1
|
Liu Z, Cheng Y, Zhang L, Jia T, Hu X. Evidence of SUFBC 2D directly deliver Fe-S cluster to apo- NITRITE REDUCTASE1 (NIR1). Biochem Biophys Res Commun 2025; 756:151604. [PMID: 40081235 DOI: 10.1016/j.bbrc.2025.151604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Fe-S clusters are ancient, ubiquitous, and highly essential prosthetic groups of many proteins. According to current understanding, Fe-S clusters are biosynthesized on scaffold, and transferred to carrier proteins, thereafter, they will be inserted into apo-proteins. However, it was also suggested that the scaffold complex SUFBC2D can directly deliver Fe-S cluster to apo-proteins. In this study, we combined biotin ligase-based proximity labeling with Yeast two-hybrid (Y2H) assay, Bimolecular fluorescence complementation (BiFC) assay and pull-down assay, identified that chloroplast Fe-S protein NIR1 directly interact with SUFC, suggesting that NIR1 may directly receive the Fe-S clusters from SUFBC2D. Thus, we provided evidence to support the exist of a new Fe-S clusters delivery pathway in chloroplast.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Long Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Purcell AG, Fontenot CR, Ding H. Iron-sulfur cluster assembly scaffold protein IscU is required for activation of ferric uptake regulator (Fur) in Escherichiacoli. J Biol Chem 2024; 300:107142. [PMID: 38452854 PMCID: PMC11001641 DOI: 10.1016/j.jbc.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
It was generally postulated that when intracellular free iron content is elevated in bacteria, the ferric uptake regulator (Fur) binds its corepressor a mononuclear ferrous iron to regulate intracellular iron homeostasis. However, the proposed iron-bound Fur had not been identified in any bacteria. In previous studies, we have demonstrated that Escherichia coli Fur binds a [2Fe-2S] cluster in response to elevation of intracellular free iron content and that binding of the [2Fe-2S] cluster turns on Fur as an active repressor to bind a specific DNA sequence known as the Fur-box. Here we find that the iron-sulfur cluster assembly scaffold protein IscU is required for the [2Fe-2S] cluster assembly in Fur, as deletion of IscU inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in E. coli cells in response to elevation of intracellular free iron content. Additional studies reveal that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur and restores its Fur-box binding activity in vitro. While IscU is also required for the [2Fe-2S] cluster assembly in the Haemophilus influenzae Fur in E. coli cells, deletion of IscU does not significantly affect the [2Fe-2S] cluster assembly in the E. coli ferredoxin and siderophore-reductase FhuF. Our results suggest that IscU may have a unique role for the [2Fe-2S] cluster assembly in Fur and that regulation of intracellular iron homeostasis is closely coupled with iron-sulfur cluster biogenesis in E. coli.
Collapse
Affiliation(s)
- Aidan G Purcell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chelsey R Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
3
|
Niemand Wolhuter N, Ngakane L, de Wet TJ, Warren RM, Williams MJ. The Mycobacterium smegmatis HesB Protein, MSMEG_4272, Is Required for In Vitro Growth and Iron Homeostasis. Microorganisms 2023; 11:1573. [PMID: 37375075 DOI: 10.3390/microorganisms11061573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an MSMEG_4272 deletion mutant by two-step allelic exchange were unsuccessful, suggesting that the gene is essential for in vitro growth. CRISPRi-mediated transcriptional knock-down of MSMEG_4272 resulted in a growth defect under standard culture conditions, which was exacerbated in mineral-defined media. The knockdown strain displayed reduced intracellular iron levels under iron-replete conditions and increased susceptibility to clofazimine, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and isoniazid, while the activity of the Fe-S containing enzymes, succinate dehydrogenase, and aconitase were not affected. This study suggests that MSMEG_4272 plays a role in the regulation of intracellular iron levels and is required for in vitro growth of M. smegmatis, particularly during exponential growth.
Collapse
Affiliation(s)
- Nandi Niemand Wolhuter
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Lerato Ngakane
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Robin M Warren
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Monique J Williams
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
4
|
Yang B, Xu C, Cheng Y, Jia T, Hu X. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid. PLANT CELL REPORTS 2023:10.1007/s00299-023-03024-7. [PMID: 37160773 DOI: 10.1007/s00299-023-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.
Collapse
Affiliation(s)
- Bing Yang
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chenyun Xu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Repair of Iron Center Proteins—A Different Class of Hemerythrin-like Proteins. Molecules 2022; 27:molecules27134051. [PMID: 35807291 PMCID: PMC9268430 DOI: 10.3390/molecules27134051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Repair of Iron Center proteins (RIC) form a family of di-iron proteins that are widely spread in the microbial world. RICs contain a binuclear nonheme iron site in a four-helix bundle fold, two basic features of hemerythrin-like proteins. In this work, we review the data on microbial RICs including how their genes are regulated and contribute to the survival of pathogenic bacteria. We gathered the currently available biochemical, spectroscopic and structural data on RICs with a particular focus on Escherichia coli RIC (also known as YtfE), which remains the best-studied protein with extensive biochemical characterization. Additionally, we present novel structural data for Escherichia coli YtfE harboring a di-manganese site and the protein’s affinity for this metal. The networking of protein interactions involving YtfE is also described and integrated into the proposed physiological role as an iron donor for reassembling of stress-damaged iron-sulfur centers.
Collapse
|
6
|
Fontenot CR, Ding H. Ferric uptake regulators (Fur) from Vibrio cholerae and Helicobacter pylori bind a [2Fe-2S] cluster in response to elevation of intracellular free iron content. Biometals 2022; 35:591-600. [PMID: 35353296 DOI: 10.1007/s10534-022-00390-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
Intracellular iron homeostasis in bacteria is primarily regulated by ferric uptake regulator (Fur). Since its discovery, Fur has been assumed to bind ferrous iron and regulate expression of target genes. However, the iron-bound Fur has never been isolated from any bacteria. In previous studies, we have shown that Escherichia coli Fur and Haemophilus influenzae Fur bind a [2Fe-2S] cluster via the conserved Cys-93 and Cys-96 when expressed in the E. coli mutant cells in which intracellular free iron content is elevated. Here we report that Fur homologs from Vibrio cholerae and Helicobacter pylori which contain Cys-93 and Cys-96 can also bind a [2Fe-2S] cluster. On the other hand, Fur homolog from Magnetospirillum gryphiswaldense MSR-1 which has no cysteine residues fails to bind any [2Fe-2S] clusters. Interestingly, different Fur proteins with the conserved Cys-93 and Cys-96 have distinct binding activities for the [2Fe-2S] cluster, with H. influenzae Fur having the highest, followed by E. coli Fur, V. cholera Fur, and H. pylori Fur. Binding of the [2Fe-2S] cluster in the Fur proteins is significantly decreased when expressed in wild-type E. coli cells, indicating that binding of the [2Fe-2S] clusters in Fur proteins is regulated by the levels of intracellular free iron content. Finally, unlike the [2Fe-2S] clusters in E. coli ferredoxin, the [2Fe-2S] clusters in the Fur proteins are not stable and quickly release ferrous iron when the clusters are reduced, suggesting that Fur may undergo reversible binding of the [2Fe-2S] cluster in response to intracellular free iron content in bacteria.
Collapse
Affiliation(s)
- Chelsey R Fontenot
- Department of Biological Sciences Building, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences Building, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
7
|
Zoolkefli FIRM, Moriguchi K, Cho Y, Kiyokawa K, Yamamoto S, Suzuki K. Isolation and Analysis of Donor Chromosomal Genes Whose Deficiency Is Responsible for Accelerating Bacterial and Trans-Kingdom Conjugations by IncP1 T4SS Machinery. Front Microbiol 2021; 12:620535. [PMID: 34093458 PMCID: PMC8174662 DOI: 10.3389/fmicb.2021.620535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Conjugal transfer is a major driving force of genetic exchange in eubacteria, and the system in IncP1-type broad-host-range plasmids transfers DNA even to eukaryotes and archaea in a process known as trans-kingdom conjugation (TKC). Although conjugation factors encoded on plasmids have been extensively analyzed, those on the donor chromosome have not. To identify the potential conjugation factor(s), a genome-wide survey on a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection) as donors to Saccharomyces cerevisiae recipients was performed using a conjugal transfer system mediated by the type IV secretion system (T4SS) of the IncP1α plasmid. Out of 3,884 mutants, three mutants (ΔfrmR, ΔsufA, and ΔiscA) were isolated, which showed an increase by one order of magnitude in both E. coli-E. coli and E. coli-yeast conjugations without an increase in the mRNA accumulation level for the conjugation related genes examined. The double-knockout mutants for these genes (ΔfrmRΔsufA and ΔiscAΔfrmR) did not show synergistic effects on the conjugation efficiency, suggesting that these factors affect a common step in the conjugation machinery. The three mutants demonstrated increased conjugation efficiency in IncP1β-type but not in IncN- and IncW-type broad-host-range plasmid transfers, and the homologous gene knockout mutants against the three genes in Agrobacterium tumefaciens also showed increased TKC efficiency. These results suggest the existence of a specific regulatory system in IncP1 plasmids that enables the control of conjugation efficiency in different hosts, which could be utilized for the development of donor strains as gene introduction tools into bacteria, eukaryotes, and archaea.
Collapse
Affiliation(s)
| | - Kazuki Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yunjae Cho
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashihiroshima, Japan
| | - Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
8
|
Silva LSO, Matias PM, Romão CV, Saraiva LM. Structural Basis of RICs Iron Donation for Iron-Sulfur Cluster Biogenesis. Front Microbiol 2021; 12:670681. [PMID: 33995335 PMCID: PMC8117158 DOI: 10.3389/fmicb.2021.670681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli YtfE is a di-iron protein of the widespread Repair of Iron Centers proteins (RIC) family that has the capacity to donate iron, which is a crucial component of the biogenesis of the ubiquitous family of iron-sulfur proteins. In this work we identify in E. coli a previously unrecognized link between the YtfE protein and the major bacterial system for iron-sulfur cluster (ISC) assembly. We show that YtfE establishes protein-protein interactions with the scaffold IscU, where the transient cluster is formed, and the cysteine desulfurase IscS. Moreover, we found that promotion by YtfE of the formation of an Fe-S cluster in IscU requires two glutamates, E125 and E159 in YtfE. Both glutamates form part of the entrance of a protein channel in YtfE that links the di-iron center to the surface. In particular, E125 is crucial for the exit of iron, as a single mutation to leucine closes the channel rendering YtfE inactive for the build-up of Fe-S clusters. Hence, we provide evidence for the key role of RICs as bacterial iron donor proteins involved in the biogenesis of Fe-S clusters.
Collapse
Affiliation(s)
- Liliana S O Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
9
|
Identification of an Intermediate Form of Ferredoxin That Binds Only Iron Suggests That Conversion to Holo-Ferredoxin Is Independent of the ISC System in Escherichia coli. Appl Environ Microbiol 2021; 87:AEM.03153-20. [PMID: 33712431 DOI: 10.1128/aem.03153-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli [2Fe-2S]-ferredoxin and other ISC proteins encoded by the iscRSUA-hscBA-fdx-iscX (isc) operon are responsible for the assembly of iron-sulfur clusters. It is proposed that ferredoxin (Fdx) donates electrons from its reduced [2Fe-2S] center to iron-sulfur cluster biogenesis reactions. However, the underlying mechanisms of the [2Fe-2S] cluster assembly in Fdx remain elusive. Here, we report that Fdx preferentially binds iron, but not the [2Fe-2S] cluster, under cold stress conditions (≤16°C). The iron binding in Fdx is characterized by a unique absorption peak at 320 nm based on UV-visible spectroscopy. In addition, the iron-binding form of Fdx could be converted to the [2Fe-2S] cluster-bound form after transferring cold-stressed cells to normal cultivation temperatures above 25°C. In vitro experiments also revealed that Fdx could utilize bound iron to assemble the [2Fe-2S] cluster by itself. Furthermore, inactivation of the genes encoding IscS, IscU, and IscA did not limit [2Fe-2S] cluster assembly in Fdx, which was also observed by inactivating the isc or suf operon, indicating that iron-sulfur cluster biogenesis in Fdx arose from a unique pathway in E. coli Our results suggest that the intracellular assembly of [2Fe-2S] clusters in Fdx is susceptible to environmental temperatures. The iron binding form of Fdx (Fe-Fdx) is a precursor during its maturation to a cluster binding form ([2Fe-2S]-Fdx), and reassembly of the [2Fe-2S] clusters during temperature increases is not strictly reliant on other specific iron donors and scaffold proteins within the Isc or Suf system.IMPORTANCE Fdx is an electron carrier that is required for the maturation of many other iron-sulfur proteins. Its function strictly depends on its [2Fe-2S] center that bonds with the cysteinyl S atoms of four cysteine residues within Fdx. However, the assembly mechanism of the [2Fe-2S] clusters in Fdx remains controversial. This study reports that Fdx fails to form its [2Fe-2S] cluster under cold stress conditions but instead binds a single Fe atom at the cluster binding site. Moreover, when temperatures increase, Fdx can assemble clusters by itself from its iron-only binding form in E. coli cells. The possibility remains that Fdx can effectively accept clusters from multiple sources. Nevertheless, our results suggest that Fdx has a strong iron binding activity that contributes to the assembly of its own [2Fe-2S] cluster and that Fdx acts as a temperature sensor to regulate Isc system-mediated iron-sulfur cluster biogenesis.
Collapse
|
10
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
12
|
Abstract
Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.
Collapse
|
13
|
Blahut M, Sanchez E, Fisher CE, Outten FW. Fe-S cluster biogenesis by the bacterial Suf pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118829. [PMID: 32822728 DOI: 10.1016/j.bbamcr.2020.118829] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023]
Abstract
Biogenesis of iron-sulfur (FeS) clusters in an essential process in living organisms due to the critical role of FeS cluster proteins in myriad cell functions. During biogenesis of FeS clusters, multi-protein complexes are used to drive the mobilization and protection of reactive sulfur and iron intermediates, regulate assembly of various FeS clusters on an ATPase-dependent, multi-protein scaffold, and target nascent clusters to their downstream protein targets. The evolutionarily ancient sulfur formation (Suf) pathway for FeS cluster assembly is found in bacteria and archaea. In Escherichia coli, the Suf pathway functions as an emergency pathway under conditions of iron limitation or oxidative stress. In other pathogenic bacteria, such as Mycobacterium tuberculosis and Enterococcus faecalis, the Suf pathway is the sole source for FeS clusters and therefore is a potential target for the development of novel antibacterial compounds. Here we summarize the considerable progress that has been made in characterizing the first step of mobilization and protection of reactive sulfur carried out by the SufS-SufE or SufS-SufU complex, FeS cluster assembly on SufBC2D scaffold complexes, and the downstream trafficking of nascent FeS clusters to A-type carrier (ATC) proteins. Cell Biology of Metals III edited by Roland Lill and Mick Petris.
Collapse
Affiliation(s)
- Matthew Blahut
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Enis Sanchez
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
14
|
Lu HM, Li JD, Zhang YD, Lu XL, Xu C, Huang Y, Gribskov M. The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs. Genome Biol Evol 2020; 12:160-173. [PMID: 32108236 PMCID: PMC7144353 DOI: 10.1093/gbe/evaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters play important roles in electron transfer, metabolic and biosynthetic reactions, and the regulation of gene expression. Understanding the biogenesis of Fe-S clusters is therefore relevant to many fields. In the complex process of Fe-S protein formation, the A-type assembly protein (ATAP) family, which consists of several subfamilies, plays an essential role in Fe-S cluster formation and transfer and is highly conserved across the tree of life. However, the taxonomic distribution, motif compositions, and the evolutionary history of the ATAP subfamilies are not well understood. To address these problems, our study investigated the taxonomic distribution of 321 species from a broad cross-section of taxa. Then, we identified common and specific motifs in multiple ATAP subfamilies to explain the functional conservation and nonredundancy of the ATAPs, and a novel, essential motif was found in Eumetazoa IscA1, which has a newly found magnetic function. Finally, we used phylogenetic analytical methods to reconstruct the evolution history of this family. Our results show that two types of ErpA proteins (nonproteobacteria-type ErpA1 and proteobacteria-type ErpA2) exist in bacteria. The ATAP family, consisting of seven subfamilies, can be further classified into two types of ATAPs. Type-I ATAPs include IscA, SufA, HesB, ErpA1, and IscA1, with an ErpA1-like gene as their last common ancestor, whereas type-II ATAPs consist of ErpA2 and IscA2, duplicated from an ErpA2-like gene. During the mitochondrial endosymbiosis, IscA became IscA1 in eukaryotes and ErpA2 became IscA2 in eukaryotes, respectively.
Collapse
Affiliation(s)
- Hui-Meng Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Jing-Di Li
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Yu-Dan Zhang
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Xiao-Li Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Chang Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, PR China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, PR China
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University
- Department of Computer Science, Purdue University
| |
Collapse
|
15
|
Gao F. Iron-Sulfur Cluster Biogenesis and Iron Homeostasis in Cyanobacteria. Front Microbiol 2020; 11:165. [PMID: 32184761 PMCID: PMC7058544 DOI: 10.3389/fmicb.2020.00165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
Iron–sulfur (Fe–S) clusters are ancient and ubiquitous cofactors and are involved in many important biological processes. Unlike the non-photosynthetic bacteria, cyanobacteria have developed the sulfur utilization factor (SUF) mechanism as their main assembly pathway for Fe–S clusters, supplemented by the iron–sulfur cluster and nitrogen-fixing mechanisms. The SUF system consists of cysteine desulfurase SufS, SufE that can enhance SufS activity, SufBC2D scaffold complex, carrier protein SufA, and regulatory repressor SufR. The S source for the Fe–S cluster assembly mainly originates from L-cysteine, but the Fe donor remains elusive. This minireview mainly focuses on the biogenesis pathway of the Fe–S clusters in cyanobacteria and its relationship with iron homeostasis. Future challenges of studying Fe–S clusters in cyanobacteria are also discussed.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
16
|
Zinc Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Appl Environ Microbiol 2019; 85:AEM.01967-18. [PMID: 30824435 PMCID: PMC6495748 DOI: 10.1128/aem.01967-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
While zinc is an essential trace metal in biology, excess zinc is toxic to organisms. Previous studies have shown that zinc toxicity is associated with disruption of the [4Fe-4S] clusters in various dehydratases in Escherichia coli Here, we report that the intracellular zinc overload in E. coli cells inhibits iron-sulfur cluster biogenesis without affecting the preassembled iron-sulfur clusters in proteins. Among the housekeeping iron-sulfur cluster assembly proteins encoded by the gene cluster iscSUA-hscBA-fdx-iscX in E. coli cells, the scaffold IscU, the iron chaperone IscA, and ferredoxin have strong zinc binding activity in cells, suggesting that intracellular zinc overload inhibits iron-sulfur cluster biogenesis by binding to the iron-sulfur cluster assembly proteins. Mutations of the conserved cysteine residues to serine in IscA, IscU, or ferredoxin completely abolish the zinc binding activity of the proteins, indicating that zinc can compete with iron or iron-sulfur cluster binding in IscA, IscU, and ferredoxin and block iron-sulfur cluster biogenesis. Furthermore, intracellular zinc overload appears to emulate the slow-growth phenotype of the E. coli mutant cells with deletion of the iron-sulfur cluster assembly proteins IscU, IscA, and ferredoxin. Our results suggest that intracellular zinc overload inhibits iron-sulfur cluster biogenesis by targeting the iron-sulfur cluster assembly proteins IscU, IscA, and ferredoxin in E. coli cells.IMPORTANCE Zinc toxicity has been implicated in causing various human diseases. High concentrations of zinc can also inhibit bacterial cell growth. However, the underlying mechanism has not been fully understood. Here, we report that zinc overload in Escherichia coli cells inhibits iron-sulfur cluster biogenesis by targeting specific iron-sulfur cluster assembly proteins. Because iron-sulfur proteins are involved in diverse physiological processes, the zinc-mediated inhibition of iron-sulfur cluster biogenesis could be largely responsible for the zinc-mediated cytotoxicity. Our finding provides new insights on how intracellular zinc overload may inhibit cellular functions in bacteria.
Collapse
|
17
|
Spanka DT, Konzer A, Edelmann D, Berghoff BA. High-Throughput Proteomics Identifies Proteins With Importance to Postantibiotic Recovery in Depolarized Persister Cells. Front Microbiol 2019; 10:378. [PMID: 30894840 PMCID: PMC6414554 DOI: 10.3389/fmicb.2019.00378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial populations produce phenotypic variants called persisters to survive harmful conditions. Persisters are highly tolerant to antibiotics and repopulate environments after the stress has vanished. In order to resume growth, persisters have to recover from the persistent state, but the processes behind recovery remain mostly elusive. Deciphering these processes is an essential step toward understanding the persister phenomenon in its entirety. High-throughput proteomics by mass spectrometry is a valuable tool to assess persister physiology during any stage of the persister life cycle, and is expected to considerably contribute to our understanding of the recovery process. In the present study, an Escherichia coli strain, that overproduces the membrane-depolarizing toxin TisB, was established as a model for persistence by the use of high-throughput proteomics. Labeling of TisB persisters with stable isotope-containing amino acids (pulsed-SILAC) revealed an active translational response to ampicillin, including several RpoS-dependent proteins. Subsequent investigation of the persister proteome during postantibiotic recovery by label-free quantitative proteomics identified proteins with importance to the recovery process. Among them, AhpF, a component of alkyl hydroperoxide reductase, and the outer membrane porin OmpF were found to affect the persistence time of TisB persisters. Assessing the role of AhpF and OmpF in TisB-independent persisters demonstrated that the importance of a particular protein for the recovery process strongly depends on the physiological condition of a persister cell. Our study provides important insights into persister physiology and the processes behind recovery of depolarized cells.
Collapse
Affiliation(s)
- Daniel-Timon Spanka
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anne Konzer
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Pala ZR, Saxena V, Saggu GS, Garg S. Recent Advances in the [Fe-S] Cluster Biogenesis (SUF) Pathway Functional in the Apicoplast of Plasmodium. Trends Parasitol 2018; 34:800-809. [PMID: 30064903 DOI: 10.1016/j.pt.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
Iron-sulfur [Fe-S] clusters are one of the most ancient, ubiquitous, structurally and functionally versatile natural biosynthetic prosthetic groups required by various proteins involved in important metabolic processes. Genome mining and localization studies in Plasmodium have shown two evolutionarily distinct biogenesis pathways: the ISC pathway in mitochondria and the SUF pathway in the apicoplast. In recent years, the myriad efforts made to elucidate the SUF pathway have deciphered the role of various proteins involved in the pathway and their importance for the parasite life cycle in both asexual and sexual stages. This review aims to discuss recent research in the apicoplast [Fe-S] biogenesis pathway from Plasmodium to enhance our current understanding of parasite biology with an overall aim to identify gaps to strengthen our fight against malaria.
Collapse
Affiliation(s)
- Zarna Rajeshkumar Pala
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Vishal Saxena
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Gagandeep Singh Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergic and Infectious Diseases, National Institute of Health, Rockville, MD, USA
| | - Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
19
|
Dos Santos PC. B. subtilis as a Model for Studying the Assembly of Fe-S Clusters in Gram-Positive Bacteria. Methods Enzymol 2018; 595:185-212. [PMID: 28882201 DOI: 10.1016/bs.mie.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complexes of iron and sulfur (Fe-S clusters) are widely distributed in nature and participate in essential biochemical reactions. The biological formation of Fe-S clusters involves dedicated pathways responsible for the mobilization of sulfur, the assembly of Fe-S clusters, and the transfer of these clusters to target proteins. Genomic analysis of Bacillus subtilis and other Gram-positive bacteria indicated the presence of only one Fe-S cluster biosynthesis pathway, which is distinct in number of components and organization from previously studied systems. B. subtilis has been used as a model system for the characterization of cysteine desulfurases responsible for sulfur mobilization reactions in the biogenesis of Fe-S clusters and other sulfur-containing cofactors. Cysteine desulfurases catalyze the cleavage of the C-S bond from the amino acid cysteine and subsequent transfer of sulfur to acceptor molecules. These reactions can be monitored by the rate of alanine formation, the first product in the reaction, and sulfide formation, a byproduct of reactions performed under reducing conditions. The assembly of Fe-S clusters on protein scaffolds and the transfer of these clusters to target acceptors are determined through a combination of spectroscopic methods probing the rate of cluster assembly and transfer. This chapter provides a description of reactions promoting the assembly of Fe-S clusters in bacteria as well as methods used to study functions of each biosynthetic component and identify mechanistic differences employed by these enzymes across different pathways.
Collapse
|
20
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
21
|
Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.00867-17. [PMID: 28576762 DOI: 10.1128/aem.00867-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells.IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions.
Collapse
|
22
|
ISCA1 is essential for mitochondrial Fe 4S 4 biogenesis in vivo. Nat Commun 2017; 8:15124. [PMID: 28492233 PMCID: PMC5437272 DOI: 10.1038/ncomms15124] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/02/2017] [Indexed: 01/18/2023] Open
Abstract
Mammalian A-type proteins, ISCA1 and ISCA2, are evolutionarily conserved proteins involved in iron–sulfur cluster (Fe–S) biogenesis. Recently, it was shown that ISCA1 and ISCA2 form a heterocomplex that is implicated in the maturation of mitochondrial Fe4S4 proteins. Here we report that mouse ISCA1 and ISCA2 are Fe2S2-containing proteins that combine all features of Fe–S carrier proteins. We use biochemical, spectroscopic and in vivo approaches to demonstrate that despite forming a complex, ISCA1 and ISCA2 establish discrete interactions with components of the late Fe–S machinery. Surprisingly, knockdown experiments in mouse skeletal muscle and in primary cultures of neurons suggest that ISCA1, but not ISCA2, is required for mitochondrial Fe4S4 proteins biogenesis. Collectively, our data suggest that cellular processes with different requirements for ISCA1, ISCA2 and ISCA1–ISCA2 complex seem to exist. The mitochondrial proteins ISCA1 and ISCA2 form a complex that is involved in the biogenesis of Fe–S clusters. Here the authors report that ISCA1 and ISCA2 interact differently with proteins of the Fe–S machinery and that under certain conditions, ISCA2 seems dispensable for Fe–S biogenesis.
Collapse
|
23
|
Abstract
Iron-sulfur (Fe-S) clusters are fundamental to numerous biological processes in most organisms, but these protein cofactors can be prone to damage by various oxidants (e.g., O2, reactive oxygen species, and reactive nitrogen species) and toxic levels of certain metals (e.g., cobalt and copper). Furthermore, their synthesis can also be directly influenced by the level of available iron in the environment. Consequently, the cellular need for Fe-S cluster biogenesis varies with fluctuating growth conditions. To accommodate changes in Fe-S demand, microorganisms employ diverse regulatory strategies to tailor Fe-S cluster biogenesis according to their surroundings. Here, we review the mechanisms that regulate Fe-S cluster formation in bacteria, primarily focusing on control of the Isc and Suf Fe-S cluster biogenesis systems in the model bacterium Escherichia coli.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| |
Collapse
|
24
|
Barupala DP, Dzul SP, Riggs-Gelasco PJ, Stemmler TL. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors. Arch Biochem Biophys 2016; 592:60-75. [PMID: 26785297 PMCID: PMC4784227 DOI: 10.1016/j.abb.2016.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/25/2022]
Abstract
In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways.
Collapse
Affiliation(s)
- Dulmini P Barupala
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Stephen P Dzul
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | - Timothy L Stemmler
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
25
|
Abstract
The ancestors of Escherichia coli and Salmonella ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of E. coli. This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which E. coli and Salmonella defend themselves against it. E. coli mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. E. coli and Salmonella have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.
Collapse
|
26
|
Abstract
This review describes the two main systems, namely the Isc (iron-sulfur cluster) and Suf (sulfur assimilation) systems, utilized by Escherichia coli and Salmonella for the biosynthesis of iron-sulfur (Fe-S) clusters, as well as other proteins presumably participating in this process. In the case of Fe-S cluster biosynthesis, it is assumed that the sulfur atoms from the cysteine desulfurase end up at cysteine residues of the scaffold protein, presumably waiting for iron atoms for cluster assembly. The review discusses the various potential iron donor proteins. For in vitro experiments, in general, ferrous salts are used during the assembly of Fe-S clusters, even though this approach is unlikely to reflect the physiological conditions. The fact that sulfur atoms can be directly transferred from cysteine desulfurases to scaffold proteins supports a mechanism in which the latter bind sulfur atoms first and iron atoms afterwards. In E. coli, fdx gene inactivation results in a reduced growth rate and reduced Fe-S enzyme activities. Interestingly, the SufE structure resembles that of IscU, strengthening the notion that the two proteins share the property of acting as acceptors of sulfur atoms provided by cysteine desulfurases. Several other factors have been suggested to participate in cluster assembly and repair in E. coli and Salmonella. Most of them were identified by their abilities to act as extragenic and/or multicopy suppressors of mutations in Fe-S cluster metabolism, while others possess biochemical properties that are consistent with a role in Fe-S cluster biogenesis.
Collapse
|
27
|
Response of Fe–S cluster assembly machinery of Escherichia coli to mechanical stress in a model of amino-acid crystal fermentation. J Biosci Bioeng 2015; 120:287-93. [DOI: 10.1016/j.jbiosc.2015.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 11/18/2022]
|
28
|
Yang J, Tan G, Zhang T, White RH, Lu J, Ding H. Deletion of the Proposed Iron Chaperones IscA/SufA Results in Accumulation of a Red Intermediate Cysteine Desulfurase IscS in Escherichia coli. J Biol Chem 2015; 290:14226-34. [PMID: 25907559 DOI: 10.1074/jbc.m115.654269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, sulfur in iron-sulfur clusters is primarily derived from L-cysteine via the cysteine desulfurase IscS. However, the iron donor for iron-sulfur cluster assembly remains elusive. Previous studies have shown that, among the iron-sulfur cluster assembly proteins in E. coli, IscA has a unique and strong iron-binding activity and that the iron-bound IscA can efficiently provide iron for iron-sulfur cluster assembly in proteins in vitro, indicating that IscA may act as an iron chaperone for iron-sulfur cluster biogenesis. Here we report that deletion of IscA and its paralog SufA in E. coli cells results in the accumulation of a red-colored cysteine desulfurase IscS under aerobic growth conditions. Depletion of intracellular iron using a membrane-permeable iron chelator, 2,2'-dipyridyl, also leads to the accumulation of red IscS in wild-type E. coli cells, suggesting that the deletion of IscA/SufA may be emulated by depletion of intracellular iron. Purified red IscS has an absorption peak at 528 nm in addition to the peak at 395 nm of pyridoxal 5'-phosphate. When red IscS is oxidized by hydrogen peroxide, the peak at 528 nm is shifted to 510 nm, which is similar to that of alanine-quinonoid intermediate in cysteine desulfurases. Indeed, red IscS can also be produced in vitro by incubating wild-type IscS with excess L-alanine and sulfide. The results led us to propose that deletion of IscA/SufA may disrupt the iron delivery for iron-sulfur cluster biogenesis, therefore impeding sulfur delivery by IscS, and result in the accumulation of red IscS in E. coli cells.
Collapse
Affiliation(s)
- Jing Yang
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Guoqiang Tan
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ting Zhang
- the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Robert H White
- the Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, and
| | - Jianxin Lu
- the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huangen Ding
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803,
| |
Collapse
|
29
|
Blanc B, Gerez C, Ollagnier de Choudens S. Assembly of Fe/S proteins in bacterial systems: Biochemistry of the bacterial ISC system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1436-47. [PMID: 25510311 DOI: 10.1016/j.bbamcr.2014.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/20/2014] [Accepted: 12/08/2014] [Indexed: 12/26/2022]
Abstract
Iron/sulfur clusters are key cofactors in proteins involved in a large number of conserved cellular processes, including gene expression, DNA replication and repair, ribosome biogenesis, tRNA modification, central metabolism and respiration. Fe/S proteins can perform a wide range of functions, from electron transfer to redox and non-redox catalysis. In all living organisms, Fe/S proteins are first synthesized in an apo-form. However, as the Fe/S prosthetic group is required for correct folding and/or protein stability, Fe/S clusters are inserted co-translationally or immediately after translation by specific assembly machineries. These systems have been extensively studied over the last decade, both in prokaryotes and eukaryotes. The present review covers the basic principles of the bacterial housekeeping Fe/S biogenesis ISC system, and related recent molecular advances. Some of the most exciting recent highlights relating to this system include structural and functional characterization of binary and ternary complexes involved in Fe/S cluster formation on the scaffold protein IscU. These advances enhance our understanding of the Fe/S cluster assembly mechanism by revealing essential interactions that could never be determined with isolated proteins and likely are closer to an in vivo situation. Much less is currently known about the molecular mechanism of the Fe/S transfer step, but a brief account of the protein-protein interactions involved is given. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- B Blanc
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France
| | - C Gerez
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France
| | - S Ollagnier de Choudens
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France.
| |
Collapse
|
30
|
Outten FW. Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1464-9. [PMID: 25447545 DOI: 10.1016/j.bbamcr.2014.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/21/2023]
Abstract
Fe-S clusters play critical roles in cellular function throughout all three kingdoms of life. Consequently, Fe-S cluster biogenesis systems are present in most organisms. The Suf (sulfur formation) system is the most ancient of the three characterized Fe-S cluster biogenesis pathways, which also include the Isc and Nif systems. Much of the first work on the Suf system took place in Gram-negative Proteobacteria used as model organisms. These early studies led to a wealth of biochemical, genetic, and physiological information on Suf function. From those studies we have learned that SufB functions as an Fe-S scaffold in conjunction with SufC (and in some cases SufD). SufS and SufE together mobilize sulfur for cluster assembly and SufA traffics the complete Fe-S cluster from SufB to target apo-proteins. However, recent progress on the Suf system in other organisms has opened up new avenues of research and new hypotheses about Suf function. This review focuses primarily on the most recent discoveries about the Suf pathway and where those new models may lead the field. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- F Wayne Outten
- University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
31
|
Tan G, Cheng Z, Pang Y, Landry AP, Li J, Lu J, Ding H. Copper binding in IscA inhibits iron-sulphur cluster assembly in Escherichia coli. Mol Microbiol 2014; 93:629-44. [PMID: 24946160 DOI: 10.1111/mmi.12676] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 11/28/2022]
Abstract
Among the iron-sulphur cluster assembly proteins encoded by gene cluster iscSUA-hscBA-fdx in Escherichia coli, IscA has a unique and strong iron binding activity and can provide iron for iron-sulphur cluster assembly in proteins in vitro. Deletion of IscA and its paralogue SufA results in an E. coli mutant that fails to assemble [4Fe-4S] clusters in proteins under aerobic conditions, suggesting that IscA has a crucial role for iron-sulphur cluster biogenesis. Here we report that among the iron-sulphur cluster assembly proteins, IscA also has a strong and specific binding activity for Cu(I) in vivo and in vitro. The Cu(I) centre in IscA is stable and resistant to oxidation under aerobic conditions. Mutation of the conserved cysteine residues that are essential for the iron binding in IscA abolishes the copper binding activity, indicating that copper and iron may share the same binding site in the protein. Additional studies reveal that copper can compete with iron for the metal binding site in IscA and effectively inhibits the IscA-mediated [4Fe-4S] cluster assembly in E. coli cells. The results suggest that copper may not only attack the [4Fe-4S] clusters in dehydratases, but also block the [4Fe-4S] cluster assembly in proteins by targeting IscA in cells.
Collapse
Affiliation(s)
- Guoqiang Tan
- Laboratory of Molecular Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Nobre LS, Garcia-Serres R, Todorovic S, Hildebrandt P, Teixeira M, Latour JM, Saraiva LM. Escherichia coli RIC is able to donate iron to iron-sulfur clusters. PLoS One 2014; 9:e95222. [PMID: 24740378 PMCID: PMC3989283 DOI: 10.1371/journal.pone.0095222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli RIC (Repair of Iron Centers) is a diiron protein previously reported to be involved in the repair of iron-sulfur proteins damaged by oxidative or nitrosative stresses, and proposed to act as an iron donor. This possible role of RIC was now examined specifically by evaluating its ability to donate iron ions to apo-iron-sulfur proteins, determining the iron binding constants and assessing the lability of its iron ions. We show, by UV-visible, EPR and resonance Raman spectroscopies that RIC may participate in the synthesis of an iron-sulfur cluster in the apo-forms of the spinach ferredoxin and IscU when in the presence of the sulfide donating system IscS and L-cysteine. Iron binding assays allowed determining the as-isolated and fully reduced RIC dissociation constants for the ferric and ferrous iron of 10-27 M and 10-13 M, respectively. Mössbauer studies revealed that the RIC iron ions are labile, namely when the center is in the mixed-valence redox form as compared with the (μ-oxo) diferric one. Altogether, these results suggest that RIC is capable of delivering iron for the formation of iron-sulfur clusters.
Collapse
Affiliation(s)
- Lígia S. Nobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República (EAN), Oeiras, Portugal
| | - Ricardo Garcia-Serres
- DSV/iRTSV/CBM, UMR 5249 CEA-Université Grenoble I-CNRS/Equipe de Physicochimie des Métaux en Biologie, CEA-Grenoble, France
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República (EAN), Oeiras, Portugal
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, FG Biophysikalische Chemie, Berlin, Germany
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República (EAN), Oeiras, Portugal
- * E-mail: (LMS); (MT)
| | - Jean-Marc Latour
- DSV/iRTSV/CBM, UMR 5249 CEA-Université Grenoble I-CNRS/Equipe de Physicochimie des Métaux en Biologie, CEA-Grenoble, France
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República (EAN), Oeiras, Portugal
- * E-mail: (LMS); (MT)
| |
Collapse
|
33
|
Distinct roles of the Salmonella enterica serovar Typhimurium CyaY and YggX proteins in the biosynthesis and repair of iron-sulfur clusters. Infect Immun 2014; 82:1390-401. [PMID: 24421039 DOI: 10.1128/iai.01022-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Labile [4Fe-4S](2+) clusters found at the active sites of many dehydratases are susceptible to damage by univalent oxidants that convert the clusters to an inactive [3Fe-4S](1+) form. Bacteria repair damaged clusters in a process that does not require de novo protein synthesis or the Isc and Suf cluster assembly pathways. The current study investigates the participation of the bacterial frataxin ortholog CyaY and the YggX protein, which are proposed to play roles in iron trafficking and iron-sulfur cluster repair. Previous reports found that individual mutations in cyaY or yggX were not associated with phenotypic changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that CyaY and YggX might have functionally redundant roles. However, we have found that individual mutations in cyaY or yggX confer enhanced susceptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium. In addition, inactivation of the stm3944 open reading frame, which is located immediately upstream of cyaY and which encodes a putative inner membrane protein, dramatically enhances the hydrogen peroxide sensitivity of a cyaY mutant. Overexpression of STM3944 reduces the elevated intracellular free iron levels observed in an S. Typhimurium fur mutant and also reduces the total cellular iron content under conditions of iron overload, suggesting that the stm3944-encoded protein may mediate iron efflux. Mutations in cyaY and yggX have different effects on the activities of the iron-sulfur cluster-containing aconitase, serine deaminase, and NADH dehydrogenase I enzymes of S. Typhimurium under basal conditions or following recovery from oxidative stress. In addition, cyaY and yggX mutations have additive effects on 6-phosphogluconate dehydratase-dependent growth during nitrosative stress, and a cyaY mutation reduces Salmonella virulence in mice. Collectively, these results indicate that CyaY and YggX play distinct supporting roles in iron-sulfur cluster biosynthesis and the repair of labile clusters damaged by univalent oxidants. Salmonella experiences oxidative and nitrosative stress within host phagocytes, and CyaY-dependent maintenance of labile iron-sulfur clusters appears to be important for Salmonella virulence.
Collapse
|
34
|
Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:923-37. [PMID: 23660107 DOI: 10.1016/j.bbabio.2013.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/15/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
35
|
Landry AP, Cheng Z, Ding H. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. Dalton Trans 2013; 42:3100-6. [PMID: 23258274 PMCID: PMC3569480 DOI: 10.1039/c2dt32000b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.
Collapse
Affiliation(s)
- Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
36
|
Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:455-69. [PMID: 23298813 DOI: 10.1016/j.bbabio.2012.12.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/17/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Béatrice Roche
- Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
37
|
Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. FRONTIERS IN PLANT SCIENCE 2013; 4:259. [PMID: 23898337 PMCID: PMC3721309 DOI: 10.3389/fpls.2013.00259] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/25/2013] [Indexed: 05/18/2023]
Abstract
Many metabolic pathways and cellular processes occurring in most sub-cellular compartments depend on the functioning of iron-sulfur (Fe-S) proteins, whose cofactors are assembled through dedicated protein machineries. Recent advances have been made in the knowledge of the functions of individual components through a combination of genetic, biochemical and structural approaches, primarily in prokaryotes and non-plant eukaryotes. Whereas most of the components of these machineries are conserved between kingdoms, their complexity is likely increased in plants owing to the presence of additional assembly proteins and to the existence of expanded families for several assembly proteins. This review focuses on the new actors discovered in the past few years, such as glutaredoxin, BOLA and NEET proteins as well as MIP18, MMS19, TAH18, DRE2 for the cytosolic machinery, which are integrated into a model for the plant Fe-S cluster biogenesis systems. It also discusses a few issues currently subjected to an intense debate such as the role of the mitochondrial frataxin and of glutaredoxins, the functional separation between scaffold, carrier and iron-delivery proteins and the crosstalk existing between different organelles.
Collapse
Affiliation(s)
- Jérémy Couturier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
| | - Brigitte Touraine
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Jean-François Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
- *Correspondence: Nicolas Rouhier, Université de Lorraine, UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, Faculté des Sciences, Bd des aiguillettes, BP 239,54506 Vandoeuvre, France e-mail:
| |
Collapse
|
38
|
Vasil’eva SV, Strel’tsova DA. Reconstruction of Fe-S protein clusters in Escherichia coli and biofilm formation. DOKL BIOCHEM BIOPHYS 2013; 448:27-32. [DOI: 10.1134/s1607672913010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Indexed: 11/22/2022]
|
39
|
Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA. Biochemistry 2012; 51:8056-70. [PMID: 23003563 DOI: 10.1021/bi300664j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.
Collapse
Affiliation(s)
- Daphne T Mapolelo
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
40
|
Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA. Biochemistry 2012; 51:8071-84. [PMID: 23003323 DOI: 10.1021/bi3006658] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.
Collapse
Affiliation(s)
- Daphne T Mapolelo
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
41
|
Chahal HK, Outten FW. Separate FeS scaffold and carrier functions for SufB₂C₂ and SufA during in vitro maturation of [2Fe2S] Fdx. J Inorg Biochem 2012; 116:126-34. [PMID: 23018275 DOI: 10.1016/j.jinorgbio.2012.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022]
Abstract
Iron-sulfur (FeS) clusters are inorganic cofactors required for a variety of biological processes. In vivo biogenesis of FeS clusters proceeds via complex pathways involving multiple protein complexes. In the Suf FeS cluster biogenesis system, SufB may be a scaffold for nascent FeS cluster assembly whereas SufA is proposed to act as either a scaffold or an FeS cluster carrier from the scaffold to target apo-proteins. However, SufB can form multiple stable complexes with other Suf proteins, such as SufB(2)C(2) and SufBC(2)D and the specific functions of these complexes in FeS cluster assembly are not clear. Here we compare the ability of the SufB(2)C(2) and SufBC(2)D complexes as well as SufA to promote in vitro maturation of the [2Fe2S] ferredoxin (Fdx). We found that SufB(2)C(2) was most proficient as a scaffold for de novo assembly of holo-Fdx using sulfide and iron as freely available building blocks while SufA was best at direct transfer of a pre-formed FeS cluster to Fdx. Furthermore, cluster transfer from [4Fe4S] SufB(2)C(2) or SufBC(2)D to Fdx will proceed through a SufA intermediate to Fdx if SufA is present. Finally, addition of ATP repressed cluster transfer from [4Fe4S] SufB(2)C(2) to Fdx and from SufBC(2)D to [2Fe2S] SufA or Fdx. These studies indicate that SufB(2)C(2) can serve as a terminal scaffold to load the SufA FeS cluster carrier for in vitro maturation of [2Fe2S] enzymes like Fdx. This work is the first to systematically compare the cluster transfer rates of a scaffold (SufB) to the transfer rates of a carrier (SufA) under the same conditions to the same target enzyme and is also the first to reconstitute the full transfer pathway (from scaffold to carrier to target enzyme) in a single reaction.
Collapse
Affiliation(s)
- Harsimranjit K Chahal
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
42
|
Stress response and virulence functions of the Acinetobacter baumannii NfuA Fe-S scaffold protein. J Bacteriol 2012; 194:2884-93. [PMID: 22467784 DOI: 10.1128/jb.00213-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To successfully establish an infection, Acinetobacter baumannii must overcome the iron starvation and oxidative stress imposed by the human host. Although previous studies have shown that ATCC 19606(T) cells acquire iron via the acinetobactin-mediated siderophore system, little is known about intracellular iron metabolism and its relation to oxidative stress in this pathogen. Screening of an insertion library resulted in the isolation of the ATCC 19606(T) derivative 1644, which was unable to grow in iron-chelated media. Rescue cloning and DNA sequencing showed that the insertion inactivated a gene coding for an NfuA Fe-S cluster protein ortholog, without any effect on the expression of the acinetobactin system. The nfuA mutant was also more sensitive to hydrogen peroxide and cumene hydroperoxide than the parental strain. The iron chelation- and oxidative-stress-deficient responses of this mutant were corrected when complemented with either the ATCC 19606(T) parental allele or the Escherichia coli MG1655 nfuA ortholog. Furthermore, electron paramagnetic resonance (EPR) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses showed that the ATCC 19606(T) NfuA ortholog has iron-binding properties compatible with the formation of [Fe-S] cluster protein. Ex vivo and in vivo assays using human epithelial cells and Galleria mellonella, respectively, showed that NfuA is critical for bacterial growth independent of their capacity to acquire iron or the presence of excess of free iron. Taken together, these observations indicate that the A. baumannii NfuA ortholog plays a role in intracellular iron utilization and protection from oxidative-stress responses that this pathogen could encounter during the infection of the human host.
Collapse
|
43
|
Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 2011; 286:41205-41216. [PMID: 21987576 DOI: 10.1074/jbc.m111.296152] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Nadine Richter
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Antonio J Pierik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
44
|
Long S, Changmai P, Tsaousis AD, Skalický T, Verner Z, Wen YZ, Roger AJ, Lukeš J. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues. Mol Microbiol 2011; 81:1403-18. [DOI: 10.1111/j.1365-2958.2011.07769.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
46
|
Landry AP, Duan X, Huang H, Ding H. Iron-sulfur proteins are the major source of protein-bound dinitrosyl iron complexes formed in Escherichia coli cells under nitric oxide stress. Free Radic Biol Med 2011; 50:1582-90. [PMID: 21420489 PMCID: PMC3090472 DOI: 10.1016/j.freeradbiomed.2011.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/26/2011] [Accepted: 03/03/2011] [Indexed: 12/29/2022]
Abstract
Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not proteins without iron-sulfur clusters, are modified, forming protein-bound DNICs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of the "chelatable iron pool" in wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of the chelatable iron pool in cells.
Collapse
Affiliation(s)
| | | | - Hao Huang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803
| |
Collapse
|
47
|
|
48
|
Albrecht AG, Peuckert F, Landmann H, Miethke M, Seubert A, Marahiel MA. Mechanistic characterization of sulfur transfer from cysteine desulfurase SufS to the iron-sulfur scaffold SufU in Bacillus subtilis. FEBS Lett 2011; 585:465-70. [PMID: 21236255 DOI: 10.1016/j.febslet.2011.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 11/25/2022]
Abstract
Iron-sulfur cluster biosynthesis in Gram-positive bacteria is mediated by the SUF system. The transfer of sulfide from the cysteine desulfurase SufS to the scaffold protein SufU is one of the first steps within the assembly process. In this study, we analyzed the interaction between Bacillus subtilis SufS and its scaffold SufU. The activity of SufS represents a Ping-Pong mechanism leading to successive sulfur loading of the conserved cysteine residues in SufU. Cysteine 41 of SufU is shown to be essential for receiving sulfide from SufS, while cysteines 66 and 128 are needed for SufS/SufU interaction. In conclusion, we present the first step-by-step model for loading of the essential scaffold component SufU by its sulfur donor SufS.
Collapse
|
49
|
Wang W, Huang H, Tan G, Si F, Min L, Landry AP, Lu J, Ding H. In vivo evidence for the iron-binding activity of an iron-sulfur cluster assembly protein IscA in Escherichia coli. Biochem J 2010; 432:429-36. [PMID: 20942799 PMCID: PMC2992610 DOI: 10.1042/bj20101507] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IscA is a key member of the iron-sulfur cluster assembly machinery in prokaryotic and eukaryotic organisms; however, the physiological function of IscA still remains elusive. In the present paper we report the in vivo evidence demonstrating the iron-binding activity of IscA in Escherichia coli cells. Supplement of exogenous iron (1 μM) in M9 minimal medium is sufficient to maximize the iron binding in IscA expressed in E. coli cells under aerobic growth conditions. In contrast, IscU, an iron-sulfur cluster assembly scaffold protein, or CyaY, a bacterial frataxin homologue, fails to bind any iron in E. coli cells under the same experimental conditions. Interestingly, the strong iron-binding activity of IscA is greatly diminished in E. coli cells under anaerobic growth conditions. Additional studies reveal that oxygen in medium promotes the iron binding in IscA, and that the iron binding in IscA in turn prevents formation of biologically inaccessible ferric hydroxide under aerobic conditions. Consistent with the differential iron-binding activity of IscA under aerobic and anaerobic conditions, we find that IscA and its paralogue SufA are essential for the iron-sulfur cluster assembly in E. coli cells under aerobic growth conditions, but not under anaerobic growth conditions. The results provide in vivo evidence that IscA may act as an iron chaperone for the biogenesis of iron-sulfur clusters in E. coli cells under aerobic conditions.
Collapse
Affiliation(s)
- Wu Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA and
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Hao Huang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA and
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Fan Si
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Liu Min
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Aaron P. Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA and
| | - Jianxin Lu
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA and
| |
Collapse
|
50
|
Jang S, Imlay JA. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 2010; 78:1448-67. [PMID: 21143317 PMCID: PMC3051806 DOI: 10.1111/j.1365-2958.2010.07418.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Environmental H(2) O(2) creates several injuries in Escherichia coli, including the oxidative conversion of dehydratase [4Fe-4S] clusters to an inactive [3Fe-4S] form. To protect itself, H(2) O(2) -stressed E. coli activates the OxyR regulon. This regulon includes the suf operon, which encodes an alternative to the housekeeping Isc iron-sulphur cluster assembly system. Previously studied [3Fe-4S] clusters are repaired by an Isc/Suf-independent pathway, so the rationale for Suf induction was not obvious. Using strains that cannot scavenge H(2) O(2) , we imposed chronic low-grade stress and found that suf mutants could not maintain the activity of isopropylmalate isomerase, a key iron-sulphur dehydratase. Experiments showed that its damaged cluster was degraded in vivo beyond the [3Fe-4S] state, presumably to an apoprotein form, and thus required a de novo assembly system for reactivation. Surprisingly, submicromolar H(2) O(2) poisoned the Isc machinery, thereby creating a requirement for Suf both to repair the isomerase and to activate nascent Fe-S enzymes in general. The IscS and IscA components of the Isc system are H(2) O(2) -resistant, suggesting that oxidants disrupt Isc by oxidizing clusters as they are assembled on or transferred from the IscU scaffold. Consistent with these results, organisms that are routinely exposed to oxidants rely upon Suf rather than Isc for cluster assembly.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| |
Collapse
|