1
|
Wang S, Zhang Y, Hu W, Zan G, He Y, Xing M, Zhao H. Lycopene alleviates splenic injury in grass carp (Ctenopharyngodon idella) caused by endoplasmic reticulum stress-autophagy axis induced by sulfamethoxazole through regulating AKT/AMPK pathway. Comp Biochem Physiol C Toxicol Pharmacol 2025; 296:110239. [PMID: 40436289 DOI: 10.1016/j.cbpc.2025.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/24/2025] [Indexed: 06/01/2025]
Abstract
Sulfamethozole (SMZ), an antibiotic widely used in aquaculture, is bioaccumulating and resistant to degradation, posing ecological risks. Although environmentally relevant SMZ concentrations (0.3 μg/L) are known to impair piscine immune function, the molecular mechanisms driving its toxicity remain elusive. Lycopene (LYC) is a potent bioactive compound that alleviates SMZ-induced toxicity by regulating the endoplasmic reticulum (ER) stress autophagy axis. This experiment chooses 120 grass carps, divided into 4 groups: control group (CON), SMZ exposure group (0.3 μg/L), the LYC supplement group (10 mg/kg) and SMZ + LYC combined treatment group. The toxicity of SMZ (0.3 μg/L) to grass carp and the mitigation effect of LYC (10 mg/kg) to SMZ were studied through a 30-day experiment. Histopathological alterations were evaluated via hematoxylin-eosin (H&E) staining, ultrastructural changes were visualized by transmission electron microscopy (TEM), and key biomarkers of ER stress, autophagy, and AKT/AMPK signaling were quantified through qRT-PCR and Western blotting. Results demonstrated that SMZ exposure induced disorganization of white pulp, cellular vacuolation, and activation of melanomacrophage centers (MMCs), accompanied by significant upregulation of ER stress markers (IRE1, PERK, ATF6, GRP78, eif2α) and autophagy-related genes (LC3, P62, Beclin1, ATG5). TEM revealed nuclear pyknosis, mitochondrial swelling, and increased autophagosomes in SMZ-treated splenocytes. LYC intervention markedly attenuated these pathological injuries and suppressed ER stress and excessive autophagy by modulating the AKT/AMPK pathway. Molecular docking analysis confirmed binding affinity between LYC and AKT/AMPK proteins, with a binding energy of -8.8 kcal/mol. Our findings establish a mechanistic foundation for developing LYC-enriched functional feeds to counteract antibiotic-associated ecological risks in sustainable aquaculture.
Collapse
Affiliation(s)
- Shuni Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Yingxue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Wangjuan Hu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Gaorong Zan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yaxuan He
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
2
|
Qian L, Liu Y, Wang X, Yang S, Ji L, Sun X, Wang J, Shan T, Zhang W, Shen Q. Screening and identification of protein interacting with goose astrovirus. Front Cell Infect Microbiol 2025; 15:1595736. [PMID: 40433662 PMCID: PMC12106297 DOI: 10.3389/fcimb.2025.1595736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Goose Astrovirus (GoAstV), a recently identified member of the Astroviridae family in China, predominantly affects goslings, resulting in substantial economic losses to the goose farming industry due to its high infection and mortality rates. Currently, the infection mechanism and pathogenesis of GoAstV remain unknown. Methods Given this, the Viral Overlay Protein Blot Assay was utilized to identify and characterize proteins on the LMH (Leghorn Male Hepatoma) cell membrane that interact with Goose Astrovirus. The identities of the candidate proteins were determined via LC-MS mass spectrometry analysis, bioinformatics analysis, and UniProt database search. The interaction between HSPA5 and the astrovirus protein was further validated in vitro through Western blot and Coimmunoprecipitation experiments. Finally, bioinformatics tools such as SWISSMODEL, AlphaFold, and ZDOCK were employed to construct and analyze the docking complex model between the candidate protein and GoAstV protein, including their key binding residue sites. Results We successfully identified a 70 kDa protein in the plasma membrane protein extracts of LMH cells and confirmed the identity of this candidate protein as HSPA5. Meanwhile, in vitro experiments further validated the interaction between HSPA5 and astrovirus proteins. Subsequently, we successfully predicted the docking complex model of HSPA5 protein with GoAstV protein. Further prediction of the binding residue sites revealed that seven residues of the GoAstV-P2 protein (THR124, ILE22, VAL24, TRP51, PRO66, GLN100, and VAL125) and twelve residues of the HSPA5 protein (ARG2, HIS3, LEU4, LEU6, ALA7, LEU8, LEU9, LEU10, LEU11, ASP411, VAL413, and LEU415) may be involved in the interaction between these two proteins. Discussion Our research results have preliminarily elucidated the interaction mechanisms between viral proteins and receptors, facilitating exploration from multiple angles of the roles of candidate protein in the process of GoAstV infecting host cells. This provides a theoretical basis for further identification of GoAstV receptors and clarification of its infection mechanisms.
Collapse
Affiliation(s)
- Lingling Qian
- Central Laboratory of Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaopeng Sun
- Department of Orthopaedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jianqiang Wang
- Intensive Care Unit, Jintan District Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Institute of Critical Care Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Institute of Critical Care Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Liu Z, Ha DP, Lin LL, Qi L, Lee AS. Requirements for nuclear GRP78 transcriptional regulatory activities and interaction with nuclear GRP94. J Biol Chem 2025; 301:108369. [PMID: 40024475 PMCID: PMC11997380 DOI: 10.1016/j.jbc.2025.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
GRP78, a molecular chaperone primarily located in the endoplasmic reticulum (ER), has recently been discovered to translocate into the nucleus of stressed and cancer cells where it assumes a new function reprogramming the transcriptome. This study explores the requirements of GRP78 nuclear translocation and its transcriptional activity and investigates the role of ER-associated degradation in the process. We show that the ER-processed, mature form of GRP78 is the major form of nuclear GRP78 and is the form with transcriptional regulatory activity. In contrast, exogenously expressed GRP78 designed to lack its ER signal peptide, thus preventing it from entering the ER or undergoing any ER-related processing/modification, while able to enter the nucleus, lacks transcriptional regulatory activity toward E-Box containing target genes. Additionally, the ATP-binding and substrate-binding activities of GRP78 are critical for this transcriptional regulatory function. We further discover that GRP94, an ER chaperone that acts in concert with GRP78 on protein folding, can translocate to the nucleus and colocalize with nuclear GRP78 upon ER stress. These findings suggest that some form of ER processing of GRP78, in addition to cleavage of the ER signal peptide, is critical for its nuclear activity and that in stressed cells, ER chaperones may assume new functions in the nucleus yet to be explored.
Collapse
Affiliation(s)
- Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
5
|
Bertuccio FR, Montini S, Fusco MA, Di Gennaro A, Sciandrone G, Agustoni F, Galli G, Bortolotto C, Saddi J, Baietto G, Melloni G, D’Ambrosio G, Corsico AG, Stella GM. Malignant Pleural Mesothelioma: From Pathophysiology to Innovative Actionable Targets. Cancers (Basel) 2025; 17:1160. [PMID: 40227645 PMCID: PMC11988075 DOI: 10.3390/cancers17071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a rare and highly aggressive cancer which arises from mesothelial layer and primarily linked to asbestos exposure, genetic predispositions, and specific mutations. Despite current treatment modalities, including chemotherapy, antiangiogenic therapy and more recently immunotherapy, the prognosis remains dismal, with a median survival time of 6-18 months. OBJECTIVES The urgent need for novel therapeutic strategies has prompted research into molecular targets and precision medicine approaches. At present, many potential targets for therapeutic strategies have been identified, and emerging clinical trials are demonstrating certain clinical efficacy. METHODS This review examines advancements in understanding PM's genetic and epigenetic landscape, signaling pathways, and promising therapeutic targets. RESULTS We also discuss the results of recent clinical trials and their potential implications for future treatment paradigms.
Collapse
Affiliation(s)
- Francesco Rocco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Simone Montini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Antonietta Fusco
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Antonella Di Gennaro
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gaetano Sciandrone
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Galli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Saddi
- Unit of Radiation Therapy, Department of Oncology, Clinical-Surgical, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Guido Baietto
- Unit of Thoracic Surgery, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.B.); (G.M.)
| | - Giulio Melloni
- Unit of Thoracic Surgery, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.B.); (G.M.)
| | - Gioacchino D’Ambrosio
- Pathology Unit, Department of Diagnostical Services and Imaging, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
6
|
Guo J, Ma T, Wang B, Xing B, Huang L, Li X, Zheng H, He Y, Xi J. Zn 2+ protects H9C2 cardiomyocytes by alleviating MAMs-associated apoptosis and calcium signaling dysregulation. Cell Signal 2025; 127:111629. [PMID: 39870339 DOI: 10.1016/j.cellsig.2025.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
PURPOSE This study aims to investigate whether zinc ion (Zn2+) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload. METHODS H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn2+ treatment in a complete medium. Cells were then treated with the MCU inhibitor ruthenium red (RR), the MCU activator spermine (SP), and siRNAs targeting Bap31, MCU, VDAC1, and FUNDC1. Cell viability was assessed using MTT and CCK-8 assays. Lactate dehydrogenase (LDH) levels were measured with a commercial kit. Western blot was performed to detect protein expression levels. Cell apoptosis, intracellular zinc, calcium levels, mitochondrial membrane potential, and protein fluorescence changes were observed using laser scanning confocal microscopy. RESULTS Compared to the control group, cell viability was significantly reduced in the I/R group, accompanied by increased expression of apoptosis and calcium overload-related proteins increased cell injury, apoptosis, calcium overload, and a decrease in mitochondrial membrane potential. Zn2+ treatment reversed the detrimental effects of I/R in the I/R + Zn2+ group. When Bap31, VDAC1, FUNDC1, or MCU were silenced using siRNA, the protective effect of Zn2+ was further enhanced (P < 0.05). CONCLUSIONS Ischemia-reperfusion (I/R) leads to cardiomyocyte injury and apoptosis. Zn2+ downregulates the expression of key apoptotic proteins through the Bap31/Fis1 pathway and regulates MCU activity through the IP3R1-GRP75-VDAC1 and IP3R2/FUNDC1 pathways to alleviate calcium overload and ultimately protect cardiomyocytes after I/R.
Collapse
Affiliation(s)
- Jiabao Guo
- Clinic School of Medicine and Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Tingting Ma
- Clinic School of Medicine and Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Bingyu Wang
- School of Public Health, North China University of Technology, Tangshan, China
| | - Bohan Xing
- Basic School of Medicine, North China University of Science and Technology, Tangshan, China
| | - Luyao Huang
- Basic School of Medicine, North China University of Science and Technology, Tangshan, China
| | - Xiaoyi Li
- Basic School of Medicine, North China University of Science and Technology, Tangshan, China
| | - Huan Zheng
- Basic School of Medicine, North China University of Science and Technology, Tangshan, China
| | - Yonggui He
- Clinic School of Medicine and Affiliated Hospital, North China University of Science and Technology, Tangshan, China.
| | - Jinkun Xi
- Clinic School of Medicine and Affiliated Hospital, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
7
|
Yang Y, Li W, Zhao Y, Sun M, Xing F, Yang J, Zhou Y. GRP78 in Glioma Progression and Therapy: Implications for Targeted Approaches. Biomedicines 2025; 13:382. [PMID: 40002794 PMCID: PMC11852679 DOI: 10.3390/biomedicines13020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Glioma is the most common primary malignant brain tumor, accounting for the majority of brain cancer-related deaths. Considering the limited efficacy of conventional therapies, novel molecular targeted therapies have been developed to improve outcomes and minimize toxicity. Glucose-regulated protein 78 (GRP78), a molecular chaperone primarily localized in the endoplasmic reticulum (ER), has received increasing attention for its role in glioma progression and resistance to conventional therapies. Overexpressed in gliomas, GRP78 supports tumor growth, survival, and therapeutic resistance by maintaining cellular homeostasis and regulating multiple signaling pathways. Its aberrant expression correlates with higher tumor grades and poorer patient prognosis. Beyond its intracellular functions, GRP78's presence on the cell surface and its role in the tumor microenvironment underscore its potential as a therapeutic target. Recent studies have explored innovative strategies to target GRP78, including small molecule inhibitors, monoclonal antibodies, and chimeric antigen receptor (CAR) T cell therapy, showing significant potential in glioma treatment. This review explores the biological characteristics of GRP78, its role in glioma pathophysiology, and the potential of GRP78-targeted therapy as a novel strategy to overcome treatment resistance and improve clinical outcomes. GRP78-targeted therapy, either alone or in combination with conventional treatments, could be a novel and attractive strategy for future glioma treatment.
Collapse
Affiliation(s)
- Yue Yang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wen Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yu Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Feifei Xing
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiao Yang
- Suzhou Research Center of Medical School, Institute of Clinical Medicine Research, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
8
|
Weaver FE, White E, Peek AM, Nurse CA, Austin RC, Igdoura SA. 4-Phenylbutyric acid mitigates ER stress-induced neurodegeneration in the spinal cords of a GM2 gangliosidosis mouse model. Hum Mol Genet 2025; 34:32-46. [PMID: 39530163 PMCID: PMC11756275 DOI: 10.1093/hmg/ddae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Sandhoff disease (SD), a fatal and rare lysosomal storage disorder (LSD), is caused by a deficiency of the enzyme β-hexosaminidase B and leads to severe accumulation of GM2 gangliosides in lysosomes, primarily within the central nervous system (CNS). This accumulation results in severe neurological impairment, lower motor neuron disease, and death. Currently, there are no effective therapies available for SD. Here, we explored the role of endoplasmic reticulum (ER) stress in the spinal cord during disease progression in an established mouse model of SD and revealed the beneficial outcome of off-label treatment with the FDA-approved drug, 4-phenylbutyric acid (4-PBA). We analyzed the expression and localization of ER stress and cellular apoptosis markers, which revealed significant upregulation of these factors within motor neurons. Additionally, we observed a > 50% reduction in neuronal numbers throughout all spinal cord regions. Our studies also tested the impact of the chemical chaperone 4-PBA on ER stress in mice, and following administration, we observed significant improvements in motor neuromuscular function and life span throughout disease progression. 4-PBA treatment significantly reduced apoptosis in spinal cord neurons and increased the number of choline acetyltransferase (ChAT)-positive neurons, with little effect on astrogliosis or sensory interneurons. Overall, this study provides strong evidence for the role of chronic ER stress in the pathophysiology of SD and highlights 4-PBA as a promising therapeutic treatment for SD and potentially other related LSDs.
Collapse
Affiliation(s)
- Fiona E Weaver
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Elizabeth White
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Allyson M Peek
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, 1280 Main Street W., Hamilton, ON, L8S 4L8, Canada
- The Research Institute of St. Joe’s Hamilton and The Hamilton Center for Kidney Research, 50 Charlton Avenue E., Hamilton, ON, L8N 4A6, Canada
| | - Suleiman A Igdoura
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street W., Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
9
|
Liu G, Wu J, Wang Y, Xu Y, Xu C, Fang G, Li X, Chen J. The Differential Expressions and Associations of Intracellular and Extracellular GRP78/Bip with Disease Activity and Progression in Rheumatoid Arthritis. Bioengineering (Basel) 2025; 12:58. [PMID: 39851332 PMCID: PMC11761566 DOI: 10.3390/bioengineering12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
GRP78/BiP, a stress-induced protein and autoantigen in rheumatoid arthritis (RA), exhibits different expressions in various biological fluids and tissues, including blood, synovial fluid (SF), and synovium, all of which are pertinent to the disease activity and progression of RA; however, there is a scarcity of data linking both intracellular and extracellular GRP78/Bip to disease activity and progression of RA. This study was undertaken to investigate the differential expression of GRP78/Bip in blood, SF, and synovium, and to determine their association with disease activity and progression of RA. Patients with RA, osteoarthritis (OA), and traumatic meniscal injury (TMI) without radiographic OA were consecutively recruited for the study. Among patients with RA, six different subgroups were established based on their disease activity and progression. Disease activity was measured using the DAS28 (Disease activity scores in 28 joints) criterion, while disease progression was evaluated using the Steinbrocker classification grade. The levels of GRP78/Bip, TNF-α, and IL-10 were significantly elevated in the serum, SF, and synovium of patients with RA when compared to both the control (CON, TMI Patients) and the inflammation control (iCON, OA Patients) groups (p < 0.05). In terms of disease activity status, as opposed to remission status in RA, the levels of GRP78/Bip, TNF-α, and IL-10 were all elevated in serum and synovium (p < 0.05). However, GRP78/Bip and IL-10 levels were found to be reduced in SF, while TNF-α levels remained elevated. With respect to disease progression in RA, GRP78/Bip levels exhibited a positive correlation with both the stage of RA and the levels of TNF-α and IL-10 in serum and synovium. Nonetheless, a negative correlation was observed between GRP78/Bip levels and the stage of RA in SF, while positive correlations with the levels of TNF-α and IL-10 persisted. The differential expression of GRP78/Bip in blood, SF, and synovium indicated that the potential role and function of GRP78/Bip might vary depending on its specific location within these biological fluids and tissues. The presence of intracellular and extracellular GRP78/Bip was associated with disease activity and progression of RA, suggesting the involvement of GRP78/Bip in the pathogenesis and development of this debilitating autoimmune disorder, as well as its potential as a biomarker for monitoring disease activity and progression of RA.
Collapse
Affiliation(s)
- Guoyin Liu
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianping Wu
- Department of Obstetrics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Yongqiang Wang
- Department of Rehabilitation, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Yuansheng Xu
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
| | - Chun Xu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Guilin Fang
- Department of Rheumatology, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Xin Li
- Department of Orthopedics, Central Military Commission Joint Logistics Support Force 904th Hospital, Wuxi 214044, China
| | - Jianmin Chen
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
| |
Collapse
|
10
|
Wei S, Fan X, Li X, Zhou W, Zhang Z, Dai S, Lv H, Liu Y, Shan B, Zhao L, Zhan Q, Song Y. Hypoxia Induced Lnc191 Upregulation Dictates the Progression of Esophageal Squamous Cell Carcinoma by Activating GRP78/ERK Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406674. [PMID: 39629920 PMCID: PMC11775527 DOI: 10.1002/advs.202406674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/09/2024] [Indexed: 01/30/2025]
Abstract
Hypoxia is a typical hallmark of solid tumors and plays a crucial role in the progression of esophageal squamous cell carcinogenesis (ESCC). Nevertheless, the precise mechanisms underlying the involvement of hypoxia in tumor development remain unclear. In the present study, a novel hypoxia-induced long noncoding RNA (lncRNA) is identified first, lnc191, which is highly expressed in clinical ESCC tissues and is positively correlated with poor prognosis of ESCC patients. These findings provide evidence that the hypoxia-inducible factor-1α (HIF-1α)-mediated transcriptional activation of lnc191 enhances the growth and metastasis of ESCC cells both in vitro and in vivo. Mechanistically, lnc191 interacts with GRP78 (78-kDa glucose-regulated protein), one of the endoplasmic reticulum chaperone proteins, leading to its translocation to the membrane, where GRP78 binds with EGFR and enhances its phosphorylation (Y845), further activates ERK/MAPK signaling pathway, and thereby in favor of the progression of ESCC. Overall, this data proposes lnc191 as a key driver during the development of ESCC and reveals the participation of the activated GRP78/ERK/MAPK axis in the ESCC progression mediated by lnc191. These findings indicate the potential of lnc191 as a promising diagnostic biomarker and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Sisi Wei
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Research Centerthe Fourth Hospital of Hebei Medical UniversityJiankang Road 12ShijiazhuangHebei050011China
- Key Laboratory of Tumor Prevention and Precision Diagnosis and Treatment of HebeiClinical Oncology Research CenterShijiazhuangHebei050011China
| | - Xinyi Fan
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xiaoya Li
- Research Centerthe Fourth Hospital of Hebei Medical UniversityJiankang Road 12ShijiazhuangHebei050011China
- Key Laboratory of Tumor Prevention and Precision Diagnosis and Treatment of HebeiClinical Oncology Research CenterShijiazhuangHebei050011China
| | - Wei Zhou
- Hangzhou Institute of MedicineUniversity of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouZhejiang310022China
| | - Zhihua Zhang
- Neurosurgery DepartmentTsinghua University Yuquan HospitalBeijing100049China
| | - Suli Dai
- Research Centerthe Fourth Hospital of Hebei Medical UniversityJiankang Road 12ShijiazhuangHebei050011China
- Key Laboratory of Tumor Prevention and Precision Diagnosis and Treatment of HebeiClinical Oncology Research CenterShijiazhuangHebei050011China
| | - Huilai Lv
- Department of Thoracic Surgerythe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei050011China
| | - Yueping Liu
- Pathology Departmentthe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei050011China
| | - Baoen Shan
- Research Centerthe Fourth Hospital of Hebei Medical UniversityJiankang Road 12ShijiazhuangHebei050011China
- Key Laboratory of Tumor Prevention and Precision Diagnosis and Treatment of HebeiClinical Oncology Research CenterShijiazhuangHebei050011China
| | - Lianmei Zhao
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Research Centerthe Fourth Hospital of Hebei Medical UniversityJiankang Road 12ShijiazhuangHebei050011China
- Key Laboratory of Tumor Prevention and Precision Diagnosis and Treatment of HebeiClinical Oncology Research CenterShijiazhuangHebei050011China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational ResearchLaboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijing100142China
| | - Yongmei Song
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| |
Collapse
|
11
|
Kumar R, Rao GN. Glucose-Regulated Protein 78, via Releasing β-Catenin from Adherens Junctions, Facilitates Its Interaction with STAT3 in Mediating Retinal Neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2356-2381. [PMID: 39222910 PMCID: PMC11587869 DOI: 10.1016/j.ajpath.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Retinopathy due to neovascularization is one of the major causes of vision loss. To understand the mechanisms underlying retinal neovascularization the oxygen-induced retinopathy (OIR) model was used. Two-dimensional gel matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analysis of normoxic and 24-hour post-OIR mice pups' retinas revealed that glucose-regulated protein 78 (GRP78) was one of the several molecules induced by OIR in the retinal endothelial cells (ECs). Vascular endothelial growth factor A (VEGFA) also induced GRP78 expression independent of endoplasmic reticulum stress response in human retinal microvascular endothelial cells, and its depletion reduced VEGFA-induced EC angiogenic responses. Consistent with these observations, EC-specific deletion of GRP78 inhibited OIR-induced retinal neovascularization. GRP78 bound with vascular endothelial-cadherin and released adherens junction, but not Wnt-mediated, β-catenin. β-catenin, in turn, via interacting with STAT3, triggered cyclin D1 expression. Furthermore, depletion of β-catenin or cyclin D1 levels negated VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. EC-specific deletion of GRP78 also suppressed OIR-induced vascular leakage. Studies of upstream signaling indicated that activating transcription factor 6 mediated GRP78 induction in the modulation of VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. Together, these observations revealed that GRP78, independent of its response to endoplasmic reticulum stress, is involved in mediating EC angiogenic responses by VEGFA and retinal neovascularization by OIR. In view of these findings, GRP78 emerges as a desirable target for drug development against diabetic retinopathy.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
12
|
Liu J, Chen K, Wu W, Pang Z, Zhu D, Yan X, Wang B, Qiu J, Fang Z. GRP78 exerts antiviral function against influenza A virus infection by activating the IFN/JAK-STAT signaling. Virology 2024; 600:110249. [PMID: 39303344 DOI: 10.1016/j.virol.2024.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Influenza is an acute viral respiratory infection that causes mild to severe illness in humans and animals. Current studies show that glucose-regulated protein 78 (GRP78) can exert crucial functions during viral infection; however, the mechanism by which GRP78 regulates influenza A virus (IAV) infection remains unclear. In the present study, we found that IAV infection increased GRP78 expression. Overexpression of GRP78 significantly inhibited IAV replication, as indicated by reduced viral mRNA levels, protein levels, and viral titers. Mechanistically, Type I interferon (IFN) response signaling is upregulated during IAV infection by GRP78. Further study showed that GRP78 interacts with tyrosine kinase 2 (TYK2) and enhances its phosphorylation, thereby activating downstream STAT1/2 and antiviral IFN-stimulated gene (ISG) expression. Collectively, these results demonstrate an important mechanism by which GRP78 exerts in innate antiviral effect in IAV infection. This mechanism could be used as a therapeutic target for anti-influenza treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Kanghong Chen
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Wenjiao Wu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Zefen Pang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dandong Zhu
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Xiukui Yan
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Bangqi Wang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| | - Jianxiang Qiu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| | - Zhixin Fang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
13
|
Islam MN, Ebara F, Kawasaki K, Konno T, Tatemoto H, Yamanaka KI. Attenuation of endoplasmic reticulum stress improves invitro growth and subsequent maturation of bovine oocytes. Theriogenology 2024; 228:54-63. [PMID: 39096624 DOI: 10.1016/j.theriogenology.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Endoplasmic reticulum (ER) stress interferes with developmental processes in oocyte maturation and embryo development. Invitro growth (IVG) is associated with low developmental competence, and ER stress during IVG culture may play a role. Therefore, this study aimed to examine the effect of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, on the IVG of bovine oocytes to understand the role of ER stress. Oocyte-granulosa cell complexes (OGCs) were collected from early antral follicles (1.5-1.8 mm) and allowed to grow in vitro for 5 days at 38.5 °C in a humidified atmosphere containing 5 % CO2. Basic growth culture medium was supplemented with TUDCA at various concentrations (0, 50, 100, 250, and 500 μM). After IVG, oocyte diameters were similar among groups, but the antrum formation rate tended to be higher in the TUDCA 100 μM group. The mRNA expression levels of ER stress-associated genes (PERK, ATF6, ATF4, CHOP, BAX, IRE1, and XBP1) in OGCs were downregulated in the TUDCA 100 μM group than those in the control group. Moreover, the TUDCA 100 μM group exhibited reduced ROS production with higher GSH levels and improved in vitro-grown oocyte maturation compared with those in the control group. In contrast, no difference in the developmental competence of embryos following invitro fertilization was observed between the control and TUDCA 100 μM groups. These results indicate that ER stress could impair IVG and subsequent maturation rate of bovine oocytes, and TUDCA could alleviate these detrimental effects. These outcomes might improve the quality of oocytes in IVG culture in assisted reproductive technology.
Collapse
Affiliation(s)
- Md Nuronnabi Islam
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Fumio Ebara
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | - Kokoro Kawasaki
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Toshihiro Konno
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Hideki Tatemoto
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ken-Ichi Yamanaka
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
14
|
Wang Y, Li YJ, Li CC, Pu L, Geng WL, Gao F, Zhang Q. GRP78 mediates mitochondrial fusion and fission in cigarette smoke-induced inflammatory responses in airway epithelial cells. Inhal Toxicol 2024; 36:511-520. [PMID: 39565149 DOI: 10.1080/08958378.2024.2428163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation, with cigarette smoke being a major contributor to epithelial injury. Recent studies have shown that abnormal mitochondrial function is closely linked to the onset and progression of airway inflammation. This study aims to explore the role and underlying molecular mechanisms of mitochondrial dynamics in cigarette smoke-induced airway inflammation. MATERIALS AND METHODS Human bronchial epithelial (HBE) cells were exposed to cigarette smoke extract (CSE) to assess the expression of mitochondrial fusion markers MFN2 and OPA1, the fission marker DRP1, and the glucose-regulated protein GRP78. The siRNA and pharmaceutics targeting DRP1, MFN2, and GRP78 were employed. Both cells and supernatants were analyzed for inflammatory factor levels and the related signaling pathways. RESULTS In this study, HBE cells exposed to CSE showed a significant decrease in the proteins MFN2 and OPA1 and an increase in DRP1. The inhibition of DRP1 expression mitigated inflammation while silencing MFN2 exacerbated it. This was similarly corroborated by the use of the DRP1 inhibitor mdivi-1 and the MFN2 activator leflunomide. Additionally, we proved that GRP78 played an important regulatory role as an essential endoplasmic reticulum protein, regulating the mitochondrial fusion/fission process and subsequently activating the NF-κB pathway to regulate airway inflammation. DISCUSSION AND CONCLUSION Taken together, these results suggested that the GRP78-mediated mitochondrial fusion and fission process played a vital role in cigarette smoke-induced airway inflammation and might be a potential therapeutic target in this regard.
Collapse
Affiliation(s)
- Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ya-Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Pu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qing Zhang
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
15
|
Ha DP, Shin WJ, Liu Z, Doche ME, Lau R, Leli NM, Conn CS, Russo M, Lorenzato A, Koumenis C, Yu M, Mumenthaler SM, Lee AS. Targeting stress induction of GRP78 by cardiac glycoside oleandrin dually suppresses cancer and COVID-19. Cell Biosci 2024; 14:115. [PMID: 39238058 PMCID: PMC11378597 DOI: 10.1186/s13578-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, 34987, USA
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael E Doche
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Roy Lau
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariangela Russo
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Annalisa Lorenzato
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Constantinos Koumenis
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Min Yu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shannon M Mumenthaler
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
16
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
17
|
Yamamoto V, Ha DP, Liu Z, Huang M, Samanta S, Neamati N, Lee AS. GRP78 inhibitor YUM70 upregulates 4E-BP1 and suppresses c-MYC expression and viability of oncogenic c-MYC tumors. Neoplasia 2024; 55:101020. [PMID: 38991376 PMCID: PMC11294750 DOI: 10.1016/j.neo.2024.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Miller Huang
- Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
18
|
Bhattacharya A, Chatterji U. Exosomal misfolded proteins released by cancer stem cells: dual functions in balancing protein homeostasis and orchestrating tumor progression. Discov Oncol 2024; 15:392. [PMID: 39215782 PMCID: PMC11365921 DOI: 10.1007/s12672-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs), the master regulators of tumor heterogeneity and progression, exert profound influence on cancer metastasis, via various secretory vesicles. Emerging from CSCs, the exosomes serve as pivotal mediators of intercellular communication within the tumor microenvironment, modulating invasion, angiogenesis, and immune responses. Moreover, CSC-derived exosomes play a central role in sculpting a dynamic landscape, contributing to the malignant phenotype. Amidst several exosomal cargoes, misfolded proteins have recently gained attention for their dual functions in maintaining protein homeostasis and promoting tumor progression. Disrupting these communication pathways could potentially prevent the maintenance and expansion of CSCs, overcome treatment resistance, and inhibit the supportive environment created by the tumor microenvironment, thereby improving the effectiveness of cancer therapies and reducing the risk of tumor recurrence and metastasis. Additionally, exosomes have also shown potential therapeutic applications, such as in drug delivery or as biomarkers for cancer diagnosis and prognosis. Therefore, comprehending the biology of exosomes derived from CSCs is a multifaceted area of research with implications in both basic sciences and clinical applications. This review explores the intricate interplay between exosomal misfolded proteins released by CSCs, the potent contributor in tumor heterogeneity, and their impact on cellular processes, shedding light on their role in cancer progression.
Collapse
Affiliation(s)
- Anuran Bhattacharya
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
19
|
Zhang J, Zhao Y, Gong N. Endoplasmic reticulum stress signaling modulates ischemia/reperfusion injury in the aged heart by regulating mitochondrial maintenance. Mol Med 2024; 30:107. [PMID: 39044180 PMCID: PMC11265325 DOI: 10.1186/s10020-024-00869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Aging is associated with an increased risk of myocardial ischemia/reperfusion injury (IRI). With an increasing prevalence of cardiovascular diseases such as coronary arteriosclerosis in older people, there has been increasing interest in understanding the mechanisms of myocardial IRI to develop therapeutics that can attenuate its damaging effects. Previous studies identified that abnormal mitochondria, involved in cellar senescence and oxidative stress, are the master subcellular organelle that induces IRI. In addition, endoplasmic reticulum (ER) stress is also associated with IRI. Cellular adaptation to ER stress is achieved by the activation of ER molecular chaperones and folding enzymes, which provide an important link between ER stress and oxidative stress gene programs. In this review, we outline how these ER stress-related molecules affect myocardial IRI via the crosstalk of ER stress and mitochondrial homeostasis and discuss how these may offer promising novel therapeutic targets and strategies against age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, 230022, P.R. China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
20
|
Nakatsuka A, Yamaguchi S, Wada J. GRP78 Contributes to the Beneficial Effects of SGLT2 Inhibitor on Proximal Tubular Cells in DKD. Diabetes 2024; 73:763-779. [PMID: 38394641 DOI: 10.2337/db23-0581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
The beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on kidney function are well-known; however, their molecular mechanisms are not fully understood. We focused on 78-kDa glucose-regulated protein (GRP78) and its interaction with SGLT2 and integrin-β1 beyond the chaperone property of GRP78. In streptozotocin (STZ)-induced diabetic mouse kidneys, GRP78, SGLT2, and integrin-β1 increased in the plasma membrane fraction, while they were suppressed by canagliflozin. The altered subcellular localization of GRP78/integrin-β1 in STZ mice promoted epithelial mesenchymal transition (EMT) and fibrosis, which were mitigated by canagliflozin. High-glucose conditions reduced intracellular GRP78, increased its secretion, and caused EMT-like changes in cultured HK2 cells, which were again inhibited by canagliflozin. Urinary GRP78 increased in STZ mice, and in vitro experiments with recombinant GRP78 suggested that inflammation spread to surrounding tubular cells and that canagliflozin reversed this effect. Under normal glucose culture, canagliflozin maintained sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) activity, promoted ER robustness, reduced ER stress response impairment, and protected proximal tubular cells. In conclusion, canagliflozin restored subcellular localization of GRP78, SGLT2, and integrin-β1 and inhibited EMT and fibrosis in DKD. In nondiabetic chronic kidney disease, canagliflozin promoted ER robustness by maintaining SERCA activity and preventing ER stress response failure, and it contributed to tubular protection. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Atsuko Nakatsuka
- Division of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital, Okayama, Japan
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
21
|
Ruparelia AA, Montandon M, Merriner J, Huang C, Wong SFL, Sonntag C, Hardee JP, Lynch GS, Miles LB, Siegel A, Hall TE, Schittenhelm RB, Currie PD. Atrogin-1 promotes muscle homeostasis by regulating levels of endoplasmic reticulum chaperone BiP. JCI Insight 2024; 9:e167578. [PMID: 38530354 PMCID: PMC11141880 DOI: 10.1172/jci.insight.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
Skeletal muscle wasting results from numerous pathological conditions affecting both the musculoskeletal and nervous systems. A unifying feature of these pathologies is the upregulation of members of the E3 ubiquitin ligase family, resulting in increased proteolytic degradation of target proteins. Despite the critical role of E3 ubiquitin ligases in regulating muscle mass, the specific proteins they target for degradation and the mechanisms by which they regulate skeletal muscle homeostasis remain ill-defined. Here, using zebrafish loss-of-function models combined with in vivo cell biology and proteomic approaches, we reveal a role of atrogin-1 in regulating the levels of the endoplasmic reticulum chaperone BiP. Loss of atrogin-1 resulted in an accumulation of BiP, leading to impaired mitochondrial dynamics and a subsequent loss in muscle fiber integrity. We further implicated a disruption in atrogin-1-mediated BiP regulation in the pathogenesis of Duchenne muscular dystrophy. We revealed that BiP was not only upregulated in Duchenne muscular dystrophy, but its inhibition using pharmacological strategies, or by upregulating atrogin-1, significantly ameliorated pathology in a zebrafish model of Duchenne muscular dystrophy. Collectively, our data implicate atrogin-1 and BiP in the pathogenesis of Duchenne muscular dystrophy and highlight atrogin-1's essential role in maintaining muscle homeostasis.
Collapse
Affiliation(s)
- Avnika A. Ruparelia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, and
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jo Merriner
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Siew Fen Lisa Wong
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Justin P. Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lee B. Miles
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Ashley Siegel
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Thomas E. Hall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Noubissi FK, Odubanjo OV, Ogle BM, Tchounwou PB. Mechanisms of Cell Fusion in Cancer. Results Probl Cell Differ 2024; 71:407-432. [PMID: 37996688 PMCID: PMC10893907 DOI: 10.1007/978-3-031-37936-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.
Collapse
Affiliation(s)
- Felicite K Noubissi
- Department of Biology, Jackson State University, Jackson, MS, USA.
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA.
| | - Oluwatoyin V Odubanjo
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Paul B Tchounwou
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| |
Collapse
|
23
|
Han J, Jia D, Yao H, Xu C, Huan Z, Jin H, Ge X. GRP78 improves the therapeutic effect of mesenchymal stem cells on hemorrhagic shock-induced liver injury: Involvement of the NF-кB and HO-1/Nrf-2 pathways. FASEB J 2024; 38:e23334. [PMID: 38050647 DOI: 10.1096/fj.202301456rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration. This study aims to examine whether GRP78 overexpression improves the efficacy of rat bone marrow-derived MSCs (rBMSCs) in HS-induced liver damage. Bone marrow was isolated from the femurs and tibias of rats. rBMSCs were transfected with a GFP-labeled GRP78 expression vector. Flow cytometry, transwell invasion assay, scratch assay immunoblotting, TUNEL assay, MTT assay, and ELISA were carried out. The results showed that GRP78 overexpression enhanced the migration and invasion of rBMSCs. Moreover, GRP78-overexpressing rBMSCs relieved liver damage, repressed liver oxidative stress, and inhibited apoptosis. We found that overexpression of GRP78 in rBMSCs inhibited activation of the NLRP3 inflammasome, significantly decreased the levels of inflammatory factors, and decreased the expression of CD68. Notably, GRP78 overexpression activated the Nrf-2/HO-1 pathway and inhibited the NF-κB pathway. High expression of GRP78 efficiently enhanced the effect of rBMSC therapy. GRP78 may be a potential target to improve the therapeutic efficacy of BMSCs.
Collapse
Affiliation(s)
- Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Di Jia
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Hao Yao
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Ce Xu
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
- Orthopedic Institution of Wuxi City, Wuxi, People's Republic of China
| |
Collapse
|
24
|
Wang S, Wei W, Yuan Y, Guo J, Liang D, Zhao X. Cell-Surface GRP78-Targeted Chimeric Antigen Receptor T Cells Eliminate Lung Cancer Tumor Xenografts. Int J Mol Sci 2024; 25:564. [PMID: 38203736 PMCID: PMC10779323 DOI: 10.3390/ijms25010564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is one of the most common and intractable malignancies. It is associated with low survival rates despite existing treatments, indicating that new and more effective therapies are urgently needed such as the chimeric antigen receptor-T (CAR-T) cell immunotherapy. The cell-surface glucose-regulated protein 78 (csGRP78) is expressed in various hematological malignancies and solid tumor cells including lung cancer in response to cancer-related endoplasmic reticulum stress, while GRP78 is restricted to inside the normal cells. Here, we detected the prominent expression of csGRP78 in both lung cancer cell lines, A549 and H1299, as well as cancer stemlike cells derived from A549 by immunofluorescence. Next, a csGRP78-targeted CAR was constructed, and the transduced CAR-T cells were tested for their potency to kill the two lung cancer cell lines and derived stemlike cells, which was correlated with specific interferon γ release in vitro. Finally, we found that csGRP78 CAR-T cells also efficiently killed both lung cancer cells and cancer stemlike cells, resulting into the elimination of tumor xenografts in vivo, neither with any evidence of relapse after 63 days of tumor clearance nor any detrimental impact on other body organs we examined. Our study reveals the capacity of csGRP78 as a therapeutic target and offers valuable insight into the development of csGRP78 CAR-T cells as potential therapy for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.W.); (Y.Y.); (J.G.); (D.L.)
| |
Collapse
|
25
|
Zhao T, Jiang T, Li X, Chang S, Sun Q, Kong F, Kong X, Wei F, He J, Hao J, Xie K. Nuclear GRP78 Promotes Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2023; 29:5183-5195. [PMID: 37819952 DOI: 10.1158/1078-0432.ccr-23-1143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Stromal fibrosis limits nutritional supply and disarrays metabolism in pancreatic cancer (PDA, pancreatic ductal adenocarcinoma). Understanding of the molecular basis underlying metabolic cues would improve PDA management. The current study determined the interaction between glucose-regulated proteins 78 (GRP78) and hypoxia-inducible factor 1α (HIF-1α) and its mechanistic roles underlying PDA response to oxygen and glucose restrains. EXPERIMENTAL DESIGN Gene expression and its association with clinicopathologic characteristics of patients with PDA and mouse models were analyzed using IHC. Protein expression and their regulation were measured by Western blot and immunoprecipitation analyses. Protein interactions were determined using gain- and loss-of-function assays and molecular methods, including chromatin immunoprecipitation, co-immunoprecipitation, and dual luciferase reporter. RESULTS There was concomitant overexpression of both GRP78 and HIF-1α in human and mouse PDA tissues and cells. Glucose deprivation increased the expression of GRP78 and HIF-1α, particularly colocalization in nucleus. Induction of HIF-1α expression by glucose deprivation in PDA cells depended on the expression of and its own interaction with GRP78. Mechanistically, increased expression of both HIF-1α and LDHA under glucose deprivation was caused by the direct binding of GRP78 and HIF-1α protein complexes to the promoters of HIF-1α and LDHA genes and transactivation of their transcriptional activity. CONCLUSIONS Protein complex of GRP78 and HIF-1α directly binds to HIF-1α own promoter and LDHA promoter, enhances the transcription of both HIF-1α and LDHA, whereas glucose deprivation increases GRP78 expression and further enhances HIF-1α and LDHA transcription. Therefore, crosstalk and integration of hypoxia- and hypoglycemia-responsive signaling critically impact PDA metabolic reprogramming and therapeutic resistance.
Collapse
Affiliation(s)
- Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Shaofei Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qihui Sun
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Fanyang Kong
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Fang Wei
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
- The South China University of Technology Comprehensive Cancer Center, Guangzhou, China
| |
Collapse
|
26
|
Lefort B, Gélinas R, Forest A, Bouchard B, Daneault C, Robillard Frayne I, Roy J, Oger C, Greffard K, Galano JM, Durand T, Labarthe F, Bilodeau JF, Ruiz M, Des Rosiers C. Remodeling of lipid landscape in high fat fed very-long chain acyl-CoA dehydrogenase null mice favors pro-arrhythmic polyunsaturated fatty acids and their downstream metabolites. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166843. [PMID: 37558007 DOI: 10.1016/j.bbadis.2023.166843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Very-long chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial step of mitochondrial long chain (LC) fatty acid β-oxidation (FAO). Inherited VLCAD deficiency (VLCADD) predisposes to neonatal arrhythmias whose pathophysiology is still not understood. We hypothesized that VLCADD results in global disruption of cardiac complex lipid homeostasis, which may set conditions predisposing to arrhythmia. To test this, we assessed the cardiac lipidome and related molecular markers in seven-month-old VLCAD-/- mice, which mimic to some extent the human cardiac phenotype. Mice were sacrificed in the fed or fasted state after receiving for two weeks a chow or a high-fat diet (HFD), the latter condition being known to worsen symptoms in human VLCADD. Compared to their littermate counterparts, HFD/fasted VLCAD-/- mouse hearts displayed the following lipid alterations: (1) Lower LC, but higher VLC-acylcarnitines accumulation, (2) higher levels of arachidonic acid (AA) and lower docosahexaenoic acid (DHA) contents in glycerophospholipids (GPLs), as well as (3) corresponding changes in pro-arrhythmogenic AA-derived isoprostanes and thromboxane B2 (higher), and anti-arrythmogenic DHA-derived neuroprostanes (lower). These changes were associated with remodeling in the expression of gene or protein markers of (1) GPLs remodeling: higher calcium-dependent phospholipase A2 and lysophosphatidylcholine-acyltransferase 2, (2) calcium handling perturbations, and (3) endoplasmic reticulum stress. Altogether, these results highlight global lipid dyshomeostasis beyond FAO in VLCAD-/- mouse hearts, which may set conditions predisposing the hearts to calcium mishandling and endoplasmic reticulum stress and thereby may contribute to the pathogenesis of arrhythmias in VLCADD in mice as well as in humans.
Collapse
Affiliation(s)
- Bruno Lefort
- Montreal Heart Institute Research Centre, Montreal, Canada; Institut des Cardiopathies Congénitales de Tours et FHU Precicare, CHU Tours, Tours, France; INSERM UMR 1069 et Université François Rabelais, Tours, France
| | - Roselle Gélinas
- Montreal Heart Institute Research Centre, Montreal, Canada; Present address: CHU Ste-Justine Research Center, Montreal, Quebec, Canada
| | - Anik Forest
- Montreal Heart Institute Research Centre, Montreal, Canada
| | | | | | | | - Jérôme Roy
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France; INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Karine Greffard
- Axe endocrinologie et néphrologie, CHU de Québec, Université Laval, Québec, Canada
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jean-François Bilodeau
- Axe endocrinologie et néphrologie, CHU de Québec, Université Laval, Québec, Canada; Department of Nutrition, Faculty of medicine, Université Laval, Quebec, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute Research Centre, Montreal, Canada; Department of Nutrition, Faculty of medicine, Université de Montréal, Montreal, Canada.
| | - Christine Des Rosiers
- Montreal Heart Institute Research Centre, Montreal, Canada; Department of Nutrition, Faculty of medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
27
|
Zare H, Bakherad H, Nasr Esfahani A, Norouzi M, Aghamollaei H, Mousavi Gargari SL, Mahmoodi F, Aliomrani M, Ebrahimizadeh W. Introduction of a new recombinant vaccine based on GRP78 for breast cancer immunotherapy and evaluation in a mouse model. BIOIMPACTS : BI 2023; 14:27829. [PMID: 38505675 PMCID: PMC10945302 DOI: 10.34172/bi.2023.27829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/04/2023] [Accepted: 07/29/2023] [Indexed: 03/21/2024]
Abstract
Introduction Breast cancer is one of the most prevalent malignancies in women. Several treatment options are available today, including surgery, chemotherapy, and radiotherapy. Immunotherapy, as a highly specific therapy, involves adaptive immune responses and immunological memory. In our present research, we used the recombinant C-terminal domain of the GRP78 (glucose- regulated protein 78) protein to induce an immune response and investigate its therapeutic impact in the 4T1 breast cancer model. Methods BALB/c mice were immunized with the cGRP78 protein. The humoral immune response was assessed by ELISA. Then, BALB/c mice were injected subcutaneously with 1×106 4T1 tumor cells. Subsequently, tumor size and survival rate measurements, MTT, and cytokine assays were performed. Results The animals receiving the cGRP78 vaccine showed significantly more favorable survival and slower tumor growth rates compared with unvaccinated tumor-bearing mice as the negative control mice. Circulating levels of tumoricidal cytokines such as IFNγ were higher, whereas tolerogenic cytokines such as IL-2, 6, and 10 either did not increase or had a decreasing trend in mice receiving cGRP78. Conclusion cGRP78 vaccines generated potent immunotherapeutic effects in a breast cancer mouse model. This novel strategy of targeting the GRP78 protein can promote the development of cancer vaccines and immunotherapies for breast cancer malignancies.
Collapse
Affiliation(s)
- Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Nasr Esfahani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Norouzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Mahmoodi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mahdi Aliomrani
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Science Research Center, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Walead Ebrahimizadeh
- Department of Surgery, Division of Urology, McGill University, and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| |
Collapse
|
28
|
Yun R, Hong E, Kim J, Park B, Kim SJ, Lee B, Song YS, Kim SJ, Park S, Kang JM. N-linked glycosylation is essential for anti-tumor activities of KIAA1324 in gastric cancer. Cell Death Dis 2023; 14:546. [PMID: 37612293 PMCID: PMC10447535 DOI: 10.1038/s41419-023-06083-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
KIAA1324 is a transmembrane protein largely reported as a tumor suppressor and favorable prognosis marker in various cancers, including gastric cancer. In this study, we report the role of N-linked glycosylation in KIAA1324 as a functional post-translational modification (PTM). Loss of N-linked glycosylation eliminated the potential of KIAA1324 to suppress cancer cell proliferation and migration. Furthermore, we demonstrated that KIAA1324 undergoes fucosylation, a modification of the N-glycan mediated by fucosyltransferase, and inhibition of fucosylation also significantly suppressed KIAA1324-induced cell growth inhibition and apoptosis of gastric cancer cells. In addition, KIAA1324-mediated apoptosis and tumor regression were inhibited by the loss of N-linked glycosylation. RNA sequencing (RNAseq) analysis revealed that genes most relevant to the apoptosis and cell cycle arrest pathways were modulated by KIAA1324 with the N-linked glycosylation, and Gene Regulatory Network (GRN) analysis suggested novel targets of KIAA1324 for anti-tumor effects in the transcription level. The N-linked glycosylation blockade decreased protein stability through rapid proteasomal degradation. The non-glycosylated mutant also showed altered localization and lost apoptotic activity that inhibits the interaction between GRP78 and caspase 7. These data demonstrate that N-linked glycosylation of KIAA1324 is essential for the suppressive role of KIAA1324 protein in gastric cancer progression and indicates that KIAA1324 may have anti-tumor effects by targeting cancer-related genes with N-linked glycosylation. In conclusion, our study suggests the PTM of KIAA1324 including N-linked glycosylation and fucosylation is a necessary factor to consider for cancer prognosis and therapy improvement.
Collapse
Affiliation(s)
- Rebecca Yun
- GILO Institute, GILO Foundation, Seoul, 06668, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eunji Hong
- GILO Institute, GILO Foundation, Seoul, 06668, Republic of Korea
- Department of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Bora Park
- WellSpan York Hospital Family Medicine Residency Program, York, PA, USA
| | - Staci Jakyong Kim
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bona Lee
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Republic of Korea
- Medpacto Inc., Seoul, 06668, Republic of Korea
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, 06668, Republic of Korea.
| | - Jin Muk Kang
- Department of Pediatric Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
29
|
Khater I, Nassar A. A computational peptide model induces cancer cells' apoptosis by docking Kringle 5 to GRP78. BMC Mol Cell Biol 2023; 24:25. [PMID: 37553635 PMCID: PMC10408047 DOI: 10.1186/s12860-023-00484-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Cells can die through a process called apoptosis in both pathological and healthy conditions. Cancer development and progression may result from abnormal apoptosis. The 78-kDa glucose-regulated protein (GRP78) is increased on the surface of cancer cells. Kringle 5, a cell apoptosis agent, is bound to GRP78 to induce cancer cell apoptosis. Kringle 5 was docked to GRP78 using ClusPro 2.0. The interaction between Kringle 5 and GRP78 was investigated. RESULTS The interacting amino acids were found to be localized in three areas of Kringle 5. The proposed peptide is made up of secondary structure amino acids that contain Kringle 5 interaction residues. The 3D structure of the peptide model amino acids was created using the PEP-FOLD3 web tool. CONCLUSIONS The proposed peptide completely binds to the GRP78 binding site on the Kringle 5, signaling that it might be effective in the apoptosis of cancer cells.
Collapse
Affiliation(s)
- Ibrahim Khater
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aaya Nassar
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, George Washington University, Washington DC, USA.
| |
Collapse
|
30
|
Vidal CM, Ouyang C, Qi Y, Mendez-Dorantes C, Coblentz A, Alva-Ornelas JA, Stark JM, Seewaldt VL, Ann DK. Arginine regulates HSPA5/BiP translation through ribosome pausing in triple-negative breast cancer cells. Br J Cancer 2023; 129:444-454. [PMID: 37386138 PMCID: PMC10403569 DOI: 10.1038/s41416-023-02322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a high mortality rate due to a lack of therapeutic targets. Many TNBC cells are reliant on extracellular arginine for survival and express high levels of binding immunoglobin protein (BiP), a marker of metastasis and endoplasmic reticulum (ER) stress response. METHODS In this study, the effect of arginine shortage on BiP expression in the TNBC cell line MDA-MB-231 was evaluated. Two stable cell lines were generated in MDA-MB-231 cells: the first expressed wild-type BiP, and the second expressed a mutated BiP free of the two arginine pause-site codons, CCU and CGU, termed G-BiP. RESULTS The results showed that arginine shortage induced a non-canonical ER stress response by inhibiting BiP translation via ribosome pausing. Overexpression of G-BiP in MDA-MB-231 cells promoted cell resistance to arginine shortage compared to cells overexpressing wild-type BiP. Additionally, limiting arginine led to decreased levels of the spliced XBP1 in the G-BiP overexpressing cells, potentially contributing to their improved survival compared to the parental WT BiP overexpressing cells. CONCLUSION In conclusion, these findings suggest that the downregulation of BiP disrupts proteostasis during arginine shortage-induced non-canonical ER stress and plays a key role in cell growth inhibition, indicating BiP as a target of codon-specific ribosome pausing upon arginine shortage.
Collapse
Affiliation(s)
- Christina M Vidal
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Carlos Mendez-Dorantes
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Alaysia Coblentz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jackelyn A Alva-Ornelas
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jeremy M Stark
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Victoria L Seewaldt
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
31
|
Liu Z, Liu G, Ha DP, Wang J, Xiong M, Lee AS. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc Natl Acad Sci U S A 2023; 120:e2303448120. [PMID: 37487081 PMCID: PMC10400976 DOI: 10.1073/pnas.2303448120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023] Open
Abstract
Cancer cells are commonly subjected to endoplasmic reticulum (ER) stress. To gain survival advantage, cancer cells exploit the adaptive aspects of the unfolded protein response such as upregulation of the ER luminal chaperone GRP78. The finding that when overexpressed, GRP78 can escape to other cellular compartments to gain new functions regulating homeostasis and tumorigenesis represents a paradigm shift. Here, toward deciphering the mechanisms whereby GRP78 knockdown suppresses EGFR transcription, we find that nuclear GRP78 is prominent in cancer and stressed cells and uncover a nuclear localization signal critical for its translocation and nuclear activity. Furthermore, nuclear GRP78 can regulate expression of genes and pathways, notably those important for cell migration and invasion, by interacting with and inhibiting the activity of the transcriptional repressor ID2. Our study reveals a mechanism for cancer cells to respond to ER stress via transcriptional regulation mediated by nuclear GRP78 to adopt an invasive phenotype.
Collapse
Affiliation(s)
- Ze Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Guanlin Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Dat P. Ha
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Justin Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA92037
| | - Min Xiong
- Department of System Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Amy S. Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
32
|
Wang S, Wei W, Yuan Y, Sun B, Yang D, Liu N, Zhao X. Chimeric antigen receptor T cells targeting cell surface GRP78 efficiently kill glioblastoma and cancer stem cells. J Transl Med 2023; 21:493. [PMID: 37481592 PMCID: PMC10362566 DOI: 10.1186/s12967-023-04330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is recognized as among the most aggressive forms of brain tumor. Patients typically present with a five-year survival rate of less than 6% with traditional surgery and chemoradiotherapy, which calls for novel immunotherapies like chimeric antigen receptor T (CAR-T) cells therapy. In response to endoplasmic reticulum (ER) stress in multiple tumor cells including GBM, the glucose-regulated protein 78 (GRP78) expression increases and the protein is partially translocated to the cell surface, while it is restricted to the cytoplasm and the nucleus in normal cells. METHODS In this study, to target the cell surface GRP78 (csGRP78), CAR-T cells based on its binding peptide were generated. In vitro two GBM cell lines and glioma stem cells (GSCs) were used to confirm the localization of csGRP78 and the cytotoxicity of the CAR-T cells. In vivo a GBM xenograft model was used to assess the killing activity and the safety of the CAR-T cells. RESULTS We confirmed the localization of csGRP78 at the cell surface of two GBM cell lines (U-251MG and U-87MG) and in GSCs. Co-culture experiments revealed that the CAR-T cells could specifically kill the GBM tumor cells and GSCs with specific IFN-γ release. Furthermore, in the tumor xenograft model, the CAR-T cells could decrease the number of GSCs and significantly suppress tumor cell growth. Importantly, we found no obvious off-target effects or T cell infiltration in major organs following systemic administration of these cells. CONCLUSIONS The csGRP78 targeted CAR-T cells efficiently kill GBM tumor cells and GSCs both in vitro and in vivo, and ultimately suppress the xenograft tumors growth without obvious tissue injuries. Therefore, our study demonstrates that csGRP78 represents a valuable target and the csGRP78-targeted CAR-T cells strategy is an effective immunotherapy against GBM.
Collapse
Affiliation(s)
- Shijie Wang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yuan
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Liu
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Modi JP, Shen W, Menzie-Suderam J, Xu H, Lin CH, Tao R, Prentice HM, Schloss J, Wu JY. The Role of NMDA Receptor Partial Antagonist, Carbamathione, as a Therapeutic Agent for Transient Global Ischemia. Biomedicines 2023; 11:1885. [PMID: 37509524 PMCID: PMC10377037 DOI: 10.3390/biomedicines11071885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Carbamathione (Carb), an NMDA glutamate receptor partial antagonist, has potent neuroprotective functions against hypoxia- or ischemia-induced neuronal injury in cell- or animal-based stroke models. We used PC-12 cell cultures as a cell-based model and bilateral carotid artery occlusion (BCAO) for stroke. Whole-cell patch clamp recording in the mouse retinal ganglion cells was performed. Key proteins involved in apoptosis, endoplasmic reticulum (ER) stress, and heat shock proteins were analyzed using immunoblotting. Carb is effective in protecting PC12 cells against glutamate- or hypoxia-induced cell injury. Electrophysiological results show that Carb attenuates NMDA-mediated glutamate currents in the retinal ganglion cells, which results in activation of the AKT signaling pathway and increased expression of pro-cell survival biomarkers, e.g., Hsp 27, P-AKT, and Bcl2 and decreased expression of pro-cell death markers, e.g., Beclin 1, Bax, and Cleaved caspase 3, and ER stress markers, e.g., CHOP, IRE1, XBP1, ATF 4, and eIF2α. Using the BCAO animal stroke model, we found that Carb reduced the brain infarct volume and decreased levels of ER stress markers, GRP 78, CHOP, and at the behavioral level, e.g., a decrease in asymmetric turns and an increase in locomotor activity. These findings for Carb provide promising and rational strategies for stroke therapy.
Collapse
Affiliation(s)
- Jigar Pravinchandra Modi
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wen Shen
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Janet Menzie-Suderam
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Hongyuan Xu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Chun-Hua Lin
- Department of Nursing, Kang-Ning University, Taipei 11485, Taiwan
| | - Rui Tao
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Howard M Prentice
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - John Schloss
- Department of Pharmaceutical Science, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Jang-Yen Wu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
34
|
Zhang Y, Du T, Liu N, Wang J, Zhang L, Cui CP, Li C, Zhang X, Wu B, Zhang J, Jiang W, Zhang Y, Zhang Y, Li H, Li P. Discovery of an OTUD3 inhibitor for the treatment of non-small cell lung cancer. Cell Death Dis 2023; 14:378. [PMID: 37369659 DOI: 10.1038/s41419-023-05900-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
The ubiquitin-proteasome system (UPS) controls protein turnover, and its dysfunction contributes to human diseases including cancer. Deubiquitinating enzymes (DUBs) remove ubiquitin from proteins to maintain their stability. Inhibition of DUBs could induce the degradation of selected oncoproteins and has therefore become a potential therapeutic strategy for cancer. The deubiquitylase OTUD3 was reported to promote lung tumorigenesis by stabilizing oncoprotein GRP78, implying that inhibition of OTUD3 may be a therapeutic strategy for lung cancer. Here, we report a small-molecule inhibitor of OTUD3 (named OTUDin3) by computer-aided virtual screening and biological experimental verification. OTUDin3 exhibited pronounced antiproliferative and proapoptotic effects by inhibiting deubiquitinating activity of OTUD3 in non-small-cell lung cancer (NSCLC) cell lines. Moreover, OTUDin3 efficaciously inhibited growth of lung cancer xenografts in mice. In summary, our results support OTUDin3 as a potent inhibitor of OTUD3, the inhibition of which may be a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Yonghui Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tongde Du
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215000, China
| | - Na Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Juan Wang
- Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, 215123, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Chaonan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Xin Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
- Department of Cell Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Jinhao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
- Department of Cell Biology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Wenli Jiang
- School of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yubing Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
- Department of Cell Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuting Zhang
- School of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Hongchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| | - Peiyu Li
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
35
|
Amaresan R, Gopal U. Cell surface GRP78: a potential mechanism of therapeutic resistant tumors. Cancer Cell Int 2023; 23:100. [PMID: 37221596 DOI: 10.1186/s12935-023-02931-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
GRP78 is a protein that acts as a chaperone within the endoplasmic reticulum (ER) and has multiple functions. It is induced by stress and abets cells from survival. Despite, multiple Stress conditions like ER, chronic psychological and nutritional stress, hypoxia, chemotherapy, radiation therapy, and drug resistance induce cell surface GRP78 (CS-GRP78) expression in cancer cells. Further, CS-GRP78 is associated with increased malignancy and resistance to anti-cancer therapies and is considered a high-value druggable target. Recent preclinical research suggests that targeting CS-GRP78 with anti-GRP78 monoclonal antibodies (Mab) in combination with other agents may be effective in reversing the failure of chemotherapy, radiotherapy, or targeted therapies and increasing the efficacy of solid tumors treatment. This article will review recent evidence on the role of CS-GRP78 in developing resistance to anti-cancer treatments and the potential benefits of combining anti-GRP78 Mab with other cancer therapies for specific patient populations. Furthermore, our limited understanding of how CS-GRP78 regulated in human studies is a major drawback for designing effective CS-GRP78-targeted therapies. Hence, more research is still warranted to translate these potential therapies into clinical applications.
Collapse
Affiliation(s)
- Rajalakshmi Amaresan
- Department of Zoology, Auxilium College, Gandhi Nagar, Vellore, 632 006, Tamil Nadu, India
| | - Udhayakumar Gopal
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
36
|
Ha DP, Shin WJ, Hernandez JC, Neamati N, Dubeau L, Machida K, Lee AS. GRP78 Inhibitor YUM70 Suppresses SARS-CoV-2 Viral Entry, Spike Protein Production and Ameliorates Lung Damage. Viruses 2023; 15:v15051118. [PMID: 37243204 DOI: 10.3390/v15051118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has given rise to many new variants with increased transmissibility and the ability to evade vaccine protection. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum (ER) chaperone that has been recently implicated as an essential host factor for SARS-CoV-2 entry and infection. In this study, we investigated the efficacy of YUM70, a small molecule inhibitor of GRP78, to block SARS-CoV-2 viral entry and infection in vitro and in vivo. Using human lung epithelial cells and pseudoviral particles carrying spike proteins from different SARS-CoV-2 variants, we found that YUM70 was equally effective at blocking viral entry mediated by original and variant spike proteins. Furthermore, YUM70 reduced SARS-CoV-2 infection without impacting cell viability in vitro and suppressed viral protein production following SARS-CoV-2 infection. Additionally, YUM70 rescued the cell viability of multi-cellular human lung and liver 3D organoids transfected with a SARS-CoV-2 replicon. Importantly, YUM70 treatment ameliorated lung damage in transgenic mice infected with SARS-CoV-2, which correlated with reduced weight loss and longer survival. Thus, GRP78 inhibition may be a promising approach to augment existing therapies to block SARS-CoV-2, its variants, and other viruses that utilize GRP78 for entry and infection.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Juan Carlos Hernandez
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Louis Dubeau
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
37
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
38
|
Benvenuto M, Angiolini V, Focaccetti C, Nardozi D, Palumbo C, Carrano R, Rufini A, Bei R, Miele MT, Mancini P, Barillari G, Cirone M, Ferretti E, Tundo GR, Mutti L, Masuelli L, Bei R. Antitumoral effects of Bortezomib in malignant mesothelioma: evidence of mild endoplasmic reticulum stress in vitro and activation of T cell response in vivo. Biol Direct 2023; 18:17. [PMID: 37069690 PMCID: PMC10111665 DOI: 10.1186/s13062-023-00374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a rare tumor with a dismal prognosis. The low efficacy of current treatment options highlights the urge to identify more effective therapies aimed at improving MM patients' survival. Bortezomib (Bor) is a specific and reversible inhibitor of the chymotrypsin-like activity of the 20S core of the proteasome, currently approved for the treatment of multiple myeloma and mantle cell lymphoma. On the other hand, Bor appears to have limited clinical effects on solid tumors, because of its low penetration and accumulation into tumor tissues following intravenous administration. These limitations could be overcome in MM through intracavitary delivery, with the advantage of increasing local drug concentration and decreasing systemic toxicity. METHODS In this study, we investigated the effects of Bor on cell survival, cell cycle distribution and modulation of apoptotic and pro-survival pathways in human MM cell lines of different histotypes cultured in vitro. Further, using a mouse MM cell line that reproducibly forms ascites when intraperitoneally injected in syngeneic C57BL/6 mice, we investigated the effects of intraperitoneal Bor administration in vivo on both tumor growth and the modulation of the tumor immune microenvironment. RESULTS We demonstrate that Bor inhibited MM cell growth and induced apoptosis. Further, Bor activated the Unfolded Protein Response, which however appeared to participate in lowering cells' sensitivity to the drug's cytotoxic effects. Bor also affected the expression of EGFR and ErbB2 and the activation of downstream pro-survival signaling effectors, including ERK1/2 and AKT. In vivo, Bor was able to suppress MM growth and extend mice survival. The Bor-mediated delay of tumor progression was sustained by increased activation of T lymphocytes recruited to the tumor microenvironment. CONCLUSIONS The results presented herein support the use of Bor in MM and advocate future studies aimed at defining the therapeutic potential of Bor and Bor-based combination regimens for this treatment-resistant, aggressive tumor.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Rufini
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Riccardo Bei
- Medical School, University of Rome "Tor Vergata", Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luciano Mutti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
39
|
Yeh CT, Weng SC, Tsao PN, Shiao SH. The chaperone BiP promotes dengue virus replication and mosquito vitellogenesis in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103930. [PMID: 36921733 DOI: 10.1016/j.ibmb.2023.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 05/10/2023]
Abstract
Binding immunoglobulin protein (BiP, also known as GRP78), a chaperone and master regulator of the unfolded protein response (UPR) pathway, plays an essential role in several flavivirus infections, but its functional role in regulating dengue virus replication in the mosquito remains largely unknown. We here demonstrated the interaction between a dengue virus serotype 2 (DENV2) and BiP in Aedes aegypti and report the discovery of a novel functional role of BiP in mosquito vitellogenesis. Silencing Ae. aegypti BiP (AaBiP) expression resulted in the significant inhibition of DENV2 viral genome replication, viral protein production, and infectious viral particle biogenesis. Co-immunoprecipitation assays showed that the DENV2 non-structural protein 1 (NS1) interacts with the AaBiP protein, and silencing AaBiP expression led to enhanced DENV2 NS1 aggregation, indicating that AaBiP plays a role in viral protein stability. A kinetic study focusing on pulse treatment of MG132, a proteasome inhibitor, in AaBiP-silenced mosquitoes showed that DENV2 NS1 was drastically elevated, which further suggests that AaBiP-mediated viral protein degradation is mediated by proteasomal machinery. Silencing of AaBiP also resulted in a reduction in mosquito fertility and fecundity. Depletion of AaBiP inhibited mosquito vitellogenesis due to the reduction of vitellogenin mRNA and elevated aggregation of vitellogenin protein post blood meal, further suppressing ovary development and fecundity. Overall, our results suggest that AaBiP is a dual-function protein with roles in both the regulation of dengue virus replication and mosquito reproduction. Our findings will be useful in the establishment of more efficient strategies for vector-borne disease control.
Collapse
Affiliation(s)
- Chun-Ting Yeh
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Burikhanov R, Ganguly S, Ellingson S, Sviripa VM, Araujo N, Li S, Venkatraman P, Rao M, Choughule A, Brainson CF, Zhan CG, Spielmann HP, Watt DS, Govindan R, Rangnekar VM. Crizotinib induces Par-4 secretion from normal cells and GRP78 expression on the cancer cell surface for selective tumor growth inhibition. Am J Cancer Res 2023; 13:976-991. [PMID: 37034206 PMCID: PMC10077052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Lung cancer cells develop resistance to apoptosis by suppressing the secretion of the tumor suppressor Par-4 protein (also known as PAWR) and/or down-modulating the Par-4 receptor GRP78 on the cell surface (csGRP78). We sought to identify FDA-approved drugs that elevate csGRP78 on the surface of lung cancer cells and induce Par-4 secretion from the cancer cells and/or normal cells in order to inhibit cancer growth in an autocrine or paracrine manner. In an unbiased screen, we identified crizotinib (CZT), an inhibitor of activated ALK/MET/ROS1 receptor tyrosine kinase, as an inducer of csGRP78 expression in ALK-negative, KRAS or EGFR mutant lung cancer cells. Elevation of csGRP78 in the lung cancer cells was dependent on activation of the non-receptor tyrosine kinase SRC by CZT. Inhibition of SRC activation in the cancer cells prevented csGRP78 translocation but promoted Par-4 secretion by CZT, implying that activated SRC prevented Par-4 secretion. In normal cells, CZT did not activate SRC and csGRP78 elevation but induced Par-4 secretion. Consequently, CZT induced Par-4 secretion from normal cells and elevated csGRP78 in the ALK-negative tumor cells to cause paracrine apoptosis in cancer cell cultures and growth inhibition of tumor xenografts in mice. Thus, CZT induces differential activation of SRC in normal and cancer cells to trigger the pro-apoptotic Par-4-GRP78 axis. As csGRP78 is a targetable receptor, CZT can be repurposed to elevate csGRP78 for inhibition of ALK-negative lung tumors.
Collapse
Affiliation(s)
- Ravshan Burikhanov
- Department of Radiation Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Saptadwipa Ganguly
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Sally Ellingson
- Department of Internal Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Vitaliy M Sviripa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, Kentucky, USA
| | - Nathalia Araujo
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Shunqiang Li
- Department of Medicine, Division of Oncology, Washington UniversitySt. Louis, Missouri, USA
| | - Prasanna Venkatraman
- Tata Memorial Centre-Advanced Centre for Treatment Research and Education in CancerNavi Mumbai, Maharashtra, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka, India
| | - Anuradha Choughule
- Tata Memorial Centre-Advanced Centre for Treatment Research and Education in CancerNavi Mumbai, Maharashtra, India
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
- Markey Cancer Center, University of KentuckyLexington, Kentucky, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, Kentucky, USA
| | - H Peter Spielmann
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Ramaswamy Govindan
- Department of Medicine, Division of Oncology, Washington UniversitySt. Louis, Missouri, USA
| | - Vivek M Rangnekar
- Department of Radiation Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
- Markey Cancer Center, University of KentuckyLexington, Kentucky, USA
| |
Collapse
|
41
|
Alhasan B, Mikeladze M, Guzhova I, Margulis B. Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence. Cancer Metastasis Rev 2023; 42:217-254. [PMID: 36723697 DOI: 10.1007/s10555-023-10085-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.
Collapse
Affiliation(s)
- Bashar Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Marina Mikeladze
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Irina Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Boris Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
42
|
Yao B, Wang L, Xie C, Li M, Peng C, Li Z, Lu W, Chen J. Biological evaluation of a novel stable peptide PET molecular probe [ 18F]AlF-NOTA- DVAP targeting to tumor cell surface GRP78. Nucl Med Biol 2023; 118-119:108330. [PMID: 36889247 DOI: 10.1016/j.nucmedbio.2023.108330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUNDS Glucose-Regulated Protein 78 (GRP78) is an attractive anticancer target for its selective anchoring on the surface of tumor cells and cancer endothelial cells rather than normal cells. Cell-surface GRP78 overexpression of tumor indicates that GRP78 is a crucial target for relative tumor imaging and clinical treatment. Herein, we report the design and preclinical evaluation of a new D peptide ligand [18F]AlF-NOTA-DVAP recognizing GRP78 expressed on the cell surface of breast cancer. METHODS Radiochemical synthesis of [18F]AlF-NOTA-DVAP was achieved via a one-pot labeling process by heating NOTA-DVAP in the presence of in situ prepared [18F]AlF for 15 min at 110 °C and purified through HPLC. RESULTS The radiotracer showed high in vitro stability in rat serum at 37 °C over 3 h. Both biodistribution studies and in vivo micro-PET/CT imaging studies in BALB/c mice bearing 4 T1 tumor showed [18F]AlF-NOTA-DVAP had a rapid and high uptake in tumor, as well as a long residence time. The high hydrophilicity of the radiotracer enables its fast clearance from most normal tissues and thus improves the tumor-to-normal tissue ratios (4.40 at 60 min) which is better than [18F]FDG (1.31 at 60 min). Pharmacokinetic studies showed the average in vivo mean residence time of the radiotracer was just 0.6432 h and indicated that this hydrophilic radiotracer was quickly eliminated from the body to reduce the distribution of non-target tissues. CONCLUSIONS These results suggest that [18F]AlF-NOTA-DVAP is a very promising PET probe for tumor-specific imaging of cell-surface GRP78-positive tumor.
Collapse
Affiliation(s)
- Bolin Yao
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Luting Wang
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Cao Xie
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Ming Li
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Chengyuan Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhuoyun Li
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Weiyue Lu
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Jian Chen
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
43
|
Glucose-Regulated Protein 78 Is a Potential Serum and Imaging Marker for Early Detection of Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15041140. [PMID: 36831486 PMCID: PMC9954741 DOI: 10.3390/cancers15041140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Understanding malignant transformation associated with ovarian cancer (OVCA) is important to establish early detection tests. This study examined whether expression of glucose-regulated protein 78 (GRP78, marker of cellular stress) increases during OVCA development, and whether GRP78 can be detected by targeted-transvaginal ultrasound (TVUS) imaging. METHODS Normal ovaries (n = 10), benign (n = 10) and malignant ovarian tumors at early (n = 8) and late stages (n = 16), hens with and without ovarian tumors at early and late stages (n = 10, each) were examined for GRP78 expression during OVCA development by immunohistochemistry, immunoblotting, gene expression and immunoassay. Feasibility of GRP78-targeted TVUS imaging in detecting early OVCA was examined. RESULTS Compared with normal ovaries and benign tumors, intensity of GRP78 expression was higher (p < 0.0001) in OVCA patients. Compared with normal (9007.76 ± 816.54 pg/mL), serum GRP78 levels were significantly higher (p < 0.05) in patients with early (12,730.59 ± 817.35 pg/mL) and late-stage OVCA (13,930.12 ± 202.35) (p < 0.01). Compared with normal (222.62 ± 181.69 pg/mL), serum GRP78 levels increased (p < 0.05) in hens with early (590.19 ± 198.18 pg/mL) and late-stage OVCA (1261.38 ± 372.85) (p < 0.01). Compared with non-targeted, GRP78-targeted imaging enhanced signal intensity of TVUS (p < 0.0001). CONCLUSIONS Tissue and serum levels of GRP78 increase in association with OVCA. GRP78 offers a potential serum and imaging marker for early OVCA detection.
Collapse
|
44
|
Dos Santos NS, Gonçalves DR, Balbinot B, Visioli F. Is GRP78 (Glucose-regulated protein 78) a prognostic biomarker in differents types of cancer? A systematic review and meta-analysis. Pathol Res Pract 2023; 242:154301. [PMID: 36610326 DOI: 10.1016/j.prp.2023.154301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
GRP78 is a chaperone with anti-apoptotic function associated with aggressive tumors. This systematic review aimed to evaluate GRP78 expression in cancer and its relation to prognosis outcomes. This review was conducted in different databases searching for human cancer studies assessing GRP78 immunohistochemical levels on tissue samples. A total of 98 manuscripts were included. In 62% of the studies, GRP78 was associated with a worse prognosis. A meta-analysis included 29 studies that detected a significantly higher expression of GRP78 in cancer tissues (RR= 2.35, 95% CI 1.75-3.15) compared to control. A meta-analysis of 3 and 5-years Overall Survival revealed an increased risk of death for tumors with high expression of GRP78 (RR=1.36, 95%CI 1.16-1,59, I2 = 57%) and (RR=1.65, 95%CI 1.22-2.21, I2 =64%), respectively. GRP78 is an important prognostic biomarker for different types of cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Natália Souza Dos Santos
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Douglas Rodrigues Gonçalves
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Oral Medicine Unit, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Bianca Balbinot
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Center Research, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
45
|
Schneider M, Antes I. Comparison of allosteric signaling in DnaK and BiP using mutual information between simulated residue conformations. Proteins 2023; 91:237-255. [PMID: 36111439 DOI: 10.1002/prot.26425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023]
Abstract
The heat shock protein 70 kDa (Hsp70) chaperone system serves as a critical component of protein quality control across a wide range of prokaryotic and eukaryotic organisms. Divergent evolution and specialization to particular organelles have produced numerous Hsp70 variants which share similarities in structure and general function, but differ substantially in regulatory aspects, including conformational dynamics and activity modulation by cochaperones. The human Hsp70 variant BiP (also known as GRP78 or HSPA5) is of therapeutic interest in the context of cancer, neurodegenerative diseases, and viral infection, including for treatment of the pandemic virus SARS-CoV-2. Due to the complex conformational rearrangements and high sequential variance within the Hsp70 protein family, it is in many cases poorly understood which amino acid mutations are responsible for biochemical differences between protein variants. In this study, we predicted residues associated with conformational regulation of human BiP and Escherichia coli DnaK. Based on protein structure networks obtained from molecular dynamics simulations, we analyzed the shared information between interaction timelines to highlight residue positions with strong conformational coupling to their environment. Our predictions, which focus on the binding processes of the chaperone's substrate and cochaperones, indicate residues filling potential signaling roles specific to either DnaK or BiP. By combining predictions of individual residues into conformationally coupled chains connecting ligand binding sites, we predict a BiP specific secondary signaling pathway associated with substrate binding. Our study sheds light on mechanistic differences in signaling and regulation between Hsp70 variants, which provide insights relevant to therapeutic applications of these proteins.
Collapse
Affiliation(s)
- Markus Schneider
- TUM Center for Functional Protein Assemblies and TUM School of Life Sciences, Technische Universität München, Freising, Bavaria, Germany
| | - Iris Antes
- TUM Center for Functional Protein Assemblies and TUM School of Life Sciences, Technische Universität München, Freising, Bavaria, Germany
| |
Collapse
|
46
|
Bonsignore G, Martinotti S, Ranzato E. Endoplasmic Reticulum Stress and Cancer: Could Unfolded Protein Response Be a Druggable Target for Cancer Therapy? Int J Mol Sci 2023; 24:ijms24021566. [PMID: 36675080 PMCID: PMC9865308 DOI: 10.3390/ijms24021566] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive response which is used for re-establishing protein homeostasis, and it is triggered by endoplasmic reticulum (ER) stress. Specific ER proteins mediate UPR activation, after dissociation from chaperone Glucose-Regulated Protein 78 (GRP78). UPR can decrease ER stress, producing an ER adaptive response, block UPR if ER homeostasis is restored, or regulate apoptosis. Some tumour types are linked to ER protein folding machinery disturbance, highlighting how UPR plays a pivotal role in cancer cells to keep malignancy and drug resistance. In this review, we focus on some molecules that have been revealed to target ER stress demonstrating as UPR could be a new target in cancer treatment.
Collapse
|
47
|
Endoplasmic Reticulum Stress-Regulated Chaperones as a Serum Biomarker Panel for Parkinson's Disease. Mol Neurobiol 2023; 60:1476-1485. [PMID: 36478320 PMCID: PMC9899193 DOI: 10.1007/s12035-022-03139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Examination of post-mortem brain tissues has previously revealed a strong association between Parkinson's disease (PD) pathophysiology and endoplasmic reticulum (ER) stress. Evidence in the literature regarding the circulation of ER stress-regulated factors released from neurons provides a rationale for investigating ER stress biomarkers in the blood to aid diagnosis of PD. The levels of ER stress-regulated proteins in serum collected from 29 PD patients and 24 non-PD controls were measured using enzyme-linked immunosorbent assays. A panel of four biomarkers, protein disulfide-isomerase A1, protein disulfide-isomerase A3, mesencephalic astrocyte-derived neurotrophic factor, and clusterin, together with age and gender had higher ability (area under the curve 0.64, sensitivity 66%, specificity 57%) and net benefit to discriminate PD patients from the non-PD group compared with other analyzed models. Addition of oligomeric and total α-synuclein to the model did not improve the diagnostic power of the biomarker panel. We provide evidence that ER stress-regulated proteins merit further investigation for their potential as diagnostic biomarkers of PD.
Collapse
|
48
|
Resolution Potential of Necrotic Cell Death Pathways. Int J Mol Sci 2022; 24:ijms24010016. [PMID: 36613458 PMCID: PMC9819908 DOI: 10.3390/ijms24010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution. However, more RAMPs are likely to be released during necrotic cell death than during apoptosis, similar to what has been observed for DAMPs. The inflammatory potential of many regulated forms of necrotic cell death modalities, such as pyroptosis, necroptosis, ferroptosis, netosis, and parthanatos, have been widely studied in necroinflammation, but their possible role in resolution is less considered. In this review, we aim to summarize the relationship between necrotic cell death and resolution, as well as present the current available data regarding the involvement of certain forms of regulated necrotic cell death in necroresolution.
Collapse
|
49
|
Boulinguiez A, Roth F, Mouigni HR, Butler-Browne G, Mouly V, Trollet C. [Nuclear aggregates in oculopharyngeal muscular dystrophy]. Med Sci (Paris) 2022; 38 Hors série n° 1:13-16. [PMID: 36649629 DOI: 10.1051/medsci/2022175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is one of the diseases related to pathological expansions of trinucleotides. Its pathogenesis remains unclear although the presence of aggregates within the nuclei of the muscle fiber seems to play an important role. The basic research studies presented here help understand their composition and their deleterious role. These elements may result in new therapeutic avenues.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Fany Roth
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Hadidja Rose Mouigni
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université-Inserm, Centre de Recherche en Myologie, Institut de Myologie, Paris, France
| |
Collapse
|
50
|
Rico-Llanos G, Porras-Perales Ó, Escalante S, Vázquez-Calero DB, Valiente L, Castillo MI, Pérez-Tejeiro JM, Baglietto-Vargas D, Becerra J, Reguera JM, Duran I, Csukasi F. Cellular stress modulates severity of the inflammatory response in lungs via cell surface BiP. Front Immunol 2022; 13:1054962. [DOI: 10.3389/fimmu.2022.1054962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation is a central pathogenic feature of the acute respiratory distress syndrome (ARDS) in COVID-19. Previous pathologies such as diabetes, autoimmune or cardiovascular diseases become risk factors for the severe hyperinflammatory syndrome. A common feature among these risk factors is the subclinical presence of cellular stress, a finding that has gained attention after the discovery that BiP (GRP78), a master regulator of stress, participates in the SARS-CoV-2 recognition. Here, we show that BiP serum levels are higher in COVID-19 patients who present certain risk factors. Moreover, early during the infection, BiP levels predict severe pneumonia, supporting the use of BiP as a prognosis biomarker. Using a mouse model of pulmonary inflammation, we observed increased levels of cell surface BiP (cs-BiP) in leukocytes during inflammation. This corresponds with a higher number of neutrophiles, which show naturally high levels of cs-BiP, whereas alveolar macrophages show a higher than usual exposure of BiP in their cell surface. The modulation of cellular stress with the use of a clinically approved drug, 4-PBA, resulted in the amelioration of the lung hyperinflammatory response, supporting the anti-stress therapy as a valid therapeutic strategy for patients developing ARDS. Finally, we identified stress-modulated proteins that shed light into the mechanism underlying the cellular stress-inflammation network in lungs.
Collapse
|