1
|
Usey MM, Huet D. ATP synthase-associated coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing proteins are critical for mitochondrial function in Toxoplasma gondii. mBio 2023; 14:e0176923. [PMID: 37796022 PMCID: PMC10653836 DOI: 10.1128/mbio.01769-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family are transported into the mitochondrial intermembrane space, where they play important roles in the biogenesis and function of the organelle. Unexpectedly, the ATP synthase of the apicomplexan Toxoplasma gondii harbors CHCH domain-containing subunits of unknown function. As no other ATP synthase studied to date contains this class of proteins, characterizing their function will be of broad interest to the fields of molecular parasitology and mitochondrial evolution. Here, we demonstrate that that two T. gondii ATP synthase subunits containing CHCH domains are required for parasite survival and for stability and function of the ATP synthase. We also show that knockdown disrupts multiple aspects of the mitochondrial morphology of T. gondii and that mutation of key residues in the CHCH domains caused mis-localization of the proteins. This work provides insight into the unique features of the apicomplexan ATP synthase, which could help to develop therapeutic interventions against this parasite and other apicomplexans, such as the malaria-causing parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
West JD. Experimental Approaches for Investigating Disulfide-Based Redox Relays in Cells. Chem Res Toxicol 2022; 35:1676-1689. [PMID: 35771680 DOI: 10.1021/acs.chemrestox.2c00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible oxidation of cysteine residues within proteins occurs naturally during normal cellular homeostasis and can increase during oxidative stress. Cysteine oxidation often leads to the formation of disulfide bonds, which can impact protein folding, stability, and function. Work in both prokaryotic and eukaryotic models over the past five decades has revealed several multiprotein systems that use thiol-dependent oxidoreductases to mediate disulfide bond reduction, formation, and/or rearrangement. Here, I provide an overview of how these systems operate to carry out disulfide exchange reactions in different cellular compartments, with a focus on their roles in maintaining redox homeostasis, transducing redox signals, and facilitating protein folding. Additionally, I review thiol-independent and thiol-dependent approaches for interrogating what proteins partner together in such disulfide-based redox relays. While the thiol-independent approaches rely either on predictive measures or standard procedures for monitoring protein-protein interactions, the thiol-dependent approaches include direct disulfide trapping methods as well as thiol-dependent chemical cross-linking. These strategies may prove useful in the systematic characterization of known and newly discovered disulfide relay mechanisms and redox switches involved in oxidant defense, protein folding, and cell signaling.
Collapse
Affiliation(s)
- James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
3
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
4
|
Zhang D, Dailey OR, Simon DJ, Roca-Datzer K, Jami-Alahmadi Y, Hennen MS, Wohlschlegel JA, Koehler CM, Dabir DV. Aim32 is a dual-localized 2Fe-2S mitochondrial protein that functions in redox quality control. J Biol Chem 2021; 297:101135. [PMID: 34461091 PMCID: PMC8482512 DOI: 10.1016/j.jbc.2021.101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Altered inheritance of mitochondria 32 (Aim32), a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1-binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea, and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.
Collapse
Affiliation(s)
- Danyun Zhang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Owen R Dailey
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Daniel J Simon
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Kamilah Roca-Datzer
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Mikayla S Hennen
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA.
| |
Collapse
|
5
|
Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1. Int J Mol Sci 2020; 21:ijms21249402. [PMID: 33321986 PMCID: PMC7764442 DOI: 10.3390/ijms21249402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Erv1 (EC number 1.8.3.2) is an essential mitochondrial enzyme catalyzing protein import and oxidative folding in the mitochondrial intermembrane space. Erv1 has both oxidase and cytochrome c reductase activities. While both Erv1 and cytochrome c were reported to be membrane associated in mitochondria, it is unknown how the mitochondrial membrane environment may affect the function of Erv1. Here, in this study, we used liposomes to mimic the mitochondrial membrane and investigated the effect of liposomes and cardiolipin on the folding and function of yeast Erv1. Enzyme kinetics of both the oxidase and cytochrome c reductase activity of Erv1 were studied using oxygen consumption analysis and spectroscopic methods. Our results showed that the presence of liposomes has mild impacts on Erv1 oxidase activity, but significantly inhibited the catalytic efficiency of Erv1 cytochrome c reductase activity in a cardiolipin-dependent manner. Taken together, the results of this study provide important insights into the function of Erv1 in the mitochondria, suggesting that molecular oxygen is a better substrate than cytochrome c for Erv1 in the yeast mitochondria.
Collapse
|
6
|
Ceh-Pavia E, Tang X, Liu Y, Heyes DJ, Zhao B, Xiao P, Lu H. Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J 2019; 287:2281-2291. [PMID: 31713999 PMCID: PMC7318334 DOI: 10.1111/febs.15136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022]
Abstract
The mitochondrial import and assembly (MIA) pathway plays a vitally important role in import and oxidative folding of mitochondrial proteins. Erv1, a member of the FAD-dependent Erv1/ALR disulphide bond generating enzyme family, is a key player of the MIA pathway. Although considerable progress has been made, the molecular mechanism of electron transfer within Erv1 is still not fully understood. The reduction potentials of the three redox centres were previously determined to be -320 mV for the shuttle disulphide, -150 mV for the active-site disulphide and -215 mV for FAD cofactor. However, it is unknown why FAD of Erv1 has such a low potential compared with other sulfhydryl oxidases, and why the shuttle disulphide has a potential as low as many of the stable structural disulphides of the substrates of MIA pathway. In this study, the three reduction potentials of Erv1 were reassessed using the wild-type and inactive mutants of Erv1 under anaerobic conditions. Our results show that the standard potentials for the shuttle and active-site disulphides are approximately -250 mV and -215 ~ -260 mV, respectively, and the potential for FAD cofactor is -148 mV. Our results support a model that both disulphide bonds are redox-active, and electron flow in Erv1 is thermodynamically favourable. Furthermore, the redox behaviour of Erv1 was confirmed, for the first time using Mia40, the physiological electron donor of Erv1. Together with previous studies on proteins of MIA pathway, we conclude that electron flow in the MIA pathway is a thermodynamically favourable, smoothly downhill process for all steps. DATABASE: Erv1: EC 1.8.3.2.
Collapse
Affiliation(s)
- Efrain Ceh-Pavia
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| | - Xiaofan Tang
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.,School of Materials, University of Manchester, UK
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Derren J Heyes
- Manchester Institute of Biotechnology, University of Manchester, UK
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Ping Xiao
- School of Materials, University of Manchester, UK
| | - Hui Lu
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
7
|
Tang X, Ang SK, Ceh-Pavia E, Heyes DJ, Lu H. Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J 2019; 287:1220-1231. [PMID: 31569302 PMCID: PMC7155059 DOI: 10.1111/febs.15077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 12/04/2022]
Abstract
Yeast (Saccharomyces cerevisiae) essential for respiration and viability 1 (Erv1; EC number http://www.chem.qmul.ac.uk/iubmb/enzyme/1/8/3/2.html), a member of the flavin adenine dinucleotide‐dependent Erv1/ALR disulphide bond generating enzyme family, works together with Mia40 to catalyse protein import and oxidative folding in the mitochondrial intermembrane space. Erv1/ALR functions either as an oxidase or cytochrome c reductase by passing electrons from a thiol substrate to molecular oxygen (O2) or cytochrome c, respectively. However, the substrate specificity for oxygen and cytochrome c is not fully understood. In this study, the oxidase and cytochrome c reductase kinetics of yeast Erv1 were investigated in detail, under aerobic and anaerobic conditions, using stopped‐flow absorption spectroscopy and oxygen consumption analysis. Using DTT as an electron donor, our results show that cytochrome c is ~ 7‐ to 15‐fold more efficient than O2 as electron acceptors for yeast Erv1, and that O2 is a competitive inhibitor of Erv1 cytochrome c reductase activity. In addition, Mia40, the physiological thiol substrate of Erv1, was used as an electron donor for Erv1 in a detailed enzyme kinetic study. Different enzyme kinetic kcat and Km values were obtained with Mia40 compared to DTT, suggesting that Mia40 modulates Erv1 enzyme kinetics. Taken together, this study shows that Erv1 is a moderately active enzyme with the ability to use both O2 and cytochrome c as the electron acceptors, indicating that Erv1 contributes to mitochondrial hydrogen peroxide production. Our results also suggest that Mia40‐Erv1 system may involve in regulation of the redox state of glutathione in the mitochondrial intermembrane space. Erv1 EC number http://www.chem.qmul.ac.uk/iubmb/enzyme/1/8/3/2.html.
Collapse
Affiliation(s)
- Xiaofan Tang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK.,School of Materials, University of Manchester, UK
| | - Swee Kim Ang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Efrain Ceh-Pavia
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, University of Manchester, UK
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
8
|
Ma H, Tang X, Liu Y, Han XX, He C, Lu H, Zhao B. Surface-Enhanced Raman Scattering for Direct Protein Function Investigation: Controlled Immobilization and Orientation. Anal Chem 2019; 91:8767-8771. [DOI: 10.1021/acs.analchem.9b01956] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hao Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Xiaofan Tang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P. R. China
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
9
|
Schmidt RR, Weits DA, Feulner CFJ, van Dongen JT. Oxygen Sensing and Integrative Stress Signaling in Plants. PLANT PHYSIOLOGY 2018; 176:1131-1142. [PMID: 29162635 PMCID: PMC5813526 DOI: 10.1104/pp.17.01394] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/18/2017] [Indexed: 05/05/2023]
Abstract
Integration of multiple cellular signals provides new opportunities in understanding oxygen sensing and response mechanisms in plants.
Collapse
Affiliation(s)
- Romy R Schmidt
- RWTH Aachen University, Institute of Biology I, Worringerweg 1, 52074 Aachen, Germany
| | - Daan A Weits
- RWTH Aachen University, Institute of Biology I, Worringerweg 1, 52074 Aachen, Germany
| | - Claudio F J Feulner
- RWTH Aachen University, Institute of Biology I, Worringerweg 1, 52074 Aachen, Germany
| | - Joost T van Dongen
- RWTH Aachen University, Institute of Biology I, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
10
|
A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast. Redox Biol 2017; 15:363-374. [PMID: 29310075 PMCID: PMC5760468 DOI: 10.1016/j.redox.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErvC17S. Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies.
Collapse
|
11
|
Characterization of sulfhydryl oxidase from Aspergillus tubingensis. BMC BIOCHEMISTRY 2017; 18:15. [PMID: 29216817 PMCID: PMC5721475 DOI: 10.1186/s12858-017-0090-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
Abstract
Background Despite of the presence of sulfhydryl oxidases (SOXs) in the secretomes of industrially relevant organisms and their many potential applications, only few of these enzymes have been biochemically characterized. In addition, basic functions of most of the SOX enzymes reported so far are not fully understood. In particular, the physiological role of secreted fungal SOXs is unclear. Results The recently identified SOX from Aspergillus tubingensis (AtSOX) was produced, purified and characterized in the present work. AtSOX had a pH optimum of 6.5, and showed a good pH stability retaining more than 80% of the initial activity in a pH range 4-8.5 within 20 h. More than 70% of the initial activity was retained after incubation at 50 °C for 20 h. AtSOX contains a non-covalently bound flavin cofactor. The enzyme oxidised a sulfhydryl group of glutathione to form a disulfide bond, as verified by nuclear magnetic resonance spectroscopy. AtSOX preferred glutathione as a substrate over cysteine and dithiothreitol. The activity of the enzyme was totally inhibited by 10 mM zinc sulphate. Peptide- and protein-bound sulfhydryl groups in bikunin, gliotoxin, holomycin, insulin B chain, and ribonuclease A, were not oxidised by the enzyme. Based on the analysis of 33 fungal genomes, SOX enzyme encoding genes were found close to nonribosomal peptide synthetases (NRPS) but not with polyketide synthases (PKS). In the phylogenetic tree, constructed from 25 SOX and thioredoxin reductase sequences from IPR000103 InterPro family, AtSOX was evolutionary closely related to other Aspergillus SOXs. Oxidoreductases involved in the maturation of nonribosomal peptides of fungal and bacterial origin, namely GliT, HlmI and DepH, were also evolutionary closely related to AtSOX whereas fungal thioreductases were more distant. Conclusions AtSOX (55 kDa) is a fungal secreted flavin-dependent enzyme with good stability to both pH and temperature. A Michaelis-Menten behaviour was observed with reduced glutathione as a substrate. Based on the location of SOX enzyme encoding genes close to NRPSs, SOXs could be involved in the secondary metabolism and act as an accessory enzyme in the production of nonribosomal peptides. Electronic supplementary material The online version of this article (10.1186/s12858-017-0090-4) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Verissimo AF, Khalfaoui-Hassani B, Hwang J, Steimle S, Selamoglu N, Sanders C, Khatchikian CE, Daldal F. The thioreduction component CcmG confers efficiency and the heme ligation component CcmH ensures stereo-specificity during cytochrome c maturation. J Biol Chem 2017. [PMID: 28634234 DOI: 10.1074/jbc.m117.794586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In many Gram-negative bacteria, including Rhodobacter capsulatus, cytochrome c maturation (Ccm) is carried out by a membrane-integral machinery composed of nine proteins (CcmA to I). During this process, the periplasmic thiol-disulfide oxidoreductase DsbA is thought to catalyze the formation of a disulfide bond between the Cys residues at the apocytochrome c heme-binding site (CXXCH). Subsequently, a Ccm-specific thioreductive pathway involving CcmG and CcmH reduces this disulfide bond to allow covalent heme ligation. Currently, the sequence of thioredox reactions occurring between these components and apocytochrome c and the identity of their active Cys residues are unknown. In this work, we first investigated protein-protein interactions among the apocytochrome c, CcmG, and the heme-ligation components CcmF, CcmH, and CcmI. We found that they all interact with each other, forming a CcmFGHI-apocytochrome c complex. Using purified wild-type CcmG, CcmH, and apocytochrome c, as well as their respective Cys mutant variants, we determined the rates of thiol-disulfide exchange reactions between selected pairs of Cys residues from these proteins. We established that CcmG can efficiently reduce the disulfide bond of apocytochrome c and also resolve a mixed disulfide bond formed between apocytochrome c and CcmH. We further show that Cys-45 of CcmH and Cys-34 of apocytochrome c are most likely to form this mixed disulfide bond, which is consistent with the stereo-specificity of the heme-apocytochrome c ligation reaction. We conclude that CcmG confers efficiency, and CcmH ensures stereo-specificity during Ccm and present a comprehensive model for thioreduction reactions that lead to heme-apocytochrome c ligation.
Collapse
Affiliation(s)
- Andreia F Verissimo
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Bahia Khalfaoui-Hassani
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Josephine Hwang
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Stefan Steimle
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Nur Selamoglu
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Carsten Sanders
- the Department of Physical Sciences, University of Kutztown, Kutztown, Pennsylvania 19530, and
| | - Camilo E Khatchikian
- the Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968
| | - Fevzi Daldal
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019,
| |
Collapse
|
13
|
Haindrich AC, Boudová M, Vancová M, Diaz PP, Horáková E, Lukeš J. The intermembrane space protein Erv1 of Trypanosoma brucei is essential for mitochondrial Fe-S cluster assembly and operates alone. Mol Biochem Parasitol 2017; 214:47-51. [DOI: 10.1016/j.molbiopara.2017.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/24/2022]
|
14
|
Abstract
Erv1 (essential for respiration and viability 1) is a FAD-dependent sulphydryl oxidase with a tryptophan-rich catalytic domain. We show that Trp95 and Trp183 are important for stabilizing the folding, FAD-binding, and function of Erv1, whilst other four tryptophan residues are not functionally important. Erv1 is an FAD-dependent thiol oxidase of the ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) sub-family and an essential component of the mitochondrial import and assembly pathway. Erv1 contains six tryptophan residues, which are all located in the highly conserved C-terminal FAD-binding domain. Though important structural roles were predicted for the invariable Trp95, no experimental study has been reported. In the present study, we investigated the structural and functional roles of individual tryptophan residues of Erv1. Six single tryptophan-to-phenylalanine yeast mutant strains were generated and their effects on cell viability were tested at various temperatures. Then, the mutants were purified from Escherichia coli. Their effects on folding, FAD-binding and Erv1 activity were characterized. Our results showed that Erv1W95F has the strongest effect on the stability and function of Erv1 and followed by Erv1W183F. Erv1W95F results in a decrease in the Tm of Erv1 by 23°C, a significant loss of the oxidase activity and thus causing cell growth defects at both 30°C and 37°C. Erv1W183F induces changes in the oligomerization state of Erv1, along with a pronounced effect on the stability of Erv1 and its function at 37°C, whereas the other mutants had no clear effect on the function of Erv1 including the highly conserved Trp157 mutant. Finally, computational analysis indicates that Trp95 plays a key role in stabilizing the isoalloxazine ring to interact with Cys133. Taken together, the present study provided important insights into the molecular mechanism of how thiol oxidases use FAD in catalysing disulfide bond formation.
Collapse
|
15
|
The disease-associated mutation of the mitochondrial thiol oxidase Erv1 impairs cofactor binding during its catalytic reaction. Biochem J 2014; 464:449-59. [DOI: 10.1042/bj20140679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Erv1 is a mitochondrial FAD-dependent thiol oxidase. We show that the Erv1 R182H mutant impairs cofactor binding to its catalytic intermediates, providing a model for molecular basis of the functional defect of the disease-associated mutation.
Collapse
|