1
|
Sun ML, Xu Y, Lin L, Gao J, Ledesma-Amaro R, Wang K, Ji XJ. Enhancing Precursor Supply and Engineering Efflux Systems to Improve Abscisic Acid Production and Secretion in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6050-6058. [PMID: 40011064 DOI: 10.1021/acs.jafc.4c10772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Abscisic acid is a sesquiterpene phytohormone with extensive applications in agriculture and human health. Currently, it is produced through fermentation of Botrytis cinerea, a plant pathogenic filamentous fungus. The process requires morphology controls, which complicates production and strain optimization. In this study, the abscisic acid production strain Yarrowia lipolytica SM309 was optimized by enhancing the precursor supply using a "push-pull-restrain" strategy focusing on acetyl-CoA, which increased abscisic acid production from 266.34 to 328.51 mg/L. Subsequently, in silico prediction and analysis were used to obtain the docking conformations and binding affinity of ABC transporters for abscisic acid. Overexpression of ABC transporter YlGcn20 further enhanced abscisic acid production by 10.88%, reaching 354.21 mg/L. Additionally, low temperature and dodecane addition were employed as auxiliary strategies to promote abscisic acid synthesis, resulting in a titer of 605.92 mg/L. Finally, the engineered strain achieved an abscisic acid titer of 2056.64 mg/L in a 5 L bioreactor, representing the highest titer reported for a yeast de novo synthesis system to date.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yun Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, U.K
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
2
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cactus-associated yeasts. PLoS Biol 2024; 22:e3002832. [PMID: 39312572 PMCID: PMC11449361 DOI: 10.1371/journal.pbio.3002832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently approximately 17 times. Using a machine learning-based approach, we further found that cactophily can be predicted with 76% accuracy from both functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which we found to be likely associated with altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved independently through disparate molecular mechanisms. Notably, we found that multiple cactophilic species and their close relatives have been reported as emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-might preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high-throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Biology Department, Villanova University, Villanova, Pennsylvania, United States of America
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Qin L, Ma D, Lin G, Sun W, Li C. Low temperature promotes the production and efflux of terpenoids in yeast. BIORESOURCE TECHNOLOGY 2024; 395:130376. [PMID: 38278452 DOI: 10.1016/j.biortech.2024.130376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Altering the fermentation environment provides an effective approach to optimizing the production efficiency of microbial cell factories globally. Here, lower fermentation temperatures of yeast were found to significantly improve the synthesis and efflux of terpenoids, including glycyrrhetinic acid (GA), β-caryophyllene, and α-amyrin. The production of GA at 22°C increased by 5.5 times compared to 30°C. Yeast subjected to lower temperature showed substantial changes at various omics levels. Certain genes involved in maintaining cellular homeostasis that were upregulated under the low temperature conditions, leading to enhanced GA production. Substituting Mvd1, a thermo-unstable enzyme in mevalonate pathway identified by transcriptome and proteome, with a thermo-tolerant isoenzyme effectively increased GA production. The lower temperature altered the composition of phospholipids and increased the unsaturation of fatty acid chains, which may influence GA efflux. This study presents a strategy for optimizing the fermentation process and identifying key targets of cell factories for terpenoid production.
Collapse
Affiliation(s)
- Lei Qin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Dongshi Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Guangyuan Lin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Wentao Sun
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Chun Li
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
4
|
Navarro L, Gil i Cortiella M, Gutiérrez-Moraga A, Calisto N, Ubeda C, Corsini G. Antarctic Soil Yeasts with Fermentative Capacity and Potential for the Wine Industry. Foods 2023; 12:4496. [PMID: 38137300 PMCID: PMC10742413 DOI: 10.3390/foods12244496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Low fermentation temperatures are usually employed to obtain high-quality wines. This is especially interesting for white wine production since it prevents the loss of volatile compounds and a browning appearance; however, available fermentative yeasts do not usually tolerate low temperatures. Therefore, an interesting place to find new yeasts with cryotolerance is the Antarctic continent. From soil samples collected in Antarctica, 125 yeasts were isolated, of which 25 exhibited fermentative activity at 10 °C. After a fingerprinting assay, we classified the candidates into nine isotypes and sequenced internal transcribed spacer regions for their identification. These yeasts were identified as part of the Mrakia genus. Sugar and alcohol tolerance tests showed that some of these Antarctic soil yeasts were able to grow up to 9% alcohol, and 25% sugar was reached; however, they exhibited longer latency periods compared to the control Saccharomyces cerevisiae. The optimal growing temperature for the isolated Antarctic yeasts was between 10 °C and 15 °C. A comprehensive analysis of the results obtained showed that the isolates 10M3-1, 4M3-6, and 4B1-35 could be good candidates for fermentation purposes due to their alcohol, sugar tolerance, and growth features. Our results prove that it is possible to isolate fermentative yeasts from Antarctic soil with promising characteristics for their potential use in the wine production industry.
Collapse
Affiliation(s)
- Laura Navarro
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile; (L.N.); (A.G.-M.); (N.C.)
| | - Mariona Gil i Cortiella
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8900000, Chile;
| | - Ana Gutiérrez-Moraga
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile; (L.N.); (A.G.-M.); (N.C.)
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nancy Calisto
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile; (L.N.); (A.G.-M.); (N.C.)
- Centro de Investigación y Monitoreo Ambiental Antártico (CIMAA), Departamento de Ingeniería Química, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas 6210427, Chile
| | - Cristina Ubeda
- Departamento de Nutrición, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González No 2, 41012 Sevilla, Spain
| | - Gino Corsini
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile; (L.N.); (A.G.-M.); (N.C.)
| |
Collapse
|
5
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cacti-associated yeasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557833. [PMID: 37745407 PMCID: PMC10515907 DOI: 10.1101/2023.09.14.557833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently ~17 times. Using machine-learning, we further found that cactophily can be predicted with 76% accuracy from functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which is likely associated with duplication and altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved through disparate molecular mechanisms. Remarkably, multiple cactophilic lineages and their close relatives are emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-may preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Present address: Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Present address: UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department, Villanova University, Villanova, PA 19085, USA
| | - Abigail L. LaBella
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC 28223
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
6
|
Effect of low temperature on the shaping of yeast-derived metabolite compositions during wine fermentation. Food Res Int 2022; 162:112016. [DOI: 10.1016/j.foodres.2022.112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
|
7
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Wu PH, Ho YL, Ho TS, Chang CH, Ye JC, Wang CH, Sung HM, Huang HJ, Liu CC. Microbial volatile compounds-induced cytotoxicity in the yeast Saccharomyces cerevisiae: The role of MAPK signaling and proteasome regulatory pathway. CHEMOSPHERE 2019; 233:786-795. [PMID: 31340409 DOI: 10.1016/j.chemosphere.2019.05.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Microbial volatile organic compounds (mVCs) are formed in the metabolism of microorganisms and widely distributed in nature and pose threats to human health. However, the air pollution by microorganisms is a situation which is poorly understood. In this study, the cytotoxicity of E. aerogenes VCs was evaluated in the model organism Saccharomyces cerevisiae. E. aerogenes VCs inhibited the survival of yeast and triggered the formation of intracellular reactive oxygen species (ROS). The hypersensitive of MAP kinase mpk1/slt2 and 19S regulatory assembly chaperone adc17 mutants to the E. aerogenes VCs indicated cell wall integrity (CWI) pathway together with stress-inducible proteasome assembly regulation are essentially involved in mVCs tolerance mechanism. Furthermore, exposure to the mVCs resulted in the transcriptional upregulation of the CWI pathway, the regulatory particle assembly chaperones, and genes involved in proteasome regulations. Our research suggested that the ROS/MAPK signaling and proteasome regulatory pathway play pivotal roles in the integration and fine-tuning of the mVCs stress response. This study provides a molecular framework for future study of the effects of mVCs on more complex organisms, such as humans.
Collapse
Affiliation(s)
- Pei-Hsuan Wu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yueh-Lin Ho
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Han Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Je-Chiuan Ye
- Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, Taiwan; Master Program in Biomedical Science, National Taitung University, Taitung, Taiwan
| | - Ching-Han Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Jiménez-Gutiérrez E, Alegría-Carrasco E, Sellers-Moya Á, Molina M, Martín H. Not just the wall: the other ways to turn the yeast CWI pathway on. Int Microbiol 2019; 23:107-119. [PMID: 31342212 DOI: 10.1007/s10123-019-00092-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
Abstract
The Saccharomyces cerevisiae cell wall integrity (CWI) pathway took this name when its role in the cell response to cell wall aggressions was clearly established. The receptors involved in sensing the damage, the relevant components operating in signaling to the MAPK Slt2, the transcription factors activated by this MAPK, as well as some key regulatory mechanisms have been identified and characterized along almost 30 years. However, other stimuli that do not alter specifically the yeast cell wall, including protein unfolding, low or high pH, or plasma membrane, oxidative and genotoxic stresses, have been also found to trigger the activation of this pathway. In this review, we compile almost forty non-cell wall-specific compounds or conditions, such as tunicamycin, hypo-osmotic shock, diamide, hydroxyurea, arsenate, and rapamycin, which induce these stresses. Relevant aspects of the CWI-mediated signaling in the response to these non-conventional pathway activators are discussed. The data presented here highlight the central and key position of the CWI pathway in the safeguard of yeast cells to a wide variety of external aggressions.
Collapse
Affiliation(s)
- Elena Jiménez-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ángela Sellers-Moya
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Humberto Martín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Jonasson EM, Rossio V, Hatakeyama R, Abe M, Ohya Y, Yoshida S. Zds1/Zds2-PP2ACdc55 complex specifies signaling output from Rho1 GTPase. J Cell Biol 2016; 212:51-61. [PMID: 26728856 PMCID: PMC4700482 DOI: 10.1083/jcb.201508119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Zds1/Zds2–PP2ACdc55 forms a complex with Rho1 GTPase and specifies Rho1 signaling outcome by regulating Rho1 GAPs in budding yeast. Budding yeast Rho1 guanosine triphosphatase (GTPase) plays an essential role in polarized cell growth by regulating cell wall glucan synthesis and actin organization. Upon cell wall damage, Rho1 blocks polarized cell growth and repairs the wounds by activating the cell wall integrity (CWI) Pkc1–mitogen-activated protein kinase (MAPK) pathway. A fundamental question is how active Rho1 promotes distinct signaling outputs under different conditions. Here we identified the Zds1/Zds2–protein phosphatase 2ACdc55 (PP2ACdc55) complex as a novel Rho1 effector that regulates Rho1 signaling specificity. Zds1/Zds2–PP2ACdc55 promotes polarized growth and cell wall synthesis by inhibiting Rho1 GTPase-activating protein (GAP) Lrg1 but inhibits CWI pathway by stabilizing another Rho1 GAP, Sac7, suggesting that active Rho1 is biased toward cell growth over stress response. Conversely, upon cell wall damage, Pkc1–Mpk1 activity inhibits cortical PP2ACdc55, ensuring that Rho1 preferentially activates the CWI pathway for cell wall repair. We propose that PP2ACdc55 specifies Rho1 signaling output and that reciprocal antagonism between Rho1–PP2ACdc55 and Rho1–Pkc1 explains how only one signaling pathway is robustly activated at a time.
Collapse
Affiliation(s)
- Erin M Jonasson
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Valentina Rossio
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Riko Hatakeyama
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Mitsuhiro Abe
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Yoshikazu Ohya
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Satoshi Yoshida
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454 Gunma University Initiative for Advanced Research and Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
11
|
Fischer S, Engstler C, Procopio S, Becker T. EGFP-based evaluation of temperature inducible native promoters of industrial ale yeast by using a high throughput system. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
García-Marqués S, Randez-Gil F, Dupont S, Garre E, Prieto JA. Sng1 associates with Nce102 to regulate the yeast Pkh-Ypk signalling module in response to sphingolipid status. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1319-33. [PMID: 27033517 DOI: 10.1016/j.bbamcr.2016.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the actors involved in Pkh/Ypk regulation remain poorly defined. Here, we demonstrate that Sng1, a transmembrane protein, is an effector of the Pkh/Ypk module and identify the phospholipid asymmetry as key for yeast cold adaptation. Overexpression of SNG1 impairs phospholipid flipping, reduces reactive oxygen species (ROS) and improves, in a Pkh-dependent manner, yeast growth in myriocin-treated cells, suggesting that excess Sng1p stimulates the Pkh/Ypk signalling. Furthermore, we link these effects to the association of Sng1p with Nce102p. Indeed, we found that Sng1p interacts with Nce102p both physically and genetically. Moreover, mutant nce102∆ sng1∆ cells show features of impaired Pkh/Ypk signalling, including increased ROS accumulation, reduced life span and defects in Pkh/Ypk-controlled regulatory pathways. Finally, myriocin-induced hyperphosphorylation of Ypk1p and Orm2p, which controls sphingolipid homeostasis, does not occur in nce102∆ sng1∆ cells. Hence, both Nce102p and Sng1p participate in a regulatory circuit that controls the activity of the Pkh/Ypk module and their function is required in response to sphingolipid status.
Collapse
Affiliation(s)
- Sara García-Marqués
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Sebastien Dupont
- UMR Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon/Université de Bourgogne 1, Esplanade Erasme, 21000, Dijon, France
| | - Elena Garre
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7. 46980, Paterna, Valencia, Spain.
| |
Collapse
|
13
|
Córcoles-Sáez I, Hernández ML, Martínez-Rivas JM, Prieto JA, Randez-Gil F. Characterization of the S. cerevisiae inp51 mutant links phosphatidylinositol 4,5-bisphosphate levels with lipid content, membrane fluidity and cold growth. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:213-26. [PMID: 26724696 DOI: 10.1016/j.bbalip.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its derivatives diphosphoinositol phosphates (DPIPs) play key signaling and regulatory roles. However, a direct function of these molecules in lipid and membrane homeostasis remains obscure. Here, we have studied the cold tolerance phenotype of yeast cells lacking the Inp51-mediated phosphoinositide-5-phosphatase. Genetic and biochemical approaches showed that increased metabolism of PI(4,5)P2 reduces the activity of the Pho85 kinase by increasing the levels of the DPIP isomer 1-IP7. This effect was key in the cold tolerance phenotype. Indeed, pho85 mutant cells grew better than the wild-type at 15 °C, and lack of this kinase abolished the inp51-mediated cold phenotype. Remarkably, reduced Pho85 function by loss of Inp51 affected the activity of the Pho85-regulated target Pah1, the yeast phosphatidate phosphatase. Cells lacking Inp51 showed reduced Pah1 abundance, derepression of an INO1-lacZ reporter, decreased content of triacylglycerides and elevated levels of phosphatidate, hallmarks of the pah1 mutant. However, the inp51 phenotype was not associated to low Pah1 activity since deletion of PAH1 caused cold sensitivity. In addition, the inp51 mutant exhibited features not shared by pah1, including a 40%-reduction in total lipid content and decreased membrane fluidity. These changes may influence the activity of membrane-anchored and/or associated proteins since deletion of INP51 slows down the transit to the vacuole of the fluorescent dye FM4-64. In conclusion, our work supports a model in which changes in the PI(4,5)P2 pool affect the 1-IP7 levels modulating the activity of Pho85, Pah1 and likely additional Pho85-controlled targets, and regulate lipid composition and membrane properties.
Collapse
Affiliation(s)
- Isaac Córcoles-Sáez
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Maria Luisa Hernández
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | | | - Jose A Prieto
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
14
|
Li Y, Kan Z, You Y, Gao X, Wang Z, Fu R. Exogenous transglutaminase improves multiple-stress tolerance in Lactococcus lactis and other lactic acid bacteria with glutamine and lysine in the cell wall. Biotechnol Lett 2015; 37:2467-74. [DOI: 10.1007/s10529-015-1942-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
|
15
|
Tian Y, Zhao GY, Fang W, Xu Q, Tan RX. Δ10(E)-Sphingolipid Desaturase Involved in Fusaruside Mycosynthesis and Stress Adaptation in Fusarium graminearum. Sci Rep 2015; 5:10486. [PMID: 25994332 PMCID: PMC4440215 DOI: 10.1038/srep10486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/15/2015] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids are biologically important and structurally distinct cell membrane components. Fusaruside (1) is a 10,11-unsaturated immunosuppressive fungal sphingolipid with medical potentials for treating liver injury and colitis, but its poor natural abundance bottlenecks its druggability. Here, fusaruside is clarified biosynthetically, and its efficacy-related 10,11-double bond can be generated under the regioselective catalysis of an unprecedented Δ10(E)-sphingolipid desaturase (Δ10(E)-SD). Δ10(E)-SD shares 17.7% amino acid sequence similarity with a C9-unmethylated Δ10-sphingolipid desaturase derived from a marine diatom, and 55.7% with Δ8(E)-SD from Fusarium graminearum. Heterologous expression of Δ10(E)-SD in Pichia pastoris has been established to facilitate a reliable generation of 1 through the Δ10(E)-SD catalyzed desaturation of cerebroside B (2), an abundant fungal sphingolipid. Site directed mutageneses show that the conserved histidines of Δ10(E)-SD are essential for the 10,11-desaturation catalysis, which is also preconditioned by the C9-methylation of the substrate. Moreover, Δ10(E)-SD confers improved survival and faster growth to fungal strains at low temperature and high salinity, in parallel with to higher contents of 1 in the mycelia. Collectively, the investigation describes a new Δ10(E)-sphingolipid desaturase with its heterologous expression fundamentalizing a biotechnological supply of 1, and eases the follow-up clarification of the immunosuppression and stress-tolerance mechanism.
Collapse
Affiliation(s)
- Yuan Tian
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Guo Y. Zhao
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Fang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Qiang Xu
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Ren X. Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
16
|
Vicent I, Navarro A, Mulet JM, Sharma S, Serrano R. Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Res 2015; 15:fov008. [DOI: 10.1093/femsyr/fov008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 11/14/2022] Open
|
17
|
Morimoto Y, Tani M. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeastSaccharomyces cerevisiae. Mol Microbiol 2015; 95:706-22. [DOI: 10.1111/mmi.12896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Yuji Morimoto
- Department of Chemistry; Faculty of Sciences; Kyushu University; 6-10-1, Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| | - Motohiro Tani
- Department of Chemistry; Faculty of Sciences; Kyushu University; 6-10-1, Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| |
Collapse
|
18
|
Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles. Appl Environ Microbiol 2014; 80:4433-49. [PMID: 24814792 DOI: 10.1128/aem.00785-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature.
Collapse
|