1
|
Zhang H, Zhang Y, Xu P, Bai C. Exploring the Phospholipid Transport Mechanism of ATP8A1-CDC50. Biomedicines 2023; 11:biomedicines11020546. [PMID: 36831082 PMCID: PMC9953615 DOI: 10.3390/biomedicines11020546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
P4-ATPase translocates lipids from the exoplasmic to the cytosolic plasma membrane leaflet to maintain lipid asymmetry distribution in eukaryotic cells. P4-ATPase is associated with severe neurodegenerative and metabolic diseases such as neurological and motor disorders. Thus, it is important to understand its transport mechanism. However, even with progress in X-ray diffraction and cryo-electron microscopy techniques, it is difficult to obtain the dynamic information of the phospholipid transport process in detail. There are still some problems required to be resolved: (1) when does the lipid transport happen? (2) How do the key residues on the transmembrane helices contribute to the free energy of important states? In this work, we explore the phospholipid transport mechanism using a coarse-grained model and binding free energy calculations. We obtained the free energy landscape by coupling the protein conformational changes and the phospholipid transport event, taking ATP8A1-CDC50 (the typical subtype of P4-ATPase) as the research object. According to the results, we found that the phospholipid would bind to the ATP8A1-CDC50 at the early stage when ATP8A1-CDC50 changes from E2P to E2Pi-PL state. We also found that the electrostatic effects play crucial roles in the phospholipid transport process. The information obtained from this work could help us in designing novel drugs for P-type flippase disorders.
Collapse
Affiliation(s)
- Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yue Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peiyi Xu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
- Correspondence:
| |
Collapse
|
2
|
Shi D, An K, Zhang H, Xu P, Bai C. Application of Coarse-Grained (CG) Models to Explore Conformational Pathway of Large-Scale Protein Machines. ENTROPY 2022; 24:e24050620. [PMID: 35626506 PMCID: PMC9140642 DOI: 10.3390/e24050620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Protein machines are clusters of protein assemblies that function in order to control the transfer of matter and energy in cells. For a specific protein machine, its working mechanisms are not only determined by the static crystal structures, but also related to the conformational transition dynamics and the corresponding energy profiles. With the rapid development of crystallographic techniques, the spatial scale of resolved structures is reaching up to thousands of residues, and the concomitant conformational changes become more and more complicated, posing a great challenge for computational biology research. Previously, a coarse-grained (CG) model aiming at conformational free energy evaluation was developed and showed excellent ability to reproduce the energy profiles by accurate electrostatic interaction calculations. In this study, we extended the application of the CG model to a series of large-scale protein machine systems. The spike protein trimer of SARS-CoV-2, ATP citrate lyase (ACLY) tetramer, and P4-ATPases systems were carefully studied and discussed as examples. It is indicated that the CG model is effective to depict the energy profiles of the conformational pathway between two endpoint structures, especially for large-scale systems. Both the energy change and energy barrier between endpoint structures provide reasonable mechanism explanations for the associated biological processes, including the opening of receptor binding domain (RBD) of spike protein, the phospholipid transportation of P4-ATPase, and the loop translocation of ACLY. Taken together, the CG model provides a suitable alternative in mechanistic studies related to conformational change in large-scale protein machines.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ke An
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
| | - Peiyi Xu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- Correspondence:
| |
Collapse
|
3
|
Chen K, Günay-Esiyok Ö, Klingeberg M, Marquardt S, Pomorski TG, Gupta N. Aminoglycerophospholipid flipping and P4-ATPases in Toxoplasma gondii. J Biol Chem 2021; 296:100315. [PMID: 33485966 PMCID: PMC7949121 DOI: 10.1016/j.jbc.2021.100315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Lipid flipping in the membrane bilayers is a widespread eukaryotic phenomenon that is catalyzed by assorted P4-ATPases. Its occurrence, mechanism, and importance in apicomplexan parasites have remained elusive, however. Here we show that Toxoplasma gondii, an obligate intracellular parasite with high clinical relevance, can salvage phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) but not phosphatidylcholine (PtdCho) probes from its milieu. Consistently, the drug analogs of PtdCho are broadly ineffective in the parasite culture. NBD-PtdSer imported to the parasite interior is decarboxylated to NBD-PtdEtn, while the latter is not methylated to yield PtdCho, which confirms the expression of PtdSer decarboxylase but a lack of PtdEtn methyltransferase activity and suggests a role of exogenous lipids in membrane biogenesis of T. gondii. Flow cytometric quantitation of NBD-probes endorsed the selectivity of phospholipid transport and revealed a dependence of the process on energy and protein. Accordingly, our further work identified five P4-ATPases (TgP4-ATPase1-5), all of which harbor the signature residues and motifs required for phospholipid flipping. Of the four proteins expressed during the lytic cycle, TgP4-ATPase1 is present in the apical plasmalemma; TgP4-ATPase3 resides in the Golgi network along with its noncatalytic partner Ligand Effector Module 3 (TgLem3), whereas TgP4-ATPase2 and TgP4-ATPase5 localize in the plasmalemma as well as endo/cytomembranes. Last but not least, auxin-induced degradation of TgP4-ATPase1-3 impaired the parasite growth in human host cells, disclosing their crucial roles during acute infection. In conclusion, we show selective translocation of PtdEtn and PtdSer at the parasite surface and provide the underlying mechanistic and physiological insights in a model eukaryotic pathogen.
Collapse
Affiliation(s)
- Kai Chen
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Özlem Günay-Esiyok
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Melissa Klingeberg
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Stephan Marquardt
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Department of Experimental Biophysics, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Thomas Günther Pomorski
- Department of Experimental Biophysics, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India.
| |
Collapse
|
4
|
Chaubey PM, Hofstetter L, Roschitzki B, Stieger B. Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver. PLoS One 2016; 11:e0158033. [PMID: 27347675 PMCID: PMC4922570 DOI: 10.1371/journal.pone.0158033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Transport processes in the canalicular membrane are key elements in bile formation and are the driving force of the enterohepatic circulation of bile salts. The canalicular membrane is constantly exposed to the detergent action of bile salts. One potential element protecting the canalicular membrane from the high canalicular bile salt concentrations may be bile salt resistant microdomains, however additional factors are likely to play a role. To obtain more insights into the molecular composition of the canalicular membrane, the proteome of highly purified rat canalicular membrane vesicles was determined. Isolated rat canalicular membrane vesicles were stripped from adhering proteins, deglycosylated and protease digested before subjecting the samples to shot gun proteomic analysis. The expression of individual candidates was studied by PCR, Western blotting and immunohistochemistry. A total of 2449 proteins were identified, of which 1282 were predicted to be membrane proteins. About 50% of the proteins identified here were absent from previously published liver proteomes. In addition to ATP8B1, four more P4-ATPases were identified. ATP8A1 and ATP9A showed expression specific to the canalicular membrane, ATP11C at the bLPM and ATP11A in an intracellular vesicular compartment partially colocalizing with RAB7A and EEA1 as markers of the endosomal compartment. This study helped to identify additional P4-ATPases from rat liver particularly in the canalicular membrane, previously not known to be expressed in liver. These P4-ATPases might be contributing for maintaining transmembrane lipid homeostasis in hepatocytes.
Collapse
Affiliation(s)
- Pururawa Mayank Chaubey
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Lia Hofstetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
5
|
Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Front Physiol 2016; 7:275. [PMID: 27458383 PMCID: PMC4937031 DOI: 10.3389/fphys.2016.00275] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023] Open
Abstract
P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood coagulation, apoptosis, bile and cholesterol homeostasis, and neuronal cell survival. Some P4-ATPases transport phosphatidylserine and phosphatidylethanolamine across the plasma membrane or intracellular membranes whereas other P4-ATPases are specific for phosphatidylcholine. The importance of P4-ATPases is highlighted by the finding that genetic defects in two P4-ATPases ATP8A2 and ATP8B1 are associated with severe human disorders. Recent studies have provided insight into how P4-ATPases translocate phospholipids across membranes. P4-ATPases form a phosphorylated intermediate at the aspartate of the P-type ATPase signature sequence, and dephosphorylation is activated by the lipid substrate being flipped from the exoplasmic to the cytoplasmic leaflet similar to the activation of dephosphorylation of Na(+)/K(+)-ATPase by exoplasmic K(+). How the phospholipid is translocated can be understood in terms of a peripheral hydrophobic gate pathway between transmembrane helices M1, M3, M4, and M6. This pathway, which partially overlaps with the suggested pathway for migration of Ca(2+) in the opposite direction in the Ca(2+)-ATPase, is wider than the latter, thereby accommodating the phospholipid head group. The head group is propelled along against its concentration gradient with the hydrocarbon chains projecting out into the lipid phase by movement of an isoleucine located at the position corresponding to an ion binding glutamate in the Ca(2+)- and Na(+)/K(+)-ATPases. Hence, the P4-ATPase mechanism is quite similar to the mechanism of these ion pumps, where the glutamate translocates the ions by moving like a pump rod. The accessory subunit CDC50 may be located in close association with the exoplasmic entrance of the suggested pathway, and possibly promotes the binding of the lipid substrate. This review focuses on properties of mammalian and yeast P4-ATPases for which most mechanistic insight is available. However, the structure, function and enigmas associated with mammalian and yeast P4-ATPases most likely extend to P4-ATPases of plants and other organisms.
Collapse
Affiliation(s)
| | | | | | | | - Madhavan Chalat
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Robert S. Molday
| |
Collapse
|
6
|
Lipid flippase modulates olfactory receptor expression and odorant sensitivity in Drosophila. Proc Natl Acad Sci U S A 2014; 111:7831-6. [PMID: 24821794 DOI: 10.1073/pnas.1401938111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Drosophila melanogaster, the male-specific pheromone cVA (11-cis-vaccenyl acetate) functions as a sex-specific social cue. However, our understanding of the molecular mechanisms underlying cVA pheromone transduction and its regulation are incomplete. Using a genetic screen combined with an electrophysiological assay to monitor pheromone-evoked activity in the cVA-sensing Or67d neurons, we identified an olfactory sensitivity factor encoded by the dATP8B gene, the Drosophila homolog of mammalian ATP8B. dATP8B is expressed in all olfactory neurons that express Orco, the odorant receptor coreceptor, and the odorant responses in most Orco-expressing neurons are reduced. Or67d neurons are severely affected, with strongly impaired cVA-induced responses and lacking spontaneous spiking in the mutants. The dATP8B locus encodes a member of the P4-type ATPase family thought to flip aminophospholipids such as phosphatidylserine and phosphatidylethanolamine from one membrane leaflet to the other. dATP8B protein is concentrated in the cilia of olfactory neuron dendrites, the site of odorant transduction. Focusing on Or67d neuron function, we show that Or67d receptors are mislocalized in dATP8B mutants and that cVA responses can be restored to dATP8B mutants by misexpressing a wild-type dATP8B rescuing transgene, by expressing a vertebrate P4-type ATPase member in the pheromone-sensing neurons or by overexpressing Or67d receptor subunits. These findings reveal an unexpected role for lipid translocation in olfactory receptor expression and sensitivity to volatile odorants.
Collapse
|
7
|
Liu YC, Pearce MW, Honda T, Johnson TK, Charlu S, Sharma KR, Imad M, Burke RE, Zinsmaier KE, Ray A, Dahanukar A, de Bruyne M, Warr CG. The Drosophila melanogaster phospholipid flippase dATP8B is required for odorant receptor function. PLoS Genet 2014; 10:e1004209. [PMID: 24651716 PMCID: PMC3961175 DOI: 10.1371/journal.pgen.1004209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/13/2014] [Indexed: 01/13/2023] Open
Abstract
The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins. The olfactory systems of insects are fundamental to critical behaviours such as finding mates, food and host plants. Insects can detect a wide range of environmental cues using three different families of olfactory receptor proteins. Why insects have three different families of receptor genes, and how they function together, is not fully understood. Here we identified a new gene, dATP8B, which is critically and specifically required for the function of only one of these receptor families in Drosophila. dATP8B is a member of the P4-type ATPases, or phospholipid flippases; these enzymes function in establishing a difference or asymmetry in lipid composition between the outer and inner leaflets of plasma membranes. This is thought to be important for many cellular membrane processes; however, specific functions of individual flippase proteins are not well described. We find that dATP8B is required for the function of the odorant receptor family, but not the ionotropic-like and gustatory receptor families. This further highlights the functional differences between these receptor families and suggests a role for phospholipids in the signalling of a specific family of receptor proteins.
Collapse
Affiliation(s)
- Yu-Chi Liu
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle W. Pearce
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Takahiro Honda
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Travis K. Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sandhya Charlu
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Kavita R. Sharma
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Mays Imad
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
| | - Richard E. Burke
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Konrad E. Zinsmaier
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Anandasankar Ray
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Anupama Dahanukar
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Marien de Bruyne
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Coral G. Warr
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
8
|
Kengia JT, Ko KC, Ikeda S, Hiraishi A, Mieno-Naka M, Arai T, Sato N, Muramatsu M, Sawabe M. A gene variant in the Atp10d gene associates with atherosclerotic indices in Japanese elderly population. Atherosclerosis 2013; 231:158-62. [PMID: 24125428 DOI: 10.1016/j.atherosclerosis.2013.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND ATP10D belongs to a subfamily of P-type ATPases implicated in phospholipids translocation from the exoplasmic to the cytoplasmic leaflet of cellular biological membrane. Previous genome-wide association study (GWAS) identified that a variant in Atp10d gene (rs2351791) associates with serum lipid profile and myocardial infarction. The objective of this study is to assess the effect of this variant on atherosclerosis in Japanese elderly population. METHOD Consecutive autopsy cases registered in JG-SNP study were recruited (n = 1536). The samples were pathologically assessed for atherosclerosis using macroscopic examination of the formalin-fixed arteries, and coronary stenotic index (CSI), intracranial atherosclerotic index (ICAI) and pathological atherosclerotic index (PAI), which represent systemic arteries were calculated. The variant rs2351791 (G/T) in Atp10d gene was genotyped by Taqman genotyping assay and association determined. RESULT Both CSI and ICAI were significantly higher in GG genotype than GT genotype and TT genotype (p = 0.003 and p = 0.001, respectively). Both associations remained significant in minor allele dominant model after adjusting for age, hypertension, diabetes, HDL, smoking and drinking (p = 0.001 and p = 0.001, respectively). PAI was not associated with this variant. Consistent with the previous report, plasma HDL cholesterol level was lower in GG genotype compared to GT + TT genotypes (p = 0.001). CONCLUSION The rs2351791 SNP in the Atp10d gene affects the susceptibility for cardiac and intracranial vascular stenosis in the elderly Japanese population.
Collapse
Affiliation(s)
- James Tumaini Kengia
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Japan; Health Care Economics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Where do they come from and where do they go: candidates for regulating extracellular vesicle formation in fungi. Int J Mol Sci 2013; 14:9581-603. [PMID: 23644887 PMCID: PMC3676800 DOI: 10.3390/ijms14059581] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023] Open
Abstract
In the past few years, extracellular vesicles (EVs) from at least eight fungal species were characterized. EV proteome in four fungal species indicated putative biogenesis pathways and suggested interesting similarities with mammalian exosomes. Moreover, as observed for mammalian exosomes, fungal EVs were demonstrated to be immunologically active. Here we review the seminal and most recent findings related to the production of EVs by fungi. Based on the current literature about secretion of fungal molecules and biogenesis of EVs in eukaryotes, we focus our discussion on a list of cellular proteins with the potential to regulate vesicle biogenesis in the fungi.
Collapse
|
10
|
Bohdanowicz M, Grinstein S. Role of Phospholipids in Endocytosis, Phagocytosis, and Macropinocytosis. Physiol Rev 2013; 93:69-106. [DOI: 10.1152/physrev.00002.2012] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endocytosis, phagocytosis, and macropinocytosis are fundamental processes that enable cells to sample their environment, eliminate pathogens and apoptotic bodies, and regulate the expression of surface components. While a great deal of effort has been devoted over many years to understanding the proteins involved in these processes, the important contribution of phospholipids has only recently been appreciated. This review is an attempt to collate and analyze the rapidly emerging evidence documenting the role of phospholipids in clathrin-mediated endocytosis, phagocytosis, and macropinocytosis. A primer on phospholipid biosynthesis, catabolism, subcellular distribution, and transport is presented initially, for reference, together with general considerations of the effects of phospholipids on membrane curvature and charge. This is followed by a detailed analysis of the critical functions of phospholipids in the internalization processes and in the maturation of the resulting vesicles and vacuoles as they progress along the endo-lysosomal pathway.
Collapse
Affiliation(s)
- Michal Bohdanowicz
- Division of Cell Biology, Hospital for Sick Children, and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
|
12
|
Quinn PJ. The structure of complexes between phosphatidylethanolamine and glucosylceramide: A matrix for membrane rafts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2894-904. [DOI: 10.1016/j.bbamem.2011.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/22/2011] [Accepted: 08/30/2011] [Indexed: 12/12/2022]
|
13
|
Lhermusier T, Chap H, Payrastre B. Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome. J Thromb Haemost 2011; 9:1883-91. [PMID: 21958383 DOI: 10.1111/j.1538-7836.2011.04478.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Like all eukaryotic cells, platelets maintain plasma membrane phospholipid asymmetry in normal blood circulation via lipid transporters, which control transbilayer movement. Upon platelet activation, the asymmetric orientation of membrane phospholipids is rapidly disrupted, resulting in a calcium-dependent exposure of the anionic phospholipid, phosphatidylserine (PS), at the outer platelet surface. This newly-exposed PS surface is a major component of normal hemostasis because it supports platelet procoagulant function. Binding of blood clotting enzyme complexes to this negatively-charged membrane surface allows a dramatic increase in the rate of conversion of zymogens to active serine proteases, which in turn produce a burst of thrombin leading to the formation of a fibrin clot and further platelet activation. Cells have the capacity to catalyze transbilayer phospholipid exchange via ATP-requiring translocase enzymes (flippases and floppases), which control unidirectional phospholipid transport against a concentration gradient. They also use an energy-independent, calcium-dependent scramblase activity to govern the bidirectional exchange of phospholipids between the two leaflets of the bilayer; this activity is essential for PS exposure during platelet activation. Scramblase activity, biochemically characterized in the 1980s, is deficient in patients with Scott syndrome, a rare inherited bleeding disorder with defective platelet procoagulant activity. Despite considerable efforts, the platelet scramblase protein remained elusive for years but a significant advance has recently been made with the identification of TMEM16F, a membrane protein essential for calcium-dependent PS exposure whose loss of function mutations are found in Scott syndrome. This review recalls historical aspects of platelet membrane asymmetry characterization, summarizes the mechanisms and roles of PS exposure following platelet activation and discusses the recent identification of TMEM16F and its significance in the scrambling process.
Collapse
Affiliation(s)
- T Lhermusier
- Inserm, U1048 and Université Toulouse 3, I2MC, 31432 Toulouse Cedex 04, France
| | | | | |
Collapse
|
14
|
Sharom FJ. Flipping and flopping--lipids on the move. IUBMB Life 2011; 63:736-46. [PMID: 21793163 DOI: 10.1002/iub.515] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/16/2011] [Indexed: 12/24/2022]
Abstract
The rapid movement of polar lipids from one membrane leaflet to the other is facilitated by lipid flippases or translocases. Although their activity was first observed over 30 years ago, the structures, physiological roles, and molecular mechanisms of this group of proteins remain enigmatic. Lipid flippases maintain membrane lipid asymmetry, and in eukaryotes they are also intimately involved in membrane budding and vesicle trafficking. The ATP-dependent flippases are members of well-characterized protein families, whose other members transport nonlipid substrates across cell membranes. The P(4)-type ATPases carry out the inward translocation of phospholipids, and various ABC transporters are involved in outward lipid movement. The ATP-independent flippases move lipid substrates in both directions between membrane leaflets. With only a few exceptions, the molecular identity of these proteins is still unknown, despite their involvement in key biosynthetic pathways in both bacteria and eukaryotes. This review provides an overview of the different classes of flippases, and summarizes recent progress in their identification and functional characterization. The possible mechanisms of action of lipid flippases are discussed, and future directions explored.
Collapse
Affiliation(s)
- Frances J Sharom
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
15
|
Yabas M, Teh CE, Frankenreiter S, Lal D, Roots CM, Whittle B, Andrews DT, Zhang Y, Teoh NC, Sprent J, Tze LE, Kucharska EM, Kofler J, Farell GC, Bröer S, Goodnow CC, Enders A. ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat Immunol 2011; 12:441-9. [PMID: 21423173 PMCID: PMC3272780 DOI: 10.1038/ni.2011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/21/2011] [Indexed: 12/14/2022]
Abstract
Subcompartments of the plasma membrane are believed to be critical for lymphocyte responses, but few genetic tools are available to test their function. Here we describe a previously unknown X-linked B cell-deficiency syndrome in mice caused by mutations in Atp11c, which encodes a member of the P4 ATPase family thought to serve as 'flippases' that concentrate aminophospholipids in the cytoplasmic leaflet of cell membranes. Defective ATP11C resulted in a lower rate of phosphatidylserine translocation in pro-B cells and much lower pre-B cell and B cell numbers despite expression of pre-rearranged immunoglobulin transgenes or enforced expression of the prosurvival protein Bcl-2 to prevent apoptosis and abolished pre-B cell population expansion in response to a transgene encoding interleukin 7. The only other abnormalities we noted were anemia, hyperbilirubinemia and hepatocellular carcinoma. Our results identify an intimate connection between phospholipid transport and B lymphocyte function.
Collapse
Affiliation(s)
- Mehmet Yabas
- Ramaciotti Immunization Genomics Laboratory, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|