1
|
Thomas R, Fukamizo T, Suginta W. Green-Chemical Strategies for Production of Tailor-Made Chitooligosaccharides with Enhanced Biological Activities. Molecules 2023; 28:6591. [PMID: 37764367 PMCID: PMC10536575 DOI: 10.3390/molecules28186591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Chitooligosaccharides (COSs) are b-1,4-linked homo-oligosaccharides of N-acetylglucosamine (GlcNAc) or glucosamine (GlcN), and also include hetero-oligosaccharides composed of GlcNAc and GlcN. These sugars are of practical importance because of their various biological activities, such as antimicrobial, anti-inflammatory, antioxidant and antitumor activities, as well as triggering the innate immunity in plants. The reported data on bioactivities of COSs used to contain some uncertainties or contradictions, because the experiments were conducted with poorly characterized COS mixtures. Recently, COSs have been satisfactorily characterized with respect to their structures, especially the degree of polymerization (DP) and degree of N-acetylation (DA); thus, the structure-bioactivity relationship of COSs has become more unambiguous. To date, various green-chemical strategies involving enzymatic synthesis of COSs with designed sequences and desired biological activities have been developed. The enzymatic strategies could involve transglycosylation or glycosynthase reactions using reducing end-activated sugars as the donor substrates and chitinase/chitosanase and their mutants as the biocatalysts. Site-specific chitin deacetylases were also proposed to be applicable for this purpose. Furthermore, to improve the yields of the COS products, metabolic engineering techniques could be applied. The above-mentioned approaches will provide the opportunity to produce tailor-made COSs, leading to the enhanced utilization of chitin biomass.
Collapse
Affiliation(s)
- Reeba Thomas
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
| |
Collapse
|
2
|
Umemoto N, Saito N, Noguchi M, Shoda SI, Ohnuma T, Watanabe T, Sakuda S, Fukamizo T. Plant Chitinase Mutants as the Catalysts for Chitooligosaccharide Synthesis Using the Sugar Oxazoline Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12897-12906. [PMID: 36184795 DOI: 10.1021/acs.jafc.2c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sugar oxazolines, (GlcNAc)n-oxa (n = 2, 3, 4, and 5), were synthesized from a mixture of chitooligosaccharides, (GlcNAc)n (n = 2, 3, 4, and 5), and utilized for synthesis of (GlcNAc)7 with higher elicitor activity using plant chitinase mutants as the catalysts. From isothermal titration calorimetry, the binding affinity of (GlcNAc)2-oxa toward an inactive mutant obtained from Arabidopsis thaliana GH18 chitinase was found to be higher than those of the other (GlcNAc)n-oxa (n = 3, 4, and 5). To synthesize (GlcNAc)7, the donor/acceptor substrates with different size combinations, (GlcNAc)2-oxa/(GlcNAc)5 (1), (GlcNAc)3-oxa/(GlcNAc)4 (2), (GlcNAc)4-oxa/(GlcNAc)3 (3), and (GlcNAc)5-oxa/(GlcNAc)2 (4), were incubated with hypertransglycosylating mutants of GH18 chitinases from A. thaliana and Cycas revoluta. The synthetic activities of these plant chitinase mutants were lower than that of a mutant of Bacillus circulans chitinase A1. Nevertheless, in the plant chitinase mutants, the synthetic efficiency of combination (1) was higher than those of the other combinations (2), (3), and (4), suggesting that the synthetic reaction is mostly dominated by the binding affinities of (GlcNAc)n-oxa. In contrast, the Bacillus enzyme mutant with a different subsite arrangement synthesized (GlcNAc)7 from combination (1) in the lowest efficiency. Donor/acceptor-size dependency of the enzymatic synthesis appeared to be strongly related to the subsite arrangement of the enzyme used as the catalyst. The A. thaliana chitinase mutant was found to be useful when combination (1) is employed for the substrates.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Natsuki Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Masato Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Shin-Ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Takeshi Watanabe
- Department of Agro-Food Science, Niigata Agro-Food University, Tainai-shi, Niigata 959-2702, Japan
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
3
|
Orlando M, Buchholz PCF, Lotti M, Pleiss J. The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19. PLoS One 2021; 16:e0256817. [PMID: 34699529 PMCID: PMC8547705 DOI: 10.1371/journal.pone.0256817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
The glycoside hydrolase 19 (GH19) is a bifunctional family of chitinases and endolysins, which have been studied for the control of plant fungal pests, the recycle of chitin biomass, and the treatment of multi-drug resistant bacteria. The GH19 domain-containing sequences (22,461) were divided into a chitinase and an endolysin subfamily by analyzing sequence networks, guided by taxonomy and the substrate specificity of characterized enzymes. The chitinase subfamily was split into seventeen groups, thus extending the previous classification. The endolysin subfamily is more diverse and consists of thirty-four groups. Despite their sequence diversity, twenty-six residues are conserved in chitinases and endolysins, which can be distinguished by two specific sequence patterns at six and four positions, respectively. Their location outside the catalytic cleft suggests a possible mechanism for substrate specificity that goes beyond the direct interaction with the substrate. The evolution of the GH19 catalytic domain was investigated by large-scale phylogeny. The inferred evolutionary history and putative horizontal gene transfer events differ from previous works. While no clear patterns were detected in endolysins, chitinases varied in sequence length by up to four loop insertions, causing at least eight distinct presence/absence loop combinations. The annotated GH19 sequences and structures are accessible via the GH19 Engineering Database (GH19ED, https://gh19ed.biocatnet.de). The GH19ED has been developed to support the prediction of substrate specificity and the search for novel GH19 enzymes from neglected taxonomic groups or in regions of the sequence space where few sequences have been described yet.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
4
|
Rousseau A, Armand S, Cottaz S, Fort S. Size-Controlled Synthesis of β(1→4)-GlcNAc Oligosaccharides Using an Endo-Glycosynthase. Chemistry 2021; 27:17637-17646. [PMID: 34633724 DOI: 10.1002/chem.202103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Chitin and peptidoglycan fragments are well recognized as pathogen associated molecular patterns (PAMPs). Long-chain oligosaccharides of β(1→4)-linked N-acetyl-D-glucosamine (GlcNAc) units indeed activate plants and mammals innate immune system. However, the mechanisms underlying PAMPs perception by lysine motif (LysM) domain receptors remain largely unknown because of insufficient availability of high-affinity molecular probes. Here, we report a two-enzyme cascade to synthesize long-chain β(1→4)-linked GlcNAc oligomers. Expression of the D52S mutant of hen egg-white lysozyme (HEWL) in Pichia pastoris at 52 mg L-1 provided a new glycosynthase catalyzing efficient polymerization of α-chitintriosyl fluoride. Selective N-deacetylation at the non-reducing unit of the glycosyl fluoride donor by Sinorhizobium meliloti NodB chitin-N-deacetylase abolished its ability to be polymerized by the glycosynthase but not to be transferred onto an acceptor. Using NodB and D52S HEWL in a one-pot cascade reaction allowed the synthesis on a milligram scale of chitin hexa-, hepta- and octasaccharides with yields up to 65 % and a perfect control over their size.
Collapse
Affiliation(s)
| | - Sylvie Armand
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Sylvain Cottaz
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Sébastien Fort
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000, Grenoble, France
| |
Collapse
|
5
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
7
|
Wan L, Zhu Y, Zhang W, Mu W. α-l-Fucosidases and their applications for the production of fucosylated human milk oligosaccharides. Appl Microbiol Biotechnol 2020; 104:5619-5631. [DOI: 10.1007/s00253-020-10635-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
|
8
|
Zeuner B, Teze D, Muschiol J, Meyer AS. Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules 2019; 24:E2033. [PMID: 31141914 PMCID: PMC6600218 DOI: 10.3390/molecules24112033] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) signify a unique group of oligosaccharides in breast milk, which is of major importance for infant health and development. The functional benefits of HMOs create an enormous impetus for biosynthetic production of HMOs for use as additives in infant formula and other products. HMO molecules can be synthesized chemically, via fermentation, and by enzymatic synthesis. This treatise discusses these different techniques, with particular focus on harnessing enzymes for controlled enzymatic synthesis of HMO molecules. In order to foster precise and high-yield enzymatic synthesis, several novel protein engineering approaches have been reported, mainly concerning changing glycoside hydrolases to catalyze relevant transglycosylations. The protein engineering strategies for these enzymes range from rationally modifying specific catalytic residues, over targeted subsite -1 mutations, to unique and novel transplantations of designed peptide sequences near the active site, so-called loop engineering. These strategies have proven useful to foster enhanced transglycosylation to promote different types of HMO synthesis reactions. The rationale of subsite -1 modification, acceptor binding site matching, and loop engineering, including changes that may alter the spatial arrangement of water in the enzyme active site region, may prove useful for novel enzyme-catalyzed carbohydrate design in general.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - David Teze
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
9
|
Ohnuma T, Tanaka T, Urasaki A, Dozen S, Fukamizo T. A novel method for chemo-enzymatic synthesis of chitin oligosaccharide catalyzed by the mutant of inverting family GH19 chitinase using 4,6-dimethoxy-1,3,5-triazin-2-yl α-chitobioside as a glycosyl donor. J Biochem 2018; 165:497-503. [DOI: 10.1093/jb/mvy123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | - Atsushi Urasaki
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Satoshi Dozen
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, Japan
| |
Collapse
|
10
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
12
|
Slámová K, Bojarová P. Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochim Biophys Acta Gen Subj 2017; 1861:2070-2087. [PMID: 28347843 DOI: 10.1016/j.bbagen.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND In recent years, enzymes modifying N-acetylhexosamine substrates have emerged in numerous theoretical studies as well as practical applications from biology, biomedicine, and biotechnology. Advanced enzyme engineering techniques converted them into potent synthetic instruments affording a variety of valuable glycosides. SCOPE OF REVIEW This review presents the diversity of engineered enzymes active with N-acetylhexosamine carbohydrates: from popular glycoside hydrolases and glycosyltransferases to less known oxidases, epimerases, kinases, sulfotransferases, and acetylases. Though hydrolases in natura, engineered chitinases, β-N-acetylhexosaminidases, and endo-β-N-acetylglucosaminidases were successfully employed in the synthesis of defined natural and derivatized chitooligomers and in the remodeling of N-glycosylation patterns of therapeutic antibodies. The genes of various N-acetylhexosaminyltransferases were cloned into metabolically engineered microorganisms for producing human milk oligosaccharides, Lewis X structures, and human-like glycoproteins. Moreover, mutant N-acetylhexosamine-active glycosyltransferases were applied, e.g., in the construction of glycomimetics and complex glycostructures, industrial production of low-lactose milk, and metabolic labeling of glycans. In the synthesis of biotechnologically important compounds, several innovative glycoengineered systems are presented for an efficient bioproduction of GlcNAc, UDP-GlcNAc, N-acetylneuraminic acid, and of defined glycosaminoglycans. MAJOR CONCLUSIONS The above examples demonstrate that engineering of N-acetylhexosamine-active enzymes was able to solve complex issues such as synthesis of tailored human-like glycoproteins or industrial-scale production of desired oligosaccharides. Due to the specific catalytic mechanism, mutagenesis of these catalysts was often realized through rational solutions. GENERAL SIGNIFICANCE Specific N-acetylhexosamine glycosylation is crucial in biological, biomedical and biotechnological applications and a good understanding of its details opens new possibilities in this fast developing area of glycoscience.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
13
|
Miyazaki T, Nishikawa A, Tonozuka T. Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase. J Struct Biol 2016; 196:479-486. [PMID: 27688023 DOI: 10.1016/j.jsb.2016.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023]
Abstract
Glycoside hydrolases are divided into two groups, known as inverting and retaining enzymes, based on their hydrolytic mechanisms. Glycoside hydrolase family 63 (GH63) is composed of inverting α-glycosidases, which act mainly on α-glucosides. We previously found that Escherichia coli GH63 enzyme, YgjK, can hydrolyze 2-O-α-d-glucosyl-d-galactose. Two constructed glycosynthase mutants, D324N and E727A, which catalyze the transfer of a β-glucosyl fluoride donor to galactose, lactose, and melibiose. Here, we determined the crystal structures of D324N and E727A soaked with a mixture of glucose and lactose at 1.8- and 2.1-Å resolutions, respectively. Because glucose and lactose molecules are found at the active sites in both structures, it is possible that these structures mimic the enzyme-product complex of YgjK. A glucose molecule found at subsite -1 in both structures adopts an unusual 1S3 skew-boat conformation. Comparison between these structures and the previously determined enzyme-substrate complex structure reveals that the glucose pyranose ring might be distorted immediately after nucleophilic attack by a water molecule. These structures represent the first enzyme-product complex for the GH63 family, as well as the structurally-related glycosidases, and it may provide insight into the catalytic mechanism of these enzymes.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 Japan; Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
14
|
Li C, Wang LX. Endoglycosidases for the Synthesis of Polysaccharides and Glycoconjugates. Adv Carbohydr Chem Biochem 2016; 73:73-116. [PMID: 27816108 DOI: 10.1016/bs.accb.2016.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent advances in glycobiology have implicated essential roles of oligosaccharides and glycoconjugates in many important biological recognition processes, including intracellular signaling, cell adhesion, cell differentiation, cancer progression, host-pathogen interactions, and immune responses. A detailed understanding of the biological functions, as well as the development of carbohydrate-based therapeutics, often requires structurally well-defined oligosaccharides and glycoconjugates, which are usually difficult to isolate in pure form from natural sources. To meet with this urgent need, chemical and chemoenzymatic synthesis has become increasingly important as the major means to provide homogeneous compounds for functional glycocomics studies and for drug/vaccine development. Chemoenzymatic synthesis, an approach that combines chemical synthesis and enzymatic manipulations, is often the method of choice for constructing complex oligosaccharides and glycoconjugates that are otherwise difficult to achieve by purely chemical synthesis. Among these, endoglycosidases, a class of glycosidases that hydrolyze internal glycosidic bonds in glycoconjugates and polysaccharides, are emerging as a very attractive class of enzymes for synthetic purposes, due to their transglycosylation activity and their capability of transferring oligosaccharide units en bloc in a single step, in contrast to the limitation of monosaccharide transfers by common glycosyltransferases. In this chapter, we provide an overview on the application of endoglycosidases for the synthesis of complex carbohydrates, including oligosaccharides, polysaccharides, glycoproteins, glycolipids, proteoglycans, and other biologically relevant polysaccharides. The scope, limitation, and future directions of endoglycosidase-catalyzed synthesis are discussed.
Collapse
Affiliation(s)
- Chao Li
- University of Maryland, College Park, MD, United States
| | - Lai-Xi Wang
- University of Maryland, College Park, MD, United States
| |
Collapse
|
15
|
Sugiyama Y, Gotoh A, Katoh T, Honda Y, Yoshida E, Kurihara S, Ashida H, Kumagai H, Yamamoto K, Kitaoka M, Katayama T. Introduction of H-antigens into oligosaccharides and sugar chains of glycoproteins using highly efficient 1,2-α-l-fucosynthase. Glycobiology 2016; 26:1235-1247. [DOI: 10.1093/glycob/cww085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
|
16
|
Abstract
A robust platform for facile defined glycan synthesis does not exist. Yet the need for such technology has never been greater as researchers seek to understand the full scope of carbohydrate function, stretching beyond the classical roles of structure and energy storage to encompass highly nuanced cell signaling events. To comprehensively explore and exploit the full diversity of carbohydrate functions, we must first be able to synthesize them in a controlled manner. Toward this goal, traditional chemical syntheses are inefficient while nature's own synthetic enzymes, the glycosyl transferases, can be challenging to express and expensive to employ on scale. Glycoside hydrolases represent a pool of glycan processing enzymes that can be either used in a transglycosylation mode or, better, engineered to function as "glycosynthases," mutant enzymes capable of assembling glycosides. Glycosynthases grant access to valuable glycans that act as functional and structural probes or indeed as inhibitors and therapeutics in their own right. The remodelling of glycosylation patterns in therapeutic proteins via glycoside hydrolases and their mutants is an exciting frontier in both basic research and industrial scale processes.
Collapse
Affiliation(s)
- Phillip M. Danby
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Ohnuma T, Dozen S, Honda Y, Kitaoka M, Fukamizo T. A glycosynthase derived from an inverting chitinase with an extended binding cleft. J Biochem 2016; 160:93-100. [DOI: 10.1093/jb/mvw014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/07/2016] [Indexed: 01/22/2023] Open
|
18
|
The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase. Biochem J 2016; 473:463-72. [DOI: 10.1042/bj20150966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/27/2015] [Indexed: 02/04/2023]
Abstract
The crystal structure of an inverting exo-β-D-glucosaminidase from glycoside hydrolase family 9 was determined. This is the first description of the structure of an exo-type enzyme from this family. A glycosynthase was produced from this enzyme through saturation mutagenesis.
Collapse
|
19
|
Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 2015; 37:11-25. [DOI: 10.3109/07388551.2015.1104289] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Slámová K, Krejzová J, Marhol P, Kalachova L, Kulik N, Pelantová H, Cvačka J, Křen V. Synthesis of Derivatized Chitooligomers using Transglycosidases Engineered from the Fungal GH20 β-N-Acetylhexosaminidase. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500075] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Armstrong Z, Withers SG. Synthesis of Glycans and Glycopolymers Through Engineered Enzymes. Biopolymers 2013; 99:666-74. [DOI: 10.1002/bip.22335] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Zachary Armstrong
- Genome Science and Technology Program; University of British Columbia; Canada
| | | |
Collapse
|
22
|
Miyazaki T, Ichikawa M, Yokoi G, Kitaoka M, Mori H, Kitano Y, Nishikawa A, Tonozuka T. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity. FEBS J 2013; 280:4560-71. [DOI: 10.1111/febs.12424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Takatsugu Miyazaki
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Megumi Ichikawa
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Gaku Yokoi
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Motomitsu Kitaoka
- National Food Research Institute; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Haruhide Mori
- Research Faculty of Agriculture; Hokkaido University; Kita-ku Sapporo Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| |
Collapse
|
23
|
Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol 2013; 17:301-9. [PMID: 23403067 DOI: 10.1016/j.cbpa.2013.01.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
Abstract
Phosphorylases are one group of carbohydrate active enzymes involved in the cleavage and formation of glycosidic linkages together with glycoside hydrolases and sugar nucleotide-dependent glycosyltransferases. Noticeably, the catalyzed phosphorolysis is reversible, making phosphorylases suitable catalysts for efficient synthesis of particular oligosaccharides from a donor sugar 1-phosphate and suitable carbohydrate acceptors with strict regioselectivity. Although utilization of phosphorylases for oligosaccharide synthesis has been limited because only few different enzymes are known, recently the number of reported phosphorylases has gradually increased, providing the variation making these enzymes useful tools for efficient synthesis of diverse oligosaccharides.
Collapse
|