasive CXPA presented score 3. However, score 2 was more evident in the frankly invasive one. In small nests of invasive carcinoma, negative cells were observed probably indicating that the proliferative process is replaced by the invasive mechanism. Altogether this data infers that these factors may contribute to cell proliferation during initial phases of the tumor.
Collapse
Affiliation(s)
- Cristiane Furuse
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Systematic analysis of the antiproliferative effects of novel and standard anticancer agents in rhabdoid tumor cell lines. Anticancer Drugs 2010; 21:514-22. [PMID: 20147838 DOI: 10.1097/cad.0b013e3283375d5c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rhabdoid tumors are highly aggressive pediatric malignancies. Although the prognosis of children with rhabdoid tumors has improved, it still remains dismal and long-term survivors suffer from severe side effects of current therapeutic approaches. The objective of our study was to explore the toxicity of standard and novel anticancer drugs against rhabdoid tumors in vitro and to prioritize them for future preclinical and clinical studies. Antitumor activity of 10 standard anticancer drugs (doxorubicin, idarubicin, mitoxantrone, actinomycin D, temozolomide, carmustine, oxaliplatin, vinorelbine, methotrexate, thiotepa), five target-specific drugs (sorafenib, imatinib, roscovitine, rapamycin, ciglitazone) and two herbal compounds (curcumin and apigenin) was assessed by a modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell proliferation assay on three rhabdoid tumor cell lines, A204, G401, and BT16, derived from different anatomical sites. Comparable with their high clinical activity, anthracyclines inhibited tumor cell proliferation by 50% (GI50) in the nanomolar range. Actinomycin D exhibited the lowest GI50 values overall ranging from 2.8x10(-6) nmol/l for G401 to 3.8 nmol/l for A204 cells while thiotepa was the only alkylating drug that inhibited tumor cell growth in clinically relevant concentrations. Target-specific drugs, such as sorafenib, roscovitine, and rapamycin, showed promising results as well. In this report, we show for the first time that apigenin and curcumin effectively inhibit rhabdoid tumor cell growth. Supporting earlier reports we conclude that cyclin D1 seems to be an excellent target in the treatment of rhabdoid tumors. Idarubicin or mitoxantrone represent potent alternatives to doxorubicin, and vinorelbine may substitute vincristine in future clinical trials.
Collapse
|
29
|
Melzi R, Antonioli B, Mercalli A, Battaglia M, Valle A, Pluchino S, Galli R, Sordi V, Bosi E, Martino G, Bonifacio E, Doglioni C, Piemonti L. Co-graft of allogeneic immune regulatory neural stem cells (NPC) and pancreatic islets mediates tolerance, while inducing NPC-derived tumors in mice. PLoS One 2010; 5:e10357. [PMID: 20436918 PMCID: PMC2860511 DOI: 10.1371/journal.pone.0010357] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/01/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Data available on the immunomodulatory properties of neural stem/precursor cells (NPC) support their possible use as modulators for immune-mediated process. The aim of this study was to define whether NPC administered in combination with pancreatic islets prevents rejection in a fully mismatched allograft model. METHODOLOGY/PRINCIPAL FINDING Diabetic Balb/c mice were co-transplanted under the kidney capsule with pancreatic islets and GFP(+) NPC from fully mismatched C57BL/6 mice. The following 4 groups of recipients were used: mice receiving islets alone; mice receiving islets alone and treated with standard immunosuppression (IL-2Ralpha chain mAbs + FK506 + Rapamycin); mice receiving a mixed islet/NPC graft under the same kidney capsule (Co-NPC-Tx); mice receiving the islet graft under the left kidney capsule and the NPC graft under the right kidney capsule (NPC-Tx). Our results demonstrate that only the co-transplantation and co-localization of NPC and islets (Co-NPC-Tx) induce stable long-term graft function in the absence of immunosuppression. This condition is associated with an expansion of CD4(+)CD25(+)FoxP3(+) T regulatory cells in the spleen. Unfortunately, stable graft function was accompanied by constant and reproducible development of NPC-derived cancer mainly sustained by insulin secretion. CONCLUSION These data demonstrate that the use of NPC in combination with islets prevents graft rejection in a fully mismatched model. However, the development of NPC-derived cancer raises serious doubts about the safety of using adult stem cells in combination with insulin-producing cells outside the original microenvironment.
Collapse
Affiliation(s)
- Raffaella Melzi
- San Raffaele Diabetes Research Institute (HSR-DRI), Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Antonioli
- San Raffaele Diabetes Research Institute (HSR-DRI), Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Mercalli
- San Raffaele Diabetes Research Institute (HSR-DRI), Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Battaglia
- San Raffaele Diabetes Research Institute (HSR-DRI), Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Valle
- San Raffaele Diabetes Research Institute (HSR-DRI), Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Pluchino
- CNS Repair Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Regenerative Medicine Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Sordi
- San Raffaele Diabetes Research Institute (HSR-DRI), Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Diabetes and Endocrinology Unit, Department of Internal Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Claudio Doglioni
- Pathology Unit, San Raffaele Scientific Institute and Università Vita–Salute, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute (HSR-DRI), Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
30
|
Hashizume R, Gupta N, Berger MS, Banerjee A, Prados MD, Ayers-Ringler J, James CD, VandenBerg SR. Morphologic and molecular characterization of ATRT xenografts adapted for orthotopic therapeutic testing. Neuro Oncol 2010; 12:366-76. [PMID: 20308314 DOI: 10.1093/neuonc/nop033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atypical teratoid rhabdoid tumor (ATRT) is a malignant tumor of the central nervous system that most commonly arises in young children. The aggressive growth and propensity for early dissemination throughout the neuraxis confers a dismal prognosis. Large clinical trials that could test new therapeutic agents are difficult to conduct due to the low incidence of this cancer. For this reason, high throughput preclinical testing with suitable animal models for ATRT would serve a critical need for identifying the most efficacious treatments. In response to this need, we have adapted ATRT cell lines for bioluminescence imaging (BLI) of intracranial (orthotopic) xenografts established in athymic mice. Our results indicate that following supratentorial or infratentorial injection in athymic mice, ATRT cells produce rapidly growing tumors, often with intraventricular spread or neuraxis dissemination. When established as orthotopic xenografts, the tumors predominantly display cells with a rhabdoid-like cellular morphology that show a spectrum of immunophenotypes similar to primary ATRT tumors. To demonstrate the feasibility of this orthotopic ATRT xenograft model for therapeutic testing with correlation to biomarker analysis, we examined the responses of luciferase-modified ATRT cells to temozolomide (TMZ). These xenografts, which highly express MGMT, are resistant to TMZ treatment when compared with an orthotopic glioblastoma xenograft that is MGMT deficient and responsive to TMZ. These data suggest that an orthotopic ATRT xenograft model, in which BLI is used for monitoring tumor growth and response to therapy, should contribute to the identification of effective therapeutics and regimens for treating this highly aggressive pediatric brain tumor.
Collapse
Affiliation(s)
- Rintaro Hashizume
- Brain Tumor Research Center, Department of Neurological Surgery, University ofCalifornia, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nicolaides T, Tihan T, Horn B, Biegel J, Prados M, Banerjee A. High-dose chemotherapy and autologous stem cell rescue for atypical teratoid/rhabdoid tumor of the central nervous system. J Neurooncol 2009; 98:117-23. [PMID: 19936623 PMCID: PMC2880232 DOI: 10.1007/s11060-009-0071-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/09/2009] [Indexed: 11/27/2022]
Abstract
Atypical Teratoid/Rhabdoid tumors (AT/RT) of the central nervous system are rare but aggressive tumors of childhood. Median survival with surgery and standard chemotherapy is less than 12 months. In an attempt to improve outcome, patients were treated with aggressive surgical resection and multi-agent chemotherapy, followed by high dose chemotherapy with autologous stem cell rescue. Nine consecutive children (median age 21 months) were diagnosed with AT/RT at the University of California San Francisco Childrens Hospital from 1997 to 2007 and treated with this aggressive approach. Diagnosis was confirmed using molecular markers. There are two long-term survivors (78 and 98 months from diagnosis). One additional patient is alive with disease. Three patients died of disease during therapy. Three patients died of disease after therapy was complete. There were no toxic deaths. Two of nine patients treated for AT/RT at our institution with high dose chemotherapy and autologous bone marrow transplant are long-term survivors, suggesting that a subset of patients can be cured with this approach.
Collapse
Affiliation(s)
- Theodore Nicolaides
- Department of Pediatrics, University of California San Francisco School of Medicine, 505 Parnassus Avenue, M649, Box 0106, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30:586-623. [PMID: 19752219 DOI: 10.1210/er.2008-0047] [Citation(s) in RCA: 742] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Ospedale Garibaldi-Nesima, 95122 Catania, Italy.
| | | | | | | | | |
Collapse
|
33
|
Li R, Pourpak A, Morris SW. Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J Med Chem 2009; 52:4981-5004. [PMID: 19610618 PMCID: PMC2888655 DOI: 10.1021/jm9002395] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rongshi Li
- Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Oncologic Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612
| | - Alan Pourpak
- Departments of Pathology and Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Stephan W. Morris
- Departments of Pathology and Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| |
Collapse
|
34
|
Abstract
Circulating insulin crosses the blood-brain barrier (BBB) into the central nervous system (CNS). There are many insulin receptors in various areas of the brain; they are expressed by both astrocytes and neurons. The two main insulin actions in the brain are (a) control of food intake and (b) effect on cognitive functions. In obesity there is a relative insulin deficiency in the CNS despite increased circulating levels. Insulin plays an important role in cognitive functions as demonstrated by the intranasal administration of insulin bypassing the liver. Brain insulin decreases with aging and may be related to the decrease in cognitive functions, as has also been reported in Alzheimer's disease. Certain brain tumours over-express insulin receptors. Whether the larger insulin analogues pass the BBB is as yet not known.
Collapse
Affiliation(s)
- Zvi Laron
- Endocrinology and Diabetes Research Unit, WHO Collaborating Center for the Study of Diabetes in Youth, Schneider Children's Medical Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
35
|
Abstract
Insulin and insulin-like growth factors (IGFs) are well known as key regulators of energy metabolism and growth. There is now considerable evidence that these hormones and the signal transduction networks they regulate have important roles in neoplasia. Epidermiological, clinical and laboratory research methods are being used to investigate novel cancer prevention and treatment strategies related to insulin and IGF signalling. Pharmacological strategies under study include the use of novel receptor-specific antibodies, receptor kinase inhibitors and AMP-activated protein kinase activators such as metformin. There is evidence that insulin and IGF signalling may also be relevant to dietary and lifestyle factors that influence cancer risk and cancer prognosis. Recent results are encouraging and have justified the expansion of many translational research programmes.
Collapse
Affiliation(s)
- Michael Pollak
- Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
36
|
Targeting the PI3K p110α Isoform Inhibits Medulloblastoma Proliferation, Chemoresistance, and Migration. Clin Cancer Res 2008; 14:6761-9. [DOI: 10.1158/1078-0432.ccr-08-0385] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Narendran A, Coppes L, Jayanthan A, Coppes M, Teja B, Bernoux D, George D, Strother D. Establishment of atypical-teratoid/rhabdoid tumor (AT/RT) cell cultures from disseminated CSF cells: a model to elucidate biology and potential targeted therapeutics. J Neurooncol 2008; 90:171-80. [PMID: 18651103 DOI: 10.1007/s11060-008-9653-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 06/27/2008] [Indexed: 01/15/2023]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant central nervous system neoplasm that usually affects infants and young children. In this report, we describe culture conditions that enabled the sustained growth of tumor cells obtained from the cerebrospinal fluid (CSF) of an infant with AT/RT. These cells retained the morphological and biomarker characteristics of the original tumor. A screening of receptor tyrosine kinases identified the presence of phosphorylated ErbB4, Insulin-R, PDGFR and IGF-IR, which appear to depend on Hsp90 to maintain their active form. IGF-IR activity is consistent with data from other established AT/RT cell lines. Inhibition of IGF-IR by the small molecular weight inhibitor AEW541 led to growth suppression of cultured AT/RT cells. In addition, neutralizing antibodies to IGF-II also inhibited the growth of these cells suggesting a potential autocrine function for this cytokine. We also compared cultured AT/RT cells to established cell lines to identify consistent drug sensitivity patterns among these cells. In addition to previously described cell lines and xenograft models, continuous culture of CSF derived cells may also provide an effective way to study the biology of AT/RT and to identify potential targets for future therapeutics for this tumor.
Collapse
Affiliation(s)
- Aru Narendran
- Translational Research Laboratories, Southern Alberta Children's Cancer Program, The University of Calgary, Calgary, AB, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Grotzer MA, Guerreiro AS, Bourquin JP, Arcaro A. IGF signaling as a therapeutic target in pediatric solid tumors of the central and peripheral nervous system. Expert Rev Endocrinol Metab 2007; 2:677-688. [PMID: 30736130 DOI: 10.1586/17446651.2.5.677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Similar to many other growth factor systems, the IGF system consists of more than a single ligand interacting with a single receptor. There are three ligands (IGF-I, IGF-II and insulin) that interact with at least four receptors. In addition, the IGF system also involves six well-characterized binding proteins that regulate IGF action. Type I IGF receptor-mediated signaling plays a fundamental role in cell growth and malignant transformation and is an important mediator of anti-apoptotic signals. This review describes the roles of IGF signaling in childhood tumors of the CNS and PNS, including neuroblastoma, medulloblastoma, atypical teratoid/rhabdoid tumors and craniopharyngioma. Moreover, it describes strategies to disrupt the IGF signaling as a potential cancer therapy.
Collapse
Affiliation(s)
- Michael A Grotzer
- a University Children's Hospital of Zurich, Division of Oncology, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| | - Ana S Guerreiro
- b University Children's Hospital of Zurich, Division of Clinical Chemistry and Biochemistry, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- c University Children's Hospital of Zurich, Division of Oncology, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Alexandre Arcaro
- b University Children's Hospital of Zurich, Division of Clinical Chemistry and Biochemistry, Zurich, Switzerland
| |
Collapse
|