1
|
Zhou X, Luo F, Xiang B, Li K. The working mechanism of biomarkers related to sumoylation modification in coronary artery disease. Sci Rep 2025; 15:17055. [PMID: 40379803 PMCID: PMC12084532 DOI: 10.1038/s41598-025-02099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 05/12/2025] [Indexed: 05/19/2025] Open
Abstract
Coronary artery disease (CAD) remains a leading global cause of mortality. The expression of small ubiquitin-like modifier 1 (SUMO-1) is reduced in heart failure. However, the mechanisms underlying its modification in CAD remain underexplored. This study sought to identify SUMOylation-related biomarkers and elucidate the potential mechanisms in CAD pathogenesis. This study analyzed three CAD datasets (GSE42148, GSE23561, and GSE121893) alongside 187 SUMOylation-related genes (SRGs). The overlap between differentially expressed genes (DEGs) and SRGs was used to identify differentially expressed SUMOylation-related genes (DE-SRGs). Biomarkers were validated through expression profiling and receiver operating characteristic (ROC) curve analysis. Enrichment and immune infiltration analyses were performed to explore the molecular mechanisms by which these biomarkers influence CAD. A drug-gene interaction network was constructed using the Drug-Gene Interaction database (DGIdb). Single-cell analysis was conducted to identify key cellular players and validate the differential expression of biomarkers across cell types. A total of 12 DE-SRGs were identified in CAD. Among them, SUMO1 and PPARG were validated as biomarkers, with their expression significantly elevated in the CAD group compared to the control group. Single-sample gene set enrichment analysis (ssGSEA) revealed distinct immune cell distributions in CAD, with central memory CD4+ T cells and memory B cells positively correlated with the biomarkers. Gene set enrichment analysis (GSEA) linked these biomarkers to ribosomal activity, olfactory transduction, and other pathways. Single-cell analysis confirmed the expression of SUMO1 and PPARG in endothelial cells, particularly in the CAD group. Additionally, SUMO1 was differentially expressed in cardiomyocytes, exhibiting higher expression in controls. SUMO1 and PPARG were identified as novel SUMOylation-related biomarkers in CAD, suggesting new therapeutic avenues for CAD management.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fanyan Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bitao Xiang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Kaixuan Li
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Tucker SK, Seale BC, Brown DT, Hebert MD. Coilin and SUMOylation influence PARP1 dynamics and the DNA damage response. J Cell Sci 2025; 138:jcs263953. [PMID: 40342165 DOI: 10.1242/jcs.263953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025] Open
Abstract
Coilin is a nucleoplasmic protein that is enriched in some cell types in the Cajal body (CB). CBs take part in the biogenesis of many different types of ribonucleoproteins (RNPs), such as small nuclear RNPs. Coilin is known as the CB marker protein and is required for CB formation. The function of nucleoplasmic coilin is less understood and has been shown to impact protein modification by SUMO, the small ubiquitin-like modifier. Additionally, it is known that coilin is recruited to sites of DNA damage caused by UVA exposure or expression of herpes simplex viral protein. PARP1, a DNA damage response protein, has been shown to be SUMOylated by PIAS4, a SUMO E3 ligase that associates with coilin. Here, we show that SUMOylation of PARP1 is lessened when coilin is suppressed. We also found that coilin knockdown and a SUMO inhibitor drug, TAK-981, influence the dynamics of PARP1 in response to micro-irradiation. Additionally, we find that the SUMOylation status of coilin influences its mobility in the CB and recruitment to sites of DNA damage. These data demonstrate that coilin and SUMOylation both have an influence on the DNA damage response.
Collapse
Affiliation(s)
- Sara K Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Blaise C Seale
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - David T Brown
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
3
|
Wan L, Yang F, Yin A, Luo Y, Liu Y, Liu F, Wang JZ, Liu R, Wang X. Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer's disease. Cell Death Differ 2025; 32:837-854. [PMID: 39870805 DOI: 10.1038/s41418-025-01448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain. Mechanistically, SUMOylation of p53 at K386 residue causes the dissociation of SET/p53 complex, thus releasing SET into the cytoplasm, SET further interacts with cytoplasmic PP2A and inhibits its activity, resulting in tau hyperphosphorylation in neurons. In addition, SUMOylation of p53 promotes the p53 Ser15 phosphorylation that mediates neuronal senescence. Notably, p53 SUMOylation contributes to synaptic damage and cognitive defects in AD model mice. We also demonstrate that the SUMOylation inhibiter, Ginkgolic acid, recovering several senescent phenotypes drove by p53 SUMOylation in primary neurons. These findings suggest a previously undiscovered etiopathogenic relationship between aging and AD that is linked to p53 SUMOylation and the potential of SUMOylated p53-based therapeutics for neurodegeneration such as Alzheimer's disease.
Collapse
Affiliation(s)
- Lu Wan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fumin Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Yin
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Luo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
4
|
Min WK, Kwak JS, Kwon DH, Kim S, Park SW, Ahn J, Cho S, Kim M, Lee SJ, Song JT, Kim Y, Seo HS. Retromer protein VPS29 plays a crucial and positive role in the sumoylation system mediated by E3 SUMO ligase SIZ1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70166. [PMID: 40286281 PMCID: PMC12033008 DOI: 10.1111/tpj.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Vacuolar protein sorting 29 (VPS29) functions in retrograde protein transport as a component of the retromer complex. However, the role of VPS29 in the regulation of post-translational modifications, such as sumoylation and ubiquitination, has not been elucidated. In this study, we demonstrate that VPS29 positively regulates SIZ/PIAS-type E3 SUMO (Small ubiquitin-related modifier) ligase-mediated sumoylation systems. In Arabidopsis, vps29-3 mutants display upregulated salicylic acid (SA) signaling pathways and reactive oxygen species accumulation, similar to those observed in siz1 mutants. Arabidopsis VPS29 (AtVPS29) directly interacts with the Arabidopsis E3 SUMO ligase SIZ1 (AtSIZ1) and localizes not only to the cytoplasm but also to the nucleus. The loss of AtVPS29 leads to a depletion of AtSIZ1, whereas the E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1), an upstream regulator of AtSIZ1, accumulates in vps29-3 mutants. Conversely, overexpression of AtVPS29 results in the accumulation of AtSIZ1 and the depletion of COP1 in transgenic Arabidopsis. Similarly, in human cells, silencing of hVPS29 leads to the depletion of the E3 SUMO ligase, PIAS1, and the accumulation of huCOP1. Under heat stress conditions, the levels of SUMO-conjugates are significantly lower in Arabidopsis vps29-3 mutants, indicating a regulatory role of AtVPS29 on AtSIZ1 activity. Moreover, AtVPS29 inhibits ubiquitination pathway-dependent degradation of AtSIZ1. Notably, AtSIZ1 forms a complex with AtVPS29 and trimeric retromer proteins. Taken together, our results indicate that VPS29 plays an essential role in signal transduction by regulating SIZ/PIAS-type E3 ligase-dependent sumoylation in both plants and animals.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Dae Hwan Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Sung‐Il Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Sang Woo Park
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jiyoung Ahn
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Soobin Cho
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Myung‐Jin Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Seung Ju Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jong Tae Song
- Department of Applied BiosciencesKyungpook National UniversityDaegu41566Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| |
Collapse
|
5
|
Martínez-López A, Infante G, Mendiburu-Eliçabe M, Machuca A, Antón OM, González-Fernández M, Luque-García JL, Clarke RB, Castillo-Lluva S. SUMOylation regulates the aggressiveness of breast cancer-associated fibroblasts. Cell Oncol (Dordr) 2025; 48:437-453. [PMID: 39432155 PMCID: PMC11996949 DOI: 10.1007/s13402-024-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are the most abundant stromal cellular component in the tumor microenvironment (TME). CAFs contribute to tumorigenesis and have been proposed as targets for anticancer therapies. Similarly, dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to tumorigenesis and drug resistance in various cancers, including breast cancer. We explored the role of SUMOylation in breast CAFs and evaluated its potential as a therapeutic strategy in breast cancer. METHODS We used pharmacological and genetic approaches to analyse the functional crosstalk between breast tumor cells and CAFs. We treated breast CAFs with the SUMO1 inhibitor ginkgolic acid (GA) at two different concentrations and conditioned media was used to analyse the proliferation, migration, and invasion of breast cancer cells from different molecular subtypes. Additionally, we performed quantitative proteomics (SILAC) to study the differential signalling pathways expressed in CAFs treated with low or high concentrations of GA. We confirmed these results both in vitro and in vivo. Moreover, we used samples from metastatic breast cancer patients to evaluate the use of GA as a therapeutic strategy. RESULTS Inhibition of SUMOylation with ginkgolic acid (GA) induces death in breast cancer cells but does not affect the viability of CAFs, indicating that CAFs are resistant to this therapy. While CAF viability is unaffected, CAF-conditioned media (CM) is altered by GA, impacting tumor cell behaviour in different ways depending on the overall degree to which SUMO1-SUMOylated proteins are dysregulated. Breast cancer cell lines exhibited a concentration-dependent response to conditioned media (CM) from CAFs. At a low concentration of GA (10 µM), there was an increase in proliferation, migration and invasion of breast cancer cells. However, at a higher concentration of GA (30 µM), these processes were inhibited. Similarly, analysis of tumor development revealed that at 10 µM of GA, the tumors were heavier and there was a greater degree of metastasis compared to the tumors treated with the higher concentration of GA (30 µM). Moreover, some of these effects could be explained by an alteration in the activity of the GTPase Rac1 and the activation of the AKT signalling pathway. The results obtained using SILAC suggest that different concentrations of GA affected cellular processes differentially, possibly influencing the secretome of CAFs. Treatment of metastatic breast cancer with GA demonstrated the use of SUMOylation inhibition as an alternative therapeutic strategy. CONCLUSION The study highlights the importance of SUMOylation in the tumor microenvironment, specifically in cancer-associated fibroblasts (CAFs). Targeting SUMOylation in CAFs affects their signalling pathways and secretome in a concentration-dependent manner, regulating the protumorigenic properties of CAFs.
Collapse
Affiliation(s)
- Angelica Martínez-López
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Guiomar Infante
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés Machuca
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Olga M Antón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Mónica González-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José L Luque-García
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Robert B Clarke
- Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
6
|
Suk TR, Part CE, Zhang JL, Nguyen TT, Heer MM, Caballero-Gómez A, Grybas VS, McKeever PM, Nguyen B, Ali T, Callaghan SM, Woulfe JM, Robertson J, Rousseaux MWC. A stress-dependent TDP-43 SUMOylation program preserves neuronal function. Mol Neurodegener 2025; 20:38. [PMID: 40149017 PMCID: PMC11951803 DOI: 10.1186/s13024-025-00826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are overwhelmingly linked to TDP-43 dysfunction. Mutations in TDP-43 are rare, indicating that the progressive accumulation of exogenous factors - such as cellular stressors - converge on TDP-43 to play a key role in disease pathogenesis. Post translational modifications such as SUMOylation play essential roles in response to such exogenous stressors. We therefore set out to understand how SUMOylation may regulate TDP-43 in health and disease. We find that TDP-43 is regulated dynamically via SUMOylation in response to cellular stressors. When this process is blocked in vivo, we note age-dependent TDP-43 pathology and sex-specific behavioral deficits linking TDP-43 SUMOylation with aging and disease. We further find that SUMOylation is correlated with human aging and disease states. Collectively, this work presents TDP-43 SUMOylation as an early physiological response to cellular stress, disruption of which may confer a risk for TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Terry R Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Caroline E Part
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Jenny L Zhang
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Trina T Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Meghan M Heer
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Alejandro Caballero-Gómez
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Veronica S Grybas
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Benjamin Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Tahir Ali
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - John M Woulfe
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital Research Institute, the Ottawa Hospital, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Zhang C, Wu Y, Liu J, Song B, Yu Z, Li JF, Yang C, Lai J. SUMOylation controls peptide processing to generate damage-associated molecular patterns in Arabidopsis. Dev Cell 2025; 60:696-705.e4. [PMID: 39657674 DOI: 10.1016/j.devcel.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/21/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Upon injury, both mammalian and plant cells activate a survival mechanism by sensing endogenous damage-associated molecular patterns (DAMPs). Plant elicitor peptides (Peps), a representative DAMP, are released from their precursors (PROPEPs; Precursors of Peps) through cleavage by metacaspases (MCs), but the control of Pep generation remains unclear. Here, we discovered that several PROPEPs in Arabidopsis thaliana are substrates for SUMOylation and that Ca2+ upregulates PROPEP1 SUMOylation, facilitated by the SUMO E3 ligase SAP and MIZ1 domain-containing ligase1 (SIZ1). Mutations at the SUMOylation site on PROPEP1, or at the SUMO-interacting motifs (SIMs) on its protease MC4, reduced the PROPEP1-MC4 association and PROPEP1 cleavage. Overexpression of the wild-type form, but not the SUMOylation-defective variant of PROPEP1, enhanced plant tolerance to cell wall damage. Consistently, SIZ1 contributes to PROPEP1 processing and cell wall damage responses. These findings support the idea that SUMOylation promotes PROPEP1 cleavage via MC4 and provide insights into how DAMP generation is controlled in eukaryotic cells.
Collapse
Affiliation(s)
- Cheng Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuanyuan Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiuer Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bing Song
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhibo Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
8
|
Connolly JG, Plant LD. SUMO Regulation of Ion Channels in Health and Disease. Physiology (Bethesda) 2025; 40:0. [PMID: 39499247 DOI: 10.1152/physiol.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
The small ubiquitin-like modifier (SUMO) protein pathway governs a panoply of vital biological processes including cell death, proliferation, differentiation, metabolism, and signal transduction by diversifying the functions, half-lives, and partnerships of target proteins in situ. More recently, SUMOylation has emerged as a key regulator of ion homeostasis and excitability across multiple tissues due to the regulation of a plethora of ion channels expressed in a range of tissue subtypes. Altogether, the balance of SUMOylation states among relevant ion channels can result in graded biophysical effects that tune excitability and contribute to a range of disease states including cardiac arrhythmia, epilepsy, pain transmission, and inflammation. Here, we consolidate these concepts by focusing on the role of ion channel SUMOylation in the central nervous system, peripheral nervous system, and cardiovascular system. In addition, we review what is known about the enigmatic factors that regulate the SUMO pathway and consider the emerging role of small molecule SUMO modulators as potential therapeutics in a range of diseases.
Collapse
Affiliation(s)
- Jenna G Connolly
- Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Leigh D Plant
- Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Calderon-Rivera A, Gomez K, Rodríguez-Palma EJ, Khanna R. SUMOylation and DeSUMOylation: Tug of War of Pain Signaling. Mol Neurobiol 2025; 62:3305-3321. [PMID: 39276308 DOI: 10.1007/s12035-024-04478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
SUMOylation is a post-translational modification that attaches a small ubiquitin-like modifier (SUMO) group to a target protein via SUMO ligases, while deSUMOylation refers to the removal of this SUMO group by sentrin-specific proteases (SENPs). Although the functions of these processes have been well described in the nucleus, the role of SUMOylation and deSUMOylation in regulating ion channels is emerging as a novel area of study. Despite this, their contributions to pain signaling remain less clear. Therefore, this review consolidates the current evidence on the link(s) between SUMOylation, deSUMOylation, and pain, with a specific focus on ion channels expressed in the sensory system. Additionally, we explore the role of SUMOylation in the expression and function of kinases, vesicle proteins, and transcription factors, which result in the modulation of certain ion channels contributing to pain. Altogether, this review aims to highlight the relationship between SUMOylation and deSUMOylation in the modulation of ion channels, ultimately exploring the potential therapeutic role of these processes in chronic pain.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Erick J Rodríguez-Palma
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA.
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Zhu G, Tong N, Zhu Y, Wang L, Wang Q. The crosstalk between SUMOylation and immune system in host-pathogen interactions. Crit Rev Microbiol 2025; 51:164-186. [PMID: 38619159 DOI: 10.1080/1040841x.2024.2339259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Pathogens can not only cause infectious diseases, immune system diseases, and chronic diseases, but also serve as potential triggers or initiators for certain tumors. They directly or indirectly damage human health and are one of the leading causes of global deaths. Small ubiquitin-like modifier (SUMO) modification, a type of protein post-translational modification (PTM) that occurs when SUMO groups bond covalently to particular lysine residues on substrate proteins, plays a crucial role in both innate and adaptive immunologic responses, as well as pathogen-host immune system crosstalk. SUMOylation participates in the host's defense against pathogens by regulating immune responses, while numerically vast and taxonomically diverse pathogens have evolved to exploit the cellular SUMO modification system to break through innate defenses. Here, we describe the characteristics and multiple functions of SUMOylation as a pivotal PTM mechanism, the tactics employed by various pathogens to counteract the immune system through targeting host SUMOylation, and the character of the SUMOylation system in the fight between pathogens and the host immune system. We have also included a summary of the potential anti-pathogen SUMO enzyme inhibitors. This review serves as a reference for basic research and clinical practice in the diagnosis, prognosis, and treatment of pathogenic microorganism-caused disorders.
Collapse
Affiliation(s)
- Gangli Zhu
- Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environment Protection Engineering, Foshan, Guangdong, China
| | - Ni Tong
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yipeng Zhu
- Guagnzhou NO.6 Middle school, Guangzhou, Guangdong, China
| | - Lize Wang
- General Department, Institute of Software Chinese Academy of Sciences, Beijing, China
| | - Qirui Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Aphaiso B, Piromyou P, Boonchuen P, Songwattana P, Wongdee J, Greetatorn T, Teamtisong K, Camuel A, Tittabutr P, Boonkerd N, Giraud E, Teaumroong N. A new type III effector from Bradyrhizobium sp. DOA9 encoding a putative SUMO-protease blocks nodulation in Arachis hypogaea L. Sci Rep 2024; 14:31646. [PMID: 39738104 PMCID: PMC11685577 DOI: 10.1038/s41598-024-78913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/05/2024] [Indexed: 01/01/2025] Open
Abstract
Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis. In this study, we characterized the symbiotic role of 4 effector proteins (p0490, p0871, SkP48, and p0903) containing the small ubiquitin-like modifier (SUMO) protease domain identified in DOA9 during symbiosis. While the DOA9 strain and the two mutants of SUMO-proteases, p0490 and p0871, induced inefficient nodulation in A. hypogaea, the mutation of SUMO-proteases SkP48 or p0903 promoted efficient symbiosis comparable to the type strain Bradyrhizobium arachidis CCBAU051107. Complementation study of ∆p0903 with various mutated forms of p0903 highlighted importance of ubiquitin-like protein (ULP) domain in restriction of nodulation in A. hypogaea. We observed the accumulation of jasmonic acid (JA) and upregulation of several defence genes involved in the JA/ethylene (ET) signalling pathway at the early stage of infection in roots inoculated with DOA9 strain compared with those inoculated with the DOA9-∆p0903 strain. Our data highlight the importance of SUMO-protease effectors during the symbiotic interaction between bradyrhizobia and A. hypogaea, which could be useful for the development of high-performance inocula to improve its growth.
Collapse
Affiliation(s)
- Beedou Aphaiso
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- Deparment of plant science, Faculty of Agriculture and environment, Savannakhet University, Savannakhet 14, Kaysone Phomvihane, Laos
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Alicia Camuel
- IRD/CIRAD/INRAE, PHIM, Plant Health Institute of Montpellier, UMR-PHIM, Université de Montpellier/Institut Agro, Montpellier, 34398, France
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Eric Giraud
- IRD/CIRAD/INRAE, PHIM, Plant Health Institute of Montpellier, UMR-PHIM, Université de Montpellier/Institut Agro, Montpellier, 34398, France.
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
12
|
Chen Y, Chen B, Hong Y, Chen L, Zheng S. SENP1 promotes deacetylation of isocitrate dehydrogenase 2 to inhibit ferroptosis of breast cancer via enhancing SIRT3 stability. Biotechnol Appl Biochem 2024. [PMID: 39690748 DOI: 10.1002/bab.2699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Breast cancer, one of the most prevalent malignant tumors in women worldwide, is characterized by a poor prognosis and high susceptibility to recurrence and metastasis. Ferroptosis, a lipid peroxide-dependent programed cell death pathway, holds significant potential for breast cancer treatment. Therefore, investigating the regulatory targets and associated mechanisms of ferroptosis is crucial. In this study, we conducted proteomic screening and identified isocitrate dehydrogenase 2 (IDH2) as an important player in breast cancer progression. Our findings were further supported by CCK-8 assays, transwell experiments, and scratch assays, which demonstrated that the elevated expression of IDH2 promotes breast cancer progression. Through both in vitro and in vivo experiments along with the erastin treatment, we discovered that increased expression of IDH2 confers resistance to ferroptosis in breast cancer cells. By employing Western blot analysis, Co-IP techniques, and immunofluorescence staining methods, we elucidated the upstream molecular mechanism involving SENP1-mediated SIRT3 de-SUMOylatase, which enhances IDH2 enzyme activity through deacetylation, thereby regulating cell ferroptosis. In conclusion, our study highlights the role of the SENP1-SIRT3 axis in modulating ferroptosis via IDH2 in breast cancer cells, providing valuable insights for developing targeted therapies aimed at enhancing ferroptosis for improved management of breast cancer.
Collapse
Affiliation(s)
- Yaomin Chen
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bin Chen
- Department of Ultrasound, Yueqing Sixth People's Hospital, Yueqing, Zhejiang, China
| | - Yun Hong
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Chen
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Zhao A, Maple L, Jiang J, Myers KN, Jones CG, Gagg H, McGarrity-Cottrell C, Rominiyi O, Collis SJ, Wells G, Rahman M, Danson SJ, Robinson D, Smythe C, Guo C. SENP3-FIS1 axis promotes mitophagy and cell survival under hypoxia. Cell Death Dis 2024; 15:881. [PMID: 39638786 PMCID: PMC11621581 DOI: 10.1038/s41419-024-07271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
SUMOylation, the covalent attachment of the small ubiquitin-like modifier (SUMO) to target proteins, and its reversal, deSUMOylation by SUMO proteases like Sentrin-specific proteases (SENPs), are crucial for initiating cellular responses to hypoxia. However, their roles in subsequent adaptation processes to hypoxia such as mitochondrial autophagy (mitophagy) remain unexplored. Here, we show that general SUMOylation, particularly SUMO2/3 modification, suppresses mitophagy under both normoxia and hypoxia. Furthermore, we identify deSUMO2/3-ylation enzyme SENP3 and mitochondrial Fission protein 1 (FIS1) as key players in hypoxia-induced mitophagy (HIM), with SUMOylatable FIS1 acting as a crucial regulator for SENP3-mediated HIM regulation. Interestingly, we find that hypoxia promotes FIS1 SUMO2/3-ylation and triggers an interaction between SUMOylatable FIS1 and Rab GTPase-activating protein Tre-2/Bub2/Cdc16 domain 1 family member 17 (TBC1D17), which in turn suppresses HIM. Therefore, we propose a novel SUMOylation-dependent pathway where the SENP3-FIS1 axis promotes HIM, with TBC1D17 acting as a fine-tuning regulator. Importantly, the SENP3-FIS1 axis plays a protective role against hypoxia-induced cell death, highlighting its physiological significance, and hypoxia-inducible FIS1-TBC1D17 interaction is detectable in primary glioma stem cell-like (GSC) cultures derived from glioblastoma patients, suggesting its disease relevance. Our findings not only provide new insights into SUMOylation/deSUMOylation regulation of HIM but also suggest the potential of targeting this pathway to enhance cellular resilience under hypoxic stress.
Collapse
Affiliation(s)
- Alice Zhao
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Laura Maple
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Juwei Jiang
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katie N Myers
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Callum G Jones
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Hannah Gagg
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | | | - Ola Rominiyi
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
- Division of Neuroscience, University of Sheffield Medical School, Sheffield, S10 2HQ, UK
- Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S10 2JF, UK
| | - Spencer J Collis
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Greg Wells
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Marufur Rahman
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Sarah J Danson
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Darren Robinson
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Carl Smythe
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
14
|
Alasady MJ, Mendillo ML. The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience. Cell Stress Chaperones 2024; 29:735-749. [PMID: 39454718 PMCID: PMC11570959 DOI: 10.1016/j.cstres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss "the heat shock factor code"-our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Tucker SK, McLaurin DM, Hebert MD. Cajal body formation is regulated by coilin SUMOylation. J Cell Sci 2024; 137:jcs263447. [PMID: 39660502 PMCID: PMC11827600 DOI: 10.1242/jcs.263447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Cajal bodies (CBs) are membraneless organelles whose mechanism of formation is still not fully understood. Many proteins contribute to the formation of CBs, including Nopp140 (NOLC1), WRAP53 and coilin. Coilin is modified on multiple different lysine residues by SUMO, the small ubiquitin-like modifier. In addition to its accumulation in CBs, coilin is also found in the nucleoplasm, where its role is still being evaluated. Here, we demonstrate a novel mechanism of CB regulation by examining the interaction changes of coilin when its SUMOylation is disrupted. The impact of global SUMOylation inhibition and targeted disruption of coilin SUMOylation on CB formation was examined. We found that two types of global SUMOylation inhibition and expression of SUMO-deficient coilin mutants increased CB number but decreased CB size. Additionally, we saw via coimmunoprecipitation that a SUMO-deficient coilin mutant has altered interaction with Nopp140. This demonstrates increased mechanistic ties between CB formation and SUMOylation.
Collapse
Affiliation(s)
- Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
16
|
Shah RB, Li Y, Yu H, Kini E, Sidi S. Stepwise phosphorylation and SUMOylation of PIDD1 drive PIDDosome assembly in response to DNA repair failure. Nat Commun 2024; 15:9195. [PMID: 39448602 PMCID: PMC11502896 DOI: 10.1038/s41467-024-53412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
SUMOylation regulates numerous cellular stress responses, yet targets in the apoptotic machinery remain elusive. We show that a single, DNA damage-induced monoSUMOylation event controls PIDDosome (PIDD1/RAIDD/caspase-2) formation and apoptotic death in response to unresolved DNA interstrand crosslinks (ICLs). SUMO-1 conjugation occurs on conserved K879 in the PIDD1 death domain (DD); is catalyzed by PIAS1 and countered by SENP3; and is triggered by ATR phosphorylation of neighboring T788 in the PIDD1 DD, which enables PIAS1 docking. Phospho/SUMO-PIDD1 proteins are captured by nucleolar RAIDD monomers via a SUMO-interacting motif (SIM) in the RAIDD DD, thus compartmentalizing nascent PIDDosomes for caspase-2 recruitment. Denying SUMOylation or the SUMO-SIM interaction spares the onset of PIDDosome assembly but blocks its completion, thus eliminating the apoptotic response to ICL repair failure. Conversely, removal of SENP3 forces apoptosis, even in cells with tolerable ICL levels. SUMO-mediated PIDDosome control is also seen in response to DNA breaks but not supernumerary centrosomes. These results illuminate PIDDosome formation in space and time and identify a direct role for SUMOylation in the assembly of a major pro-apoptotic device.
Collapse
Affiliation(s)
- Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Honglin Yu
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ela Kini
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Gao Y, Tan YS, Lin J, Chew LY, Aung HY, Palliyana B, Gujar MR, Lin KY, Kondo S, Wang H. SUMOylation of Warts kinase promotes neural stem cell reactivation. Nat Commun 2024; 15:8557. [PMID: 39419973 PMCID: PMC11487185 DOI: 10.1038/s41467-024-52569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
A delicate balance between neural stem cell (NSC) quiescence and proliferation is important for adult neurogenesis and homeostasis. Small ubiquitin-related modifier (SUMO)-dependent post-translational modifications cause rapid and reversible changes in protein functions. However, the role of the SUMO pathway during NSC reactivation and brain development is not established. Here, we show that the key components of the SUMO pathway play an important role in NSC reactivation and brain development in Drosophila. Depletion of SUMO/Smt3 or SUMO conjugating enzyme Ubc9 results in notable defects in NSC reactivation and brain development, while their overexpression leads to premature NSC reactivation. Smt3 protein levels increase with NSC reactivation, which is promoted by the Ser/Thr kinase Akt. Warts/Lats, the core protein kinase of the Hippo pathway, can undergo SUMO- and Ubc9-dependent SUMOylation at Lys766. This modification attenuates Wts phosphorylation by Hippo, leading to the inhibition of the Hippo pathway, and consequently, initiation of NSC reactivation. Moreover, inhibiting Hippo pathway effectively restores the NSC reactivation defects induced by SUMO pathway inhibition. Overall, our study uncovered an important role for the SUMO-Hippo pathway during Drosophila NSC reactivation and brain development.
Collapse
Affiliation(s)
- Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Htet Yamin Aung
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Brinda Palliyana
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Mahekta R Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
19
|
Seager R, Ramesh NS, Cross S, Guo C, Wilkinson KA, Henley JM. SUMOylation of MFF coordinates fission complexes to promote stress-induced mitochondrial fragmentation. SCIENCE ADVANCES 2024; 10:eadq6223. [PMID: 39365854 PMCID: PMC11451547 DOI: 10.1126/sciadv.adq6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Mitochondria undergo fragmentation in response to bioenergetic stress, mediated by dynamin-related protein 1 (DRP1) recruitment to the mitochondria. The major pro-fission DRP1 receptor is mitochondrial fission factor (MFF), and mitochondrial dynamics proteins of 49 and 51 kilodaltons (MiD49/51), which can sequester inactive DRP1. Together, they form a trimeric DRP1-MiD-MFF complex. Adenosine monophosphate-activated protein kinase (AMPK)-mediated phosphorylation of MFF is necessary for mitochondrial fragmentation, but the molecular mechanisms are unclear. Here, we identify MFF as a target of small ubiquitin-like modifier (SUMO) at Lys151, MFF SUMOylation is enhanced following AMPK-mediated phosphorylation and that MFF SUMOylation regulates the level of MiD binding to MFF. The mitochondrial stressor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) promotes MFF SUMOylation and mitochondrial fragmentation. However, CCCP-induced fragmentation is impaired in MFF-knockout mouse embryonic fibroblasts expressing non-SUMOylatable MFF K151R. These data suggest that the AMPK-MFF SUMOylation axis dynamically controls stress-induced mitochondrial fragmentation by regulating the levels of MiD in trimeric fission complexes.
Collapse
Affiliation(s)
- Richard Seager
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Nitheyaa Shree Ramesh
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Stephen Cross
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Chun Guo
- School of Biosciences, University of Sheffield, Alfred Denny Building, Sheffield, S10 2TN, UK
| | - Kevin A. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| |
Collapse
|
20
|
Mustafa EM, Shahin AI, Alrashed AS, Bahaaddin AH, Alajmi AA, Hashem O, Anbar HS, El-Gamal MI. An overview of the latest outlook of sulfamate derivatives as anticancer candidates (2020-2024). Arch Pharm (Weinheim) 2024; 357:e2400331. [PMID: 38943437 DOI: 10.1002/ardp.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Considering the emergence of new anticancer drugs, in this review we emphasized and highlighted the recent reports and advances related to sulfamate-incorporating compounds with potential anticancer activity during the last 5 years (2020-2024). Additionally, we discussed their structure-activity relationship, clarifying their potent bioactivity as anticancer agents. Sulfamate derivatives hold promise as effective therapeutic candidates against cancer. By targeting biological targets associated with the development of cancer, such as steroid sulfatases (STS), carbonic anhydrases (CAs), microtubules, NEDD8-activating enzyme, small ubiquitin-like modifiers (SUMO)-activating enzyme (SAE), cyclin-dependent kinases (CDKs), breast cancer susceptibility gene 1 (BRCA1), and so on, this can furnish small molecules as anticancer lead candidates serving the drug discovery field. For example, compound 2, an STS inhibitor, demonstrated superior activity compared to its reference, irosustat, by fivefold. In addition, compound 21, an SAE, is under phase I clinical trials. Continued research into sulfamate derivatives holds potential for the development of novel therapeutic agents targeting various diseases.
Collapse
Affiliation(s)
- Esra M Mustafa
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Afnan I Shahin
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aishah S Alrashed
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Aesheh H Bahaaddin
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Aljawhra A Alajmi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Omar Hashem
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hanan S Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Song J, Chen H, Xie D, Li J, Huang B, Wang Z. The SUMO gene MrSmt3 is involved in SUMOylation, conidiation and stress response in Metarhizium robertsii. Sci Rep 2024; 14:22213. [PMID: 39333232 PMCID: PMC11436951 DOI: 10.1038/s41598-024-73039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Smt3, as a small ubiquitin-like modifier (SUMO), play an essential role in the regulation of protein SUMOylation, and thus this process can affect various important biological functions. Here, we investigated the roles of MrSmt3 (yeast SUMO/Smt3 homologs) in the entomopathogenic fungus Metarhizium robertsii. Our results of subcellular localization assays demonstrated that MrSmt3 was present in the cytoplasm and nucleus, whereas MrSmt3 was largely localized in the nucleus during oxidative stress. Importantly, disruption of MrSmt3 significantly decreased the level of protein SUMOylation under heat stress. Deletion of MrSmt3 led to a significant decrease in conidial production, and increased sensitivity to various stresses, including heat, oxidative, and cell wall-disturbing agents. However, bioassays of direct injection and topical inoculation demonstrated that deletion of MrSmt3 did not affect fungal virulence. Furthermore, RNA-seq analysis identified 1,484 differentially expressed genes (DEGs) of the WT and ΔMrSmt3 during conidiation, including 971 down-regulated DEGs and 513 up-regulated DEGs, and further analysis showed that the expression level of several classical conidiation-associated genes, such as transcription factor AbaA (MAA_00694), transcription factor bZIP (MAA_00888) and transcription factor Ste12 (MAA_10450), was down-regulated in the ΔMrSmt3 mutant. Specifically, the major downregulated DEGs were mainly associated with a variety of metabolic regulatory processes including metabolic process, organic substance metabolic process and primary metabolic process. Collectively, our findings highlight the important roles of the SUMO gene MrSmt3 in modulating SUMOylation, conidiation and stress response in M. robertsii.
Collapse
Affiliation(s)
- Jueping Song
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Hanyuan Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Dajie Xie
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| | - Zhangxun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
22
|
Zou D, Liao J, Xiao M, Liu L, Dai D, Xu M. Impaired SUMOylation of FoxA1 promotes nonalcoholic fatty liver disease through down-regulation of Sirt6. Cell Death Dis 2024; 15:674. [PMID: 39277582 PMCID: PMC11401847 DOI: 10.1038/s41419-024-07054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Abnormal SUMOylation is implicated in non-alcoholic fatty liver disease (NAFLD) progression. Forkhead box protein A1 (FoxA1) has been shown to protect liver from steatosis, which was down-regulated in NAFLD. This study elucidated the role of FoxA1 deSUMOylation in NAFLD. NAFLD models were established in high-fat diet (HFD)-induced mice and palmitate acid (PAL)-treated hepatocytes. Hepatic steatosis was evaluated by biochemical and histological methods. Lipid droplet formation was determined by BODIPY and Oil red O staining. Target molecule levels were analyzed by RT-qPCR, Western blotting, and immunohistochemistry staining. SUMOylation of FoxA1 was determined by Ni-NTA pull-down assay and SUMOylation assay Ultra Kit. Protein interaction and ubiquitination were detected by Co-IP. Gene transcription was assessed by ChIP and dual luciferase reporter assays. Liver FoxA1 knockout mice developed severe liver steatosis, which could be ameliorated by sirtuin 6 (Sirt6) overexpression. Nutritional stresses reduced Sumo2/3-mediated FoxA1 SUMOylation at lysine residue K6, which promoted lipid droplet formation by repressing fatty acid β-oxidation. Moreover, Sirt6 was a target gene of FoxA1, and Sirt6 transcription activity was restrained by deSUMOylation of FoxA1 at site K6. Furthermore, nutritional stresses-induced deSUMOylation of FoxA1 promoted the ubiquitination and degradation of FoxA1 with assistance of murine double minute 2 (Mdm2). Finally, activating FoxA1 SUMOylation delayed the progression of NAFLD in mice. DeSUMOylation of FoxA1 at K6 promotes FoxA1 degradation and then inhibits Sirt6 transcription, thereby suppressing fatty acid β-oxidation and facilitating NAFLD development. Our findings suggest that FoxA1 SUMOylation activation might be a promising therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Dongmei Zou
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China
| | - Jinwen Liao
- The Department of Pediatric, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, Guangdong Province, China
| | - Min Xiao
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China
| | - Liang Liu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China
| | - Dongling Dai
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China
| | - Mingguo Xu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, 518038, Guangdong Province, China.
- The Department of Pediatric, The Third People's Hospital of Longgang District Shenzhen, Shenzhen, 518112, Guangdong Province, China.
| |
Collapse
|
23
|
Yi P, Huang Y, Zhao X, Qin Z, Zhu D, Liu L, Zheng Y, Feng J, Long M. A novel UVA-associated circUBE2I mediates ferroptosis in HaCaT cells. Photochem Photobiol 2024; 100:1365-1377. [PMID: 37985449 DOI: 10.1111/php.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Alternative splicing of precursor messenger RNA (pre-mRNA), including linear splicing and back splicing, produces multiple isoforms that lead to diverse cell fates in response to stimuli including ultraviolet radiation (UVR). Although UVR-induced linear gene splicing has been extensively studied in skin cells, the UVR-induced gene back-splicing events that lead to the production of circular RNAs (circRNAs) have not been thoroughly investigated. The present study used circRNA transcriptome sequencing to screen the differentially expressed circRNAs in human keratinocytes (HaCaT) after UVA irradiation. A total of 312 differentially expressed circRNAs were found in HaCaT cells post-UVR. Among the UVA-induced differentially expressed circRNAs, circUBE2I-a novel circRNA formed by exons 2-6 of the UBE2I gene-was the most significantly upregulated circRNA. RT-qPCR assay further confirmed the increase of circUBE2I level in HaCaT cells after UVA irradiation or H2O2 treatment. RNase R digestion experiment revealed the stability of circUBE2I. Overexpression of circUBE2I in keratinocytes induced ferroptosis after UVA or H2O2, preventable by the ferroptosis inhibitor ferrostatin-1. Our study provides new insights into the role of circular RNAs in UVA-induced skin cell damage and suggests that circUBE2I could be a therapeutic target in UVR-aroused ferroptosis in skin cells.
Collapse
Affiliation(s)
- Peng Yi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yan Huang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Dermatology, Suining First People's Hospital, Suining, Sichuan, China
| | - Xin Zhao
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zhengshan Qin
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Danli Zhu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yuxi Zheng
- Moutai Institute, Renhuai, Guizhou Province, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Menghong Long
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
24
|
Zhao H, Zhao P, Huang C. Targeted inhibition of SUMOylation: treatment of tumors. Hum Cell 2024; 37:1347-1354. [PMID: 38856883 DOI: 10.1007/s13577-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
SUMOylation is a dynamic and reversible post-translational modification (PTM) of proteins involved in the regulation of biological processes such as protein homeostasis, DNA repair and cell cycle in normal and tumor cells. In particular, overexpression of SUMOylation components in tumor cells increases the activity of intracellular SUMOylation, protects target proteins against ubiquitination degradation and activation, promoting tumor cell proliferation and metastasis, providing immune evasion and increasing tolerance to chemotherapy and antitumor drugs. However, with the continuous research on SUMOylation and with the continued development of SUMOylation inhibitors, it has been found that tumor initiation and progression can be inhibited by blocking SUMOylation and/or in combination with drugs. SUMOylation is not a bad target when trying to treat tumor. This review introduces SUMOylation cycle pathway and summarizes the role of SUMOylation in tumor initiation and progression and SUMOylation inhibitors and their functions in tumors and provides a prospective view of SUMOylation as a new therapeutic target for tumors.
Collapse
Affiliation(s)
- Hongwei Zhao
- School of Basic Medical Sciences, Department of Medicine, Kunming University of Science and Technology, Kunming, China
| | - Panpan Zhao
- School of Basic Medical Sciences, Department of Medicine, Kunming University of Science and Technology, Kunming, China
| | - Chao Huang
- School of Basic Medical Sciences, Department of Medicine, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
25
|
Zanella CA, Marques N, Junqueira S, Prediger RD, Tasca CI, Cimarosti HI. Guanosine increases global SUMO1-ylation in the hippocampus of young and aged mice and improves the short-term memory of young mice. J Neurochem 2024; 168:1503-1513. [PMID: 37491912 DOI: 10.1111/jnc.15920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The nucleoside guanosine is an endogenous neuromodulator associated with neuroprotection. The roles of guanosine during aging are still not fully elucidated. Guanosine modulates SUMOylation in neurons and astrocytes in vitro, but it is not known whether guanosine can modulate SUMOylation in vivo and improve cognitive functions during aging. SUMOylation is a post-translational protein modification with potential neuroprotective roles. In this follow-up study, we investigated whether guanosine could modulate SUMOylation in vivo and behavior in young and aged mice. Young (3-month-old) and aged (24-month-old) C57BL/6 mice were treated with guanosine (8 mg/kg intraperitoneal) daily for 14 days. Starting on day 8 of treatment, the following behavioral tests were performed: open field, novel object location, Y-maze, sucrose splash test, and tail suspension test. Treatment with guanosine did not change the locomotor activity of young or aged mice in the open-field test. Treatment with guanosine improved short-term memory only for young mice but did not change the working memory of either young or aged mice, as evaluated using object recognition and the Y-maze tests, respectively. Depressive-like behaviors, such as impaired grooming evaluated through the splash test, did not change in either young or aged mice. However, young mice treated with guanosine increased their immobility time in the tail suspension test, suggesting an effect on behavioral coping strategies. Global SUMO1-ylation was significantly increased in the hippocampus of young and aged mice after 14 days of treatment with guanosine, whereas no changes were detected in the cerebral cortex of either young or aged mice. Our findings demonstrate that guanosine also targets hippocampal SUMOylation in vivo, thereby contributing to a deeper understanding of its mechanisms of action. This highlights the involvement of SUMOylation in guanosine's modulatory and neuroprotective effects.
Collapse
Affiliation(s)
- Camila A Zanella
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Naiani Marques
- Biochemistry Department, Biochemistry Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Stella Junqueira
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Rui D Prediger
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Carla I Tasca
- Biochemistry Department, Biochemistry Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Helena I Cimarosti
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| |
Collapse
|
26
|
Bao Z, Chen Y, Li J, Cai J, Yang J, Zhai P, Zhao B, Wu X. 4D label-free quantitative proteomic analysis identifies CRABP1 as a novel candidate gene for litter size in rabbits†. Biol Reprod 2024; 111:110-122. [PMID: 38478424 DOI: 10.1093/biolre/ioae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/29/2023] [Accepted: 03/01/2024] [Indexed: 07/16/2024] Open
Abstract
In commercial rabbit breeding, litter size is a crucial reproductive trait. This trait directly determines the reproductive ability of female rabbits and is crucial for evaluating the production efficiency. We here compared differentially expressed proteins of in the ovary tissue from New Zealand female rabbits with high (H) and low (L) litter sizes by using 4D label-free quantitative proteomic technology and identified 92 differential proteins. The biological functions of these proteins were revealed through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Most distributions of GO and KEGG were related to reproduction, growth development, and metabolism. Furthermore, a novel candidate gene cellular retinoic acid binding protein-1 (CRABP1), which was highly expressed in the L group, was selected for further biological function verification. The Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis revealed that CRABP1 can promote granulosa cell (GC) apoptosis and inhibit GC proliferation. Furthermore, qRT-PCR and western blotting analysis revealed that CRABP1 regulates the genes (HSD17B1, Wnt-10b, FSHR, TAF4B, BMP15, and BMP6) and protein (Wnt-10b) associated with steroid hormone synthesis and follicle development. The PCR product direct sequencing method revealed single nucleotide polymorphisms in the core promoter region of CRABP1. Luciferase activity assays revealed that the transcriptional activity of the GG genotype was significantly higher than that of the TT or TG genotype. Different genotypes are accompanied by changes in transcription factors, which indicates that T-359G polymorphism can regulate CRABP1 expression. In general, we identified litter size-related genes and revealed the mechanism underlying the effect of CRABP1 on litter size. CRABP1 serves as a key factor in the reproductive capacity of rabbits and can act as a molecular biomarker for the breeding of New Zealand rabbits.
Collapse
Affiliation(s)
- Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pin Zhai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
27
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
28
|
Condezo YB, Sainz-Urruela R, Gomez-H L, Salas-Lloret D, Felipe-Medina N, Bradley R, Wolff ID, Tanis S, Barbero JL, Sánchez-Martín M, de Rooij D, Hendriks IA, Nielsen ML, Gonzalez-Prieto R, Cohen PE, Pendas AM, Llano E. RNF212B E3 ligase is essential for crossover designation and maturation during male and female meiosis in the mouse. Proc Natl Acad Sci U S A 2024; 121:e2320995121. [PMID: 38865271 PMCID: PMC11194559 DOI: 10.1073/pnas.2320995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.
Collapse
Affiliation(s)
- Yazmine B. Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Laura Gomez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Department of Totipotency, Max Planck Institute of Biochemistry, 82152Martinsried, Germany
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Rachel Bradley
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Ian D. Wolff
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Stephanie Tanis
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Jose Luis Barbero
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040Madrid, Spain
| | | | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht3584CM, The Netherlands
| | - Ivo A. Hendriks
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Michael L. Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Román Gonzalez-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Andalusian Center for Molecular Biology and Regenerative MedicineCentro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad-Pablo de Olavide, 41092Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012Sevilla, Spain
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Alberto M. Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Departamento de Fisiología, Universidad de Salamanca, 37007Salamanca, Spain
| |
Collapse
|
29
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
30
|
Ruangchan C, Ngamphiw C, Krasaesin A, Intarak N, Tongsima S, Kaewgahya M, Kawasaki K, Mahawong P, Paripurana K, Sookawat B, Jatooratthawichot P, Cox TC, Ohazama A, Ketudat Cairns JR, Porntaveetus T, Kantaputra P. Genetic Variants in KCTD1 Are Associated with Isolated Dental Anomalies. Int J Mol Sci 2024; 25:5179. [PMID: 38791218 PMCID: PMC11121487 DOI: 10.3390/ijms25105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
KCTD1 plays crucial roles in regulating both the SHH and WNT/β-catenin signaling pathways, which are essential for tooth development. The objective of this study was to investigate if genetic variants in KCTD1 might also be associated with isolated dental anomalies. We clinically and radiographically investigated 362 patients affected with isolated dental anomalies. Whole exome sequencing identified two unrelated families with rare (p.Arg241Gln) or novel (p.Pro243Ser) variants in KCTD1. The variants segregated with the dental anomalies in all nine patients from the two families. Clinical findings of the patients included taurodontism, unseparated roots, long roots, tooth agenesis, a supernumerary tooth, torus palatinus, and torus mandibularis. The role of Kctd1 in root development is supported by our immunohistochemical study showing high expression of Kctd1 in Hertwig epithelial root sheath. The KCTD1 variants in our patients are the first variants found to be located in the C-terminal domain, which might disrupt protein-protein interactions and/or SUMOylation and subsequently result in aberrant WNT-SHH-BMP signaling and isolated dental anomalies. Functional studies on the p.Arg241Gln variant are consistent with an impact on β-catenin levels and canonical WNT signaling. This is the first report of the association of KCTD1 variants and isolated dental anomalies.
Collapse
Affiliation(s)
- Cholaporn Ruangchan
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Annop Krasaesin
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Massupa Kaewgahya
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2180, Japan; (K.K.); (A.O.)
| | - Phitsanu Mahawong
- Division of Urology, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kullaya Paripurana
- Dental Department, Suanphueng Hospital, Ratchaburi 70180, Thailand; (K.P.); (B.S.)
| | - Bussaneeya Sookawat
- Dental Department, Suanphueng Hospital, Ratchaburi 70180, Thailand; (K.P.); (B.S.)
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64110, USA;
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2180, Japan; (K.K.); (A.O.)
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
Zheng M, Tian S, Zhou X, Yan M, Zhou M, Yu Y, Zhang Y, Wang X, Li N, Ren L, Zhang S. MITF regulates the subcellular location of HIF1α through SUMOylation to promote the invasion and metastasis of daughter cells derived from polyploid giant cancer cells. Oncol Rep 2024; 51:63. [PMID: 38456491 PMCID: PMC10940875 DOI: 10.3892/or.2024.8722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia‑inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia‑associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel‑Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co‑immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post‑translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.
Collapse
Affiliation(s)
- Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Shifeng Tian
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yue Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xiaorui Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Na Li
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institution and Hospital, Tianjin 300090, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
32
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G, Zhou XZ, Shilton B, Lu KP. The role of the master cancer regulator Pin1 in the development and treatment of cancer. Front Cell Dev Biol 2024; 12:1343938. [PMID: 38745861 PMCID: PMC11091292 DOI: 10.3389/fcell.2024.1343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.
Collapse
Affiliation(s)
- Robert Stewart
- Department of Biochemistry, Western University, London, ON, Canada
| | - Shaunik Sharma
- Department of Biochemistry, Western University, London, ON, Canada
| | - Timothy Wu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Sho Okuda
- Department of Biochemistry, Western University, London, ON, Canada
| | - George Xie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brian Shilton
- Department of Biochemistry, Western University, London, ON, Canada
| | - Kun Ping Lu
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
33
|
Ghimire S, Hasan MM, Fang XW. Small ubiquitin-like modifiers E3 ligases in plant stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24032. [PMID: 38669463 DOI: 10.1071/fp24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.
Collapse
Affiliation(s)
- Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
34
|
Rinehart L, Stewart WE, Luffman N, Wawersik M, Kerscher O. Chigno/CG11180 and SUMO are Chinmo-interacting proteins with a role in Drosophila testes somatic support cells. PeerJ 2024; 12:e16971. [PMID: 38495765 PMCID: PMC10944633 DOI: 10.7717/peerj.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Stem cells are critical for replenishment of cells lost to death, damage or differentiation. Drosophila testes are a key model system for elucidating mechanisms regulating stem cell maintenance and differentiation. An intriguing gene identified through such studies is the transcription factor, chronologically inappropriate morphogenesis (Chinmo). Chinmo is a downstream effector of the Jak-STAT signaling pathway that acts in testis somatic stem cells to ensure maintenance of male stem cell fate and sexual identity. Defects in these processes can lead to infertility and the formation of germ cell tumors. While Chinmo's effect on testis stem cell behavior has been investigated in detail, there is still much to be learned about its structure, function, and interactions with other proteins. Using a two-hybrid screen, we find that Chinmo interacts with itself, the small ubiquitin-like modifier SUMO, the novel protein CG11180, and four other proteins (CG4318, Ova (ovaries absent), Taf3 (TBP-associated factor 3), and CG18269). Since both Chinmo and CG11180 contain sumoylation sites and SUMO-interacting motifs (SIMs), we analyzed their interaction in more detail. Using site-directed mutagenesis of a unique SIM in CG11180, we demonstrate that Chinmo's interaction with CG11180 is SUMO-dependent. Furthermore, to assess the functional relevance of both SUMO and CG11180, we performed RNAi-mediated knockdown of both proteins in somatic cells of the Drosophila testis. Using this approach, we find that CG11180 and SUMO are required in somatic cells of adult testes, and that reduction of either protein causes formation of germ cell tumors. Overall, our work suggests that SUMO may be involved in the interaction of Chinmo and CG11180 and that these genes are required in somatic cells of the adult Drosophila testis. Consistent with the CG11180 knockdown phenotype in male testes, and to underscore its connection to Chinmo, we propose the name Chigno (Childless Gambino) for CG11180.
Collapse
Affiliation(s)
- Leanna Rinehart
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Wendy E. Stewart
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Natalie Luffman
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Matthew Wawersik
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Oliver Kerscher
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| |
Collapse
|
35
|
Huang CH, Yang TT, Lin KI. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. J Biomed Sci 2024; 31:16. [PMID: 38280996 PMCID: PMC10821541 DOI: 10.1186/s12929-024-01003-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
SUMOylation, which is a type of post-translational modification that involves covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to target substrates, regulates various important molecular and cellular processes, including transcription, the cell cycle, cell signaling, and DNA synthesis and repair. Newly synthesized SUMO is immature and cleaved by the SUMO-specific protease family, resulting in exposure of the C-terminal Gly-Gly motif to become the mature form. In the presence of ATP, mature SUMO is conjugated with the activating enzyme E1 through the cysteine residue of E1, followed by transfer to the cysteine residue of E2-conjugating enzyme Ubc9 in humans that recognizes and modifies the lysine residue of a substrate protein. E3 SUMO ligases promote SUMOylation. SUMOylation is a reversible modification and mediated by SUMO-specific proteases. Cumulative studies have indicated that SUMOylation affects the functions of protein substrates in various manners, including cellular localization and protein stability. Gene knockout studies in mice have revealed that several SUMO cycling machinery proteins are crucial for the development and differentiation of various cell lineages, including immune cells. Aberrant SUMOylation has been implicated in several types of diseases, including cancers, cardiovascular diseases, and autoimmune diseases. This review summarizes the biochemistry of SUMO modification and the general biological functions of proteins involved in SUMOylation. In particular, this review focuses on the molecular mechanisms by which SUMOylation regulates the development, maturation, and functions of immune cells, including T, B, dendritic, and myeloid cells. This review also discusses the underlying relevance of disruption of SUMO cycling and site-specific interruption of SUMOylation on target proteins in immune cells in diseases, including cancers and infectious diseases.
Collapse
Affiliation(s)
- Chien-Hsin Huang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Tsan-Tzu Yang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
36
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
37
|
Shi H, Zhao Y. Modulation of Tau Pathology in Alzheimer's Disease by Dietary Bioactive Compounds. Int J Mol Sci 2024; 25:831. [PMID: 38255905 PMCID: PMC10815728 DOI: 10.3390/ijms25020831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tau is a microtubule-associated protein essential for microtubule assembly and stability in neurons. The abnormal intracellular accumulation of tau aggregates is a major characteristic of brains from patients with Alzheimer's disease (AD) and other tauopathies. In AD, the presence of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau protein, is positively correlated with the severity of the cognitive decline. Evidence suggests that the accumulation and aggregation of tau cause synaptic dysfunction and neuronal degeneration. Thus, the prevention of abnormal tau phosphorylation and elimination of tau aggregates have been proposed as therapeutic strategies for AD. However, currently tau-targeting therapies for AD and other tauopathies are limited. A number of dietary bioactive compounds have been found to modulate the posttranslational modifications of tau, including phosphorylation, small ubiquitin-like modifier (SUMO) mediated modification (SUMOylation) and acetylation, as well as inhibit tau aggregation and/or promote tau degradation. The advantages of using these dietary components over synthetic substances in AD prevention and intervention are their safety and accessibility. This review summarizes the mechanisms leading to tau pathology in AD and highlights the effects of bioactive compounds on the hyperphosphorylation, aggregation and clearance of tau protein. The potential of using these bioactive compounds for AD prevention and intervention is also discussed.
Collapse
Affiliation(s)
- Huahua Shi
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
38
|
Ma Y, Liu H, Shi L. Progress of epigenetic modification of SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate. Asian J Surg 2024; 47:72-76. [PMID: 37852859 DOI: 10.1016/j.asjsur.2023.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Non-syndromic Cleft Lip and Palate (NSCLP) is one of the most common congenital craniofacial malformations. However, there is no enough knowledge about its mechanism, even through many relevant studies verify that cleft lip and palate is caused by interactions between environmental and genetic factors. SATB2 gene is one of the most common candidate genes of NSCLP, and the development of epigenetics provides a new direction on pathogenesis of cleft lip and palate. This review summarizes SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate, expecting to provide strategies to prevent and treat cleft and palate in the future.
Collapse
Affiliation(s)
- Yang Ma
- Department of Plastic Surgery, Meizhou Clinical Institute of Shantou University Medical College, No 63 Huangtang Road, Meizhou, 514031, Guangdong, China
| | - Hangyu Liu
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Lungang Shi
- Department of Plastic Surgery, Meizhou Clinical Institute of Shantou University Medical College, No 63 Huangtang Road, Meizhou, 514031, Guangdong, China; Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
39
|
Xie B, Luo M, Li Q, Shao J, Chen D, Somers DE, Tang D, Shi H. NUA positively regulates plant immunity by coordination with ESD4 to deSUMOylate TPR1 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:363-377. [PMID: 37786257 PMCID: PMC10843230 DOI: 10.1111/nph.19287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Nuclear pore complex (NPC) is composed of multiple nucleoporins (Nups). A plethora of studies have highlighted the significance of NPC in plant immunity. However, the specific roles of individual Nups are poorly understood. NUCLEAR PORE ANCHOR (NUA) is a component of NPC. Loss of NUA leads to an increase in SUMO conjugates and pleiotropic developmental defects in Arabidopsis thaliana. Herein, we revealed that NUA is required for plant defense against multiple pathogens. NUCLEAR PORE ANCHOR associates with the transcriptional corepressor TOPLESS-RELATED1 (TPR1) and contributes to TPR1 deSUMOylation. Significantly, NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, specifically deSUMOylates TPR1. It has been previously established that the SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE 1 (SIZ1)-mediated SUMOylation of TPR1 represses the immune-related function of TPR1. Consistent with this notion, the hyper-SUMOylated TPR1 in nua-3 leads to upregulated expression of TPR1 target genes and compromised TPR1-mediated disease resistance. Taken together, our work uncovers a mechanism by which NUA positively regulates plant defense responses by coordination with ESD4 to deSUMOylate TPR1. Our findings, together with previous studies, reveal a regulatory module in which SIZ1 and NUA/ESD4 control the homeostasis of TPR1 SUMOylation to maintain proper immune output.
Collapse
Affiliation(s)
- Bao Xie
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Shao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus 43210, USA
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
40
|
Kalani L, Kim BH, Vincent JB, Ausió J. MeCP2 ubiquitination and sumoylation, in search of a function†. Hum Mol Genet 2023; 33:1-11. [PMID: 37694858 DOI: 10.1093/hmg/ddad150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
MeCP2 (Methyl CpG binding protein 2) is an intrinsically disordered protein that binds to methylated genome regions. The protein is a critical transcriptional regulator of the brain, and its mutations account for 95% of Rett syndrome (RTT) cases. Early studies of this neurodevelopmental disorder revealed a close connection with dysregulations of the ubiquitin system (UbS), notably as related to UBE3A, a ubiquitin ligase involved in the proteasome-mediated degradation of proteins. MeCP2 undergoes numerous post-translational modifications (PTMs), including ubiquitination and sumoylation, which, in addition to the potential functional outcomes of their monomeric forms in gene regulation and synaptic plasticity, in their polymeric organization, these modifications play a critical role in proteasomal degradation. UbS-mediated proteasomal degradation is crucial in maintaining MeCP2 homeostasis for proper function and is involved in decreasing MeCP2 in some RTT-causing mutations. However, regardless of all these connections to UbS, the molecular details involved in the signaling of MeCP2 for its targeting by the ubiquitin-proteasome system (UPS) and the functional roles of monomeric MeCP2 ubiquitination and sumoylation remain largely unexplored and are the focus of this review.
Collapse
Affiliation(s)
- Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
41
|
Prasad A, Sharma S, Prasad M. Post translational modifications at the verge of plant-geminivirus interaction. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194983. [PMID: 37717937 DOI: 10.1016/j.bbagrm.2023.194983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plant-virus interaction is a complex phenomenon and involves the communication between plant and viral factors. Viruses have very limited coding ability yet, they are able to cause infection which results in huge agro-economic losses throughout the globe each year. Post-translational modifications (PTMs) are covalent modifications of proteins that have a drastic effect on their conformation, stability and function. Like the host proteins, geminiviral proteins are also subject to PTMs and these modifications greatly expand the diversity of their functions. Additionally, these viral proteins can also interact with the components of PTM pathways and modulate them. Several studies have highlighted the importance of PTMs such as phosphorylation, ubiquitination, SUMOylation, myristoylation, S-acylation, acetylation and methylation in plant-geminivirus interaction. PTMs also regulate epigenetic modifications during geminivirus infection which determines viral gene expression. In this review, we have summarized the role of PTMs in regulating geminiviral protein function, influence of PTMs on viral gene expression and how geminiviral proteins interact with the components of PTM pathways to modulate their function.
Collapse
Affiliation(s)
- Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
42
|
Masoabi M, Burger NFV, Botha AM, Le Roux ML, Vlok M, Snyman S, Van der Vyver C. Overexpression of the Small Ubiquitin-Like Modifier protease OTS1 gene enhances drought tolerance in sugarcane (Saccharum spp. hybrid). PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1121-1141. [PMID: 37856570 DOI: 10.1111/plb.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Sugarcane is an economically important crop plant across the globe as it is the primary source of sugar and biofuel. Its growth and development are greatly influenced by water availability; therefore, in periods of water scarcity, yields are severely compromised. Small Ubiquitin-Like Modifier (SUMO) proteases play an important role in stress responses by regulating the SUMO-related post-translational modification of proteins. In an attempt to enhance drought tolerance in sugarcane, this crop was genetically transformed with a cysteine protease (OVERLY TOLERANT TO SALT-1; OTS1) from Arabidopsis thaliana using particle bombardment. Transgenic plants were analysed in terms of photosynthetic capacity, oxidative damage, antioxidant accumulation and the SUMO-enrich protein profile was assessed. Sugarcane transformed with the AtOTS1 gene displayed enhanced drought tolerance and delayed leaf senescence under water deficit compared to the untransformed wild type (WT). The AtOTS1 transgenic plants maintained a high relative moisture content and higher photosynthesis rate when compared to the WT. In addition, when the transgene was expressed at high levels, the transformed plants were able to maintain higher stomatal conductance and chlorophyl content under moderate stress compared to the WT. Under severe water deficit stress, the transgenic plants accumulated less malondialdehyde and maintained membrane integrity. SUMOylation of total protein and protease activity was lower in the AtOTS1 transformed plants compared to the WT, with several SUMO-enriched proteins exclusively expressed in the transgenics when exposed to water deficit stress. SUMOylation of proteins likely influenced various mechanisms contributing to enhanced drought tolerance in sugarcane.
Collapse
Affiliation(s)
- M Masoabi
- Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - N F V Burger
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - A-M Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - M L Le Roux
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - M Vlok
- Mass Spectrometry Unit, Central Analytic Facility, Stellenbosch University, Stellenbosch, South Africa
| | - S Snyman
- South African Sugarcane Research Institute, Mount Edgecombe, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - C Van der Vyver
- Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
43
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
44
|
Hughes DC, Goodman CA, Baehr LM, Gregorevic P, Bodine SC. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple. Am J Physiol Cell Physiol 2023; 325:C1567-C1582. [PMID: 37955121 PMCID: PMC10861180 DOI: 10.1152/ajpcell.00457.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ubiquitination is an important post-translational modification (PTM) for protein substrates, whereby ubiquitin is added to proteins through the coordinated activity of activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The E3s provide key functions in the recognition of specific protein substrates to be ubiquitinated and aid in determining their proteolytic or nonproteolytic fates, which has led to their study as indicators of altered cellular processes. MuRF1 and MAFbx/Atrogin-1 were two of the first E3 ubiquitin ligases identified as being upregulated in a range of different skeletal muscle atrophy models. Since their discovery, the expression of these E3 ubiquitin ligases has often been studied as a surrogate measure of changes to bulk protein degradation rates. However, emerging evidence has highlighted the dynamic and complex regulation of the ubiquitin proteasome system (UPS) in skeletal muscle and demonstrated that protein ubiquitination is not necessarily equivalent to protein degradation. These observations highlight the potential challenges of quantifying E3 ubiquitin ligases as markers of protein degradation rates or ubiquitin proteasome system (UPS) activation. This perspective examines the usefulness of monitoring E3 ubiquitin ligases for determining specific or bulk protein degradation rates in the settings of skeletal muscle atrophy. Specific questions that remain unanswered within the skeletal muscle atrophy field are also identified, to encourage the pursuit of new research that will be critical in moving forward our understanding of the molecular mechanisms that govern protein function and degradation in muscle.
Collapse
Affiliation(s)
- David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Leslie M Baehr
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| |
Collapse
|
45
|
Ip WH, Tatham MH, Krohne S, Gruhne J, Melling M, Meyer T, Gornott B, Bertzbach LD, Hay RT, Rodriguez E, Dobner T. Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors. J Virol 2023; 97:e0079123. [PMID: 37916833 PMCID: PMC10688335 DOI: 10.1128/jvi.00791-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.
Collapse
Affiliation(s)
- Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael H. Tatham
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steewen Krohne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Julia Gruhne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael Melling
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Tina Meyer
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ronald T. Hay
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Estefania Rodriguez
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
46
|
Marino R, Buccarello L, Hassanzadeh K, Akhtari K, Palaniappan S, Corbo M, Feligioni M. A novel cell-permeable peptide prevents protein SUMOylation and supports the mislocalization and aggregation of TDP-43. Neurobiol Dis 2023; 188:106342. [PMID: 37918759 DOI: 10.1016/j.nbd.2023.106342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
SUMOylation is a post-translational modification (PTM) that exerts a regulatory role in different cellular processes, including protein localization, aggregation, and biological activities. It consists of the dynamic formation of covalent isopeptide bonds between a family member of the Small Ubiquitin Like Modifiers (SUMOs) and the target proteins. Interestingly, it is a cellular mechanism implicated in several neurodegenerative pathologies and potentially it could become a new therapeutic target; however, there are very few pharmacological tools to modulate the SUMOylation process. In this study, we have designed and tested the activity of a novel small cell-permeable peptide, COV-1, in a neuroblastoma cell line that specifically prevents protein SUMOylation. COV-1 inhibits UBC9-protein target interaction and efficiently decreases global SUMO-1ylation. Moreover, it can perturb RanGAP-1 perinuclear localization by inducing the downregulation of UBC9. In parallel, we found that COV-1 causes an increase in the ubiquitin degradation system up to its engulfment while enhancing the autophagic flux. Surprisingly, COV-1 modifies protein aggregation, and specifically it mislocalizes TDP-43 within cells, inducing its aggregation and co-localization with SUMO-1. These data suggest that COV-1 could be taken into future consideration as an interesting pharmacological tool to study the cellular cascade effects of SUMOylation prevention.
Collapse
Affiliation(s)
- R Marino
- EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
| | | | - K Hassanzadeh
- EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
| | - K Akhtari
- Department of Physics, University of Kurdistan, Sanandaj 871, Iran
| | - S Palaniappan
- EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
| | - M Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan 20144, Italy
| | - M Feligioni
- EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy; Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan 20144, Italy..
| |
Collapse
|
47
|
Ma X, Zhao C, Xu Y, Zhang H. Roles of host SUMOylation in bacterial pathogenesis. Infect Immun 2023; 91:e0028323. [PMID: 37725062 PMCID: PMC10580907 DOI: 10.1128/iai.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Bacteria frequently interfere with the post-translational modifications of host cells to facilitate their survival and growth after invasion. SUMOylation, a reversible post-translational modification process, plays an important role in biological life activities. In addition to being critical to host cell metabolism and survival, SUMOylation also regulates gene expression and cell signal transmission. Moreover, SUMOylation in eukaryotic cells can be used by a variety of bacterial pathogens to advance bacterial invasion. In this minireview, we focused on the role and mechanism of host SUMOylation in the pathogenesis of six important clinical bacterial pathogens (Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Escherichia coli). Taken together, this review provided new insights for understanding the unique pathogen-host interaction based on host SUMOylation and provided a novel perspective on the development of new strategies to combat bacterial infections in the future.
Collapse
Affiliation(s)
- Xin Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuyao Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
48
|
Li J, Krause GJ, Gui Q, Kaushik S, Rona G, Zhang Q, Liang FX, Dhabaria A, Anerillas C, Martindale JL, Vasilyev N, Askenazi M, Ueberheide B, Nudler E, Gorospe M, Cuervo AM, Pagano M. A noncanonical function of SKP1 regulates the switch between autophagy and unconventional secretion. SCIENCE ADVANCES 2023; 9:eadh1134. [PMID: 37831778 PMCID: PMC10575587 DOI: 10.1126/sciadv.adh1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gregory J. Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qi Gui
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
49
|
Yucel BP, Al Momany EM, Evans AJ, Seager R, Wilkinson KA, Henley JM. Coordinated interplay between palmitoylation, phosphorylation and SUMOylation regulates kainate receptor surface expression. Front Mol Neurosci 2023; 16:1270849. [PMID: 37868810 PMCID: PMC10585046 DOI: 10.3389/fnmol.2023.1270849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Kainate receptors (KARs) are key regulators of neuronal excitability and synaptic transmission. KAR surface expression is tightly controlled in part by post-translational modifications (PTMs) of the GluK2 subunit. We have shown previously that agonist activation of GluK2-containing KARs leads to phosphorylation of GluK2 at S868, which promotes subsequent SUMOylation at K886 and receptor endocytosis. Furthermore, GluK2 has been shown to be palmitoylated. However, how the interplay between palmitoylation, phosphorylation and SUMOylation orchestrate KAR trafficking remains unclear. Here, we used a library of site-specific GluK2 mutants to investigate the interrelationship between GluK2 PTMs, and their impact on KAR surface expression. We show that GluK2 is basally palmitoylated and that this is decreased by kainate (KA) stimulation. Moreover, a non-palmitoylatable GluK2 mutant (C858/C871A) shows enhanced S868 phosphorylation and K886 SUMOylation under basal conditions and is insensitive to KA-induced internalisation. These results indicate that GluK2 palmitoylation contributes to stabilising KAR surface expression and that dynamic depalmitoylation promotes downstream phosphorylation and SUMOylation to mediate activity-dependent KAR endocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
50
|
Chen Y, Wang X, Xiao B, Luo Z, Long H. Mechanisms and Functions of Activity-Regulated Cytoskeleton-Associated Protein in Synaptic Plasticity. Mol Neurobiol 2023; 60:5738-5754. [PMID: 37338805 DOI: 10.1007/s12035-023-03442-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is one of the most important regulators of cognitive functions in the brain regions. As a hub protein, Arc plays different roles in modulating synaptic plasticity. Arc supports the maintenance of long-term potentiation (LTP) by regulating actin cytoskeletal dynamics, while it guides the endocytosis of AMPAR in long-term depression (LTD). Moreover, Arc can self-assemble into capsids, leading to a new way of communicating among neurons. The transcription and translation of the immediate early gene Arc are rigorous procedures guided by numerous factors, and RNA polymerase II (Pol II) is considered to regulate the precise timing dynamics of gene expression. Since astrocytes can secrete brain-derived neurotrophic factor (BDNF) and L-lactate, their unique roles in Arc expression are emphasized. Here, we review the entire process of Arc expression and summarize the factors that can affect Arc expression and function, including noncoding RNAs, transcription factors, and posttranscriptional regulations. We also attempt to review the functional states and mechanisms of Arc in modulating synaptic plasticity. Furthermore, we discuss the recent progress in understanding the roles of Arc in the occurrence of major neurological disorders and provide new thoughts for future research on Arc.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| |
Collapse
|