1
|
Wang J, Kjellgren A, DeMartino GN. Differential Interactions of the Proteasome Inhibitor PI31 with Constitutive and Immuno-20S Proteasomes. Biochemistry 2024; 63:1000-1015. [PMID: 38577872 DOI: 10.1021/acs.biochem.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
PI31 (Proteasome Inhibitor of 31,000 Da) is a 20S proteasome binding protein originally identified as an in vitro inhibitor of 20S proteasome proteolytic activity. Recently reported cryo-electron microscopy structures of 20S-PI31 complexes have revealed that the natively disordered proline-rich C-terminus of PI31 enters the central chamber in the interior of the 20S proteasome and interacts directly with the proteasome's multiple catalytic threonine residues in a manner predicted to inhibit their enzymatic function while evading its own proteolysis. Higher eukaryotes express an alternative form of the 20S proteasome (termed "immuno-proteasome") that features genetically and functionally distinct catalytic subunits. The effect of PI31 on immuno-proteasome function is unknown. We examine the relative inhibitory effects of PI31 on purified constitutive (20Sc) and immuno-(20Si) 20S proteasomes in vitro and show that PI31 inhibits 20Si hydrolytic activity to a significantly lesser degree than that of 20Sc. Unlike 20Sc, 20Si hydrolyzes the carboxyl-terminus of PI31 and this effect contributes to the reduced inhibitory activity of PI31 toward 20Si. Conversely, loss of 20Sc inhibition by PI31 point mutants leads to PI31 degradation by 20Sc. These results demonstrate unexpected differential interactions of PI31 with 20Sc and 20Si and document their functional consequences.
Collapse
Affiliation(s)
- Jason Wang
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - Abbey Kjellgren
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| |
Collapse
|
2
|
Upadhyay A, Joshi V. Proteasome Activators and Ageing: Restoring Proteostasis Using Small Molecules. Subcell Biochem 2024; 107:21-41. [PMID: 39693018 DOI: 10.1007/978-3-031-66768-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is an inevitable phenomenon that remains under control of a plethora of signalling pathways and regulatory mechanisms. Slowing of cellular homeostasis and repair pathways, declining genomic and proteomic integrity, and deficient stress regulatory machinery may cause accumulating damage triggering initiation of pathways leading to ageing-associated changes. Multiple genetic studies in small laboratory organisms focused on the manipulation of proteasomal activities have shown promising results in delaying the age-related decline and improving the lifespan. In addition, a number of studies indicate a prominent role of small molecule-based proteasome activators showing positive results in ameliorating the stress conditions, protecting degenerating neurons, restoring cognitive functions, and extending life span of organisms. In this chapter, we provide a brief overview of the multi-enzyme proteasome complex, its structure, subunit composition and variety of cellular functions. We also highlight the strategies applied in the past to modulate the protein degradation efficiency of proteasome and their impact on rebalancing the proteostasis defects. Finally, we provide a descriptive account of proteasome activation mechanisms and small molecule-based strategies to improve the overall organismal health and delay the development of age-associated pathologies.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, India.
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Türker F, Bharadwaj RA, Kleinman JE, Weinberger DR, Hyde TM, White CJ, Williams DW, Margolis SS. Orthogonal approaches required to measure proteasome composition and activity in mammalian brain tissue. J Biol Chem 2023:104811. [PMID: 37172721 DOI: 10.1016/j.jbc.2023.104811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Proteasomes are large macromolecular complexes with multiple distinct catalytic activities that are each vital to human brain health and disease. Despite their importance, standardized approaches to investigate proteasomes have not been universally adapted. Here, we describe pitfalls and define straightforward orthogonal biochemical approaches essential to measure and understand changes in proteasome composition and activity in the mammalian central nervous system. Through our experimentation in the mammalian brain, we determined an abundance of catalytically active proteasomes exist with and without a 19S cap(s), the regulatory particle essential for ubiquitin-dependent degradation. Moreover, we learned that in-cell measurements using activity-based probes (ABPs) are more sensitive in determining the available activity of the 20S proteasome without the 19S cap and in measuring individual catalytic subunit activities of each β subunit within all neuronal proteasomes. Subsequently, applying these tools to human brain samples, we were surprised to find that post-mortem tissue retained little to no 19S-capped proteasome, regardless of age, sex, or disease state. Comparing brain tissues (parahippocampal gyrus) from human Alzheimer's disease (AD) patients and unaffected subjects, available 20S proteasome activity was significantly elevated in severe cases of AD, an observation not previously noted. Taken together, our study establishes standardized approaches for comprehensive investigation of proteasomes in mammalian brain tissue, and we reveal new insight into brain proteasome biology.
Collapse
Affiliation(s)
- Fulya Türker
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rahul A Bharadwaj
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cory J White
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Geijtenbeek KW, Janzen J, Bury AE, Sanz-Sanz A, Hoebe RA, Bondulich MK, Bates GP, Reits EAJ, Schipper-Krom S. Reduction in PA28αβ activation in HD mouse brain correlates to increased mHTT aggregation in cell models. PLoS One 2022; 17:e0278130. [PMID: 36574405 PMCID: PMC9794069 DOI: 10.1371/journal.pone.0278130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022] Open
Abstract
Huntington's disease is an autosomal dominant heritable disorder caused by an expanded CAG trinucleotide repeat at the N-terminus of the Huntingtin (HTT) gene. Lowering the levels of soluble mutant HTT protein prior to aggregation through increased degradation by the proteasome would be a therapeutic strategy to prevent or delay the onset of disease. Native PAGE experiments in HdhQ150 mice and R6/2 mice showed that PA28αβ disassembles from the 20S proteasome during disease progression in the affected cortex, striatum and hippocampus but not in cerebellum and brainstem. Modulating PA28αβ activated proteasomes in various in vitro models showed that PA28αβ improved polyQ degradation, but decreased the turnover of mutant HTT. Silencing of PA28αβ in cells lead to an increase in mutant HTT aggregates, suggesting that PA28αβ is critical for overall proteostasis, but only indirectly affects mutant HTT aggregation.
Collapse
Affiliation(s)
| | - Jolien Janzen
- Amsterdam UMC Location University of Amsterdam, Medical Biology, Amsterdam, The Netherlands
| | - Aleksandra E. Bury
- Amsterdam UMC Location University of Amsterdam, Medical Biology, Amsterdam, The Netherlands
| | - Alicia Sanz-Sanz
- Amsterdam UMC Location University of Amsterdam, Medical Biology, Amsterdam, The Netherlands
| | - Ron A. Hoebe
- Amsterdam UMC Location University of Amsterdam, Medical Biology, Amsterdam, The Netherlands
| | - Marie K. Bondulich
- Department of Neurodegenerative Disease, Huntington’s Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Gillian P. Bates
- Department of Neurodegenerative Disease, Huntington’s Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Eric A. J. Reits
- Amsterdam UMC Location University of Amsterdam, Medical Biology, Amsterdam, The Netherlands
- * E-mail:
| | - Sabine Schipper-Krom
- Amsterdam UMC Location University of Amsterdam, Medical Biology, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Vasilopoulou MA, Gioran A, Theodoropoulou M, Koutsaviti A, Roussis V, Ioannou E, Chondrogianni N. Healthspan improvement and anti-aggregation effects induced by a marine-derived structural proteasome activator. Redox Biol 2022; 56:102462. [PMID: 36095970 PMCID: PMC9482115 DOI: 10.1016/j.redox.2022.102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Proteasome activation has been shown to promote cellular and organismal healthspan and to protect against aggregation-related conditions, such as Alzheimer's disease (AD). Various natural compounds have been described for their proteasome activating properties but scarce data exist on marine metabolites that often possess unique chemical structures, exhibiting pronounced bioactivities with novel mechanisms of action. In this study, we have identified for the first time a marine structural proteasome activator, namely (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO). DBTO activates the 20S proteasome complex in cell-free assays but also in cellulo. Continuous supplementation of human primary fibroblasts with DBTO throughout their cellular lifespan confers an improved healthspan while ameliorated health status is also observed in wild type (wt) Caenorhabditis elegans (C. elegans) nematodes supplemented with DBTO. Furthermore, treatment of various AD nematode models, as well as of human cells of neuronal origin challenged with exogenously added Aβ peptide, with DBTO results in enhanced protection against Aβ-induced proteotoxicity. In total, our results reveal the first structural proteasome activator derived from the marine ecosystem and highlight its potential as a compound that might be used for healthspan maintenance and preventive strategies against proteinopathies, such as AD. (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO) is a structural proteasome activator. DBTO is the first identified marine structural proteasome activator. DBTO positively modulates cellular healthspan and organismal health status. DBTO confers protection against Aβ-induced proteotoxicity.
Collapse
|
6
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
7
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
8
|
Proteasome Activation to Combat Proteotoxicity. Molecules 2019; 24:molecules24152841. [PMID: 31387243 PMCID: PMC6696185 DOI: 10.3390/molecules24152841] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Loss of proteome fidelity leads to the accumulation of non-native protein aggregates and oxidatively damaged species: hallmarks of an aged cell. These misfolded and aggregated species are often found, and suggested to be the culpable party, in numerous neurodegenerative diseases including Huntington's, Parkinson's, Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Diseases (AD). Many strategies for therapeutic intervention in proteotoxic pathologies have been put forth; one of the most promising is bolstering the efficacy of the proteasome to restore normal proteostasis. This strategy is ideal as monomeric precursors and oxidatively damaged proteins, so called "intrinsically disordered proteins" (IDPs), are targeted by the proteasome. This review will provide an overview of disorders in proteins, both intrinsic and acquired, with a focus on susceptibility to proteasomal degradation. We will then examine the proteasome with emphasis on newly published structural data and summarize current known small molecule proteasome activators.
Collapse
|
9
|
Trader DJ, Simanski S, Dickson P, Kodadek T. Establishment of a suite of assays that support the discovery of proteasome stimulators. Biochim Biophys Acta Gen Subj 2017; 1861:892-899. [PMID: 28065760 DOI: 10.1016/j.bbagen.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/03/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND The proteasome catalyzes the degradation of many mis-folded proteins, which are otherwise cytotoxic. There is interest in the discovery of proteasome agonists, but previous efforts to do so have been disappointing. METHODS The cleavage of small fluorogenic peptides is used routinely as an assay to screen for proteasome modulators. We have developed follow-on assays that employ more physiologically relevant substrates. RESULTS To demonstrate the efficacy of this workflow, the NIH Clinical Collection (NCC) was screened. While many compounds stimulated proteasome-mediated proteolysis of the pro-fluorogenic peptide substrates, most failed to evince activity in assays with larger peptide or protein substrates. We also show that two molecules claimed previously to be proteasome agonists, oleuropein and betulinic acid, indeed accelerate hydrolysis of the fluorogenic substrate, but have no effect on the turnover of a mis-folded protein in vitro or in cellulo. However, two small molecules from the NCC, MK-866 and AM-404, stimulate the proteasome-mediated turnover of a mis-folded protein in living cells by 3- to 4-fold. CONCLUSION Assays that monitor the proteasome-mediated degradation of larger peptides and proteins can distinguish bona fide agonists from compounds only able to stimulate the cleavage of short, non-physiologically relevant peptides. GENERAL SIGNIFICANCE A suite of assays has been established that allows the discovery of bona fide proteasome agonists. AM-404 and MK-866 can be useful tools for cell culture experiments, and can serve as scaffolds to generate more potent 20S stimulators.
Collapse
Affiliation(s)
- Darci J Trader
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Scott Simanski
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Paige Dickson
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
10
|
Li X, Liu H, Fischhaber PL, Tang TS. Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol 2015; 132:34-58. [PMID: 26123252 DOI: 10.1016/j.pneurobio.2015.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3, SCA3), an autosomal dominant neurological disorder, is caused by an abnormal expanded polyglutamine (polyQ) repeat in the ataxin-3 protein. The length of the expanded polyQ stretch correlates positively with the severity of the disease and inversely with the age at onset. To date, we cannot fully explain the mechanism underlying neurobiological abnormalities of this disease. Yet, accumulating reports have demonstrated the functions of ataxin-3 protein in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, all of which suggest a role of ataxin-3 in the clearance of misfolded proteins. Notably, the SCA3 pathogenic form of ataxin-3 (ataxin-3(exp)) impairs the misfolded protein clearance via mechanisms that are either dependent or independent of its deubiquitinase (DUB) activity, resulting in the accumulation of misfolded proteins and the progressive loss of neurons in SCA3. Some drugs, which have been used as activators/inducers in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, have been demonstrated to be efficacious in the relief of neurodegeneration diseases like Huntington's disease (HD), Parkinson's (PD), Alzheimer's (AD) as well as SCA3 in animal models and clinical trials, putting misfolded protein clearance on the list of potential therapeutic targets. Here, we undertake a comprehensive review of the progress in understanding the physiological functions of ataxin-3 in misfolded protein clearance and how the polyQ expansion impairs misfolded protein clearance. We then detail the preclinical studies targeting the elimination of misfolded proteins for SCA3 treatment. We close with future considerations for translating these pre-clinical results into therapies for SCA3 patients.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paula L Fischhaber
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Nardi F, Hoffmann TM, Stretton C, Cwiklinski E, Taylor PM, Hundal HS. Proteasomal modulation of cellular SNAT2 (SLC38A2) abundance and function by unsaturated fatty acid availability. J Biol Chem 2015; 290:8173-84. [PMID: 25653282 PMCID: PMC4375474 DOI: 10.1074/jbc.m114.625137] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Expression and activity of the System A/SNAT2 (SLC38A2) amino acid transporter is up-regulated by amino acid starvation and hypertonicity by a mechanism dependent on both ATF4-mediated transcription of the SLC38A2 gene and enhanced stabilization of SNAT2 itself, which forms part of an integrated cellular stress response to nutrient deprivation and osmotic stress. Here we demonstrate that this adaptive increase in System A function is restrained in cells subjected to prior incubation with linoleic acid (LOA, an unsaturated C18:2 fatty acid) for 24 h. While fatty acid treatment had no detectable effect upon stress-induced SNAT2 or ATF4 gene transcription, the associated increase in SNAT2 protein/membrane transport activity were strongly suppressed in L6 myotubes or HeLa cells preincubated with LOA. Cellular ubiquitination of many proteins was increased by LOA and although the fatty acid-induced loss of SNAT2 could be attenuated by proteasomal inhibition, the functional increase in System A transport activity associated with amino acid starvation/hypertonicity that depends upon processing/maturation and delivery of SNAT2 to the cell surface could not be rescued. LOA up-regulated cellular expression of Nedd4.2, an E3-ligase implicated in SNAT2 ubiquitination, but shRNA-directed Nedd4.2 gene silencing could not curb fatty acid-induced loss of SNAT2 adaptation. However, expression of SNAT2 in which seven putative lysyl-ubiquitination sites in the cytoplasmic N-terminal domain were mutated to alanine protected SNAT2 against LOA-induced proteasomal degradation. Collectively, our findings indicate that increased availability of unsaturated fatty acids can compromise the stress-induced induction/adaptation in SNAT2 expression and function by promoting its degradation via the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Francesca Nardi
- From the Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Thorsten M Hoffmann
- From the Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Clare Stretton
- From the Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Emma Cwiklinski
- From the Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Peter M Taylor
- From the Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Harinder S Hundal
- From the Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
12
|
Abstract
SIGNIFICANCE Impairment of the ubiquitin-proteasome system (UPS) has been implicated in the pathogenesis of a wide variety of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. The most significant risk factor for the development of these disorders is aging, which is associated with a progressive decline in UPS activity and the accumulation of oxidatively modified proteins. To date, no therapies have been developed that can specifically up-regulate this system. RECENT ADVANCES In the neurodegenerative brain, dysfunction of the UPS has been associated with the deposition of ubiquitinated protein aggregates and widespread disruption of the proteostasis network. Recent research has identified further evidence of impairment in substrate ubiquitination and proteasomal degradation, which could contribute to the loss of cellular proteostasis in neurodegenerative disease. Novel strategies for activation of the UPS by genetic manipulation and treatment with synthetic compounds have also recently been identified. CRITICAL ISSUES Here, we discuss the specific roles of the UPS in the healthy central nervous system and establish how dysfunctional components can contribute to neurotoxicity in the context of disease. FUTURE DIRECTIONS Knowledge of the UPS components that are specifically or preferentially involved in neurodegenerative disease will be critical in the development of targeted therapies which aim at limiting the accumulation of misfolded proteins without gross disturbance of this major proteolytic pathway.
Collapse
Affiliation(s)
- Chris McKinnon
- Department of Neurodegenerative Disease, University College London Institute of Neurology , London, United Kingdom
| | | |
Collapse
|
13
|
Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES. Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med 2014; 71:303-320. [PMID: 24681338 DOI: 10.1016/j.freeradbiomed.2014.03.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 02/02/2023]
Abstract
Aging is a natural biological process that is characterized by a progressive accumulation of macromolecular damage. In the proteome, aging is accompanied by decreased protein homeostasis and function of the major cellular proteolytic systems, leading to the accumulation of unfolded, misfolded, or aggregated proteins. In particular, the proteasome is responsible for the removal of normal as well as damaged or misfolded proteins. Extensive work during the past several years has clearly demonstrated that proteasome activation by either genetic means or use of compounds significantly retards aging. Importantly, this represents a common feature across evolution, thereby suggesting proteasome activation to be an evolutionarily conserved mechanism of aging and longevity regulation. This review article reports on the means of function of these proteasome activators and how they regulate aging in various species.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece.
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece; Örebro University Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece; Örebro University Medical School, Örebro, Sweden
| |
Collapse
|
14
|
Yamamoto S, Otsuka Y, Borjigin G, Masuda K, Ikeuchi Y, Nishiumi T, Suzuki A. Effects of a High-Pressure Treatment on the Activity and Structure of Rabbit Muscle Proteasome. Biosci Biotechnol Biochem 2014; 69:1239-47. [PMID: 16041125 DOI: 10.1271/bbb.69.1239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects were assessed of high hydrostatic pressure on the activity and structure of rabbit skeletal muscle proteasome. The pressure effects on the activity were measured by the amount of fluorometric products released from synthetic substrates under pressure and from fluorescein isothiocyanate (FITC)-labeled casein after releasing the pressure. The effects on the structure were measured by fluorescene spectroscopy under pressure, and by circular dichroism (CD) spectroscopy and surface hydrophobicity after releasing the pressure. The optimal pressure for the hydrolyzing activity of synthetic peptides was 50 MPa. The degradation of FITC-labeled casein increased linearly with increasing pressure applied up to 200 MPa, and then markedly decreased up to at 400 MPa. The changes in the tertiary structure detected by fluorometric measurement were irreversible, whereas the changes in the secondary structure were small compared with those by heat treatment. The pressure-induced activation of proteasome therefore seems to have been due to a little unfolding of the active sites of proteasome.
Collapse
Affiliation(s)
- Shuhei Yamamoto
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
17
|
Changes of the Proteasomal System During the Aging Process. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:249-75. [DOI: 10.1016/b978-0-12-397863-9.00007-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Chondrogianni N, Gonos ES. Structure and Function of the Ubiquitin–Proteasome System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:41-74. [DOI: 10.1016/b978-0-12-397863-9.00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Skipnes D, Johnsen SO, Skåra T, Sivertsvik M, Lekang O. Optimization of Heat Processing of Farmed Atlantic Cod (Gadus morhua) Muscle with Respect to Cook Loss, Water Holding Capacity, Color, and Texture. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2011. [DOI: 10.1080/10498850.2011.571808] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Löw P. The role of ubiquitin-proteasome system in ageing. Gen Comp Endocrinol 2011; 172:39-43. [PMID: 21324320 DOI: 10.1016/j.ygcen.2011.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/24/2011] [Accepted: 02/03/2011] [Indexed: 01/22/2023]
Abstract
Maintenance of cellular homeostasis influences ageing and it is determined by several factors, including efficient proteolysis of damaged proteins. The ubiquitin-proteasome system is the major protein degradation pathway in the cell. Specifically, the proteasome is responsible for clearance of abnormal, denatured or in general damaged proteins as well as for the regulated degradation of short-lived proteins. In this review the involvement of the ubiquitin-proteasome pathway in protein degradation at different levels of cellular life is discussed in relation with ageing. Though the exact underlying mechanism is unclear, an age-related decrease in proteasome activity weakens cellular capacity to remove oxidatively modified proteins and favours the development of diseases. Up-regulation of proteasome activity is characteristic of muscle wasting conditions, but may not be rate limiting. Meanwhile, enhanced presence of immunoproteasomes in ageing brain and muscle tissue could reflect a persistent inflammatory defence and anti-stress mechanism. Insulin/IGF-1 signalling regulates ageing in worms, flies and mammals. The insulin/IGF-1 receptor inhibits the forkhead transcription factor, FoxO through activating a cascade of conserved kinases. Longevity increases when FoxO becomes activated in response to reduced insulin/IGF-1 signalling. The ubiquitin-proteasome system plays a major role in signal transduction associated with stress and ageing. The understanding of specific proteolytic targeting paves the way for a new generation of active molecules that may control particular steps of normal and pathological ageing.
Collapse
Affiliation(s)
- Peter Löw
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
21
|
Abstract
The ubiquitin/proteasome pathway is the major proteolytic quality control system in cells. In this review we discuss the impact of a deregulation of this pathway on neuronal function and its causal relationship to the intracellular deposition of ubiquitin protein conjugates in pathological inclusion bodies in all the major chronic neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases as well as amyotrophic lateral sclerosis. We describe the intricate nature of the ubiquitin/proteasome pathway and discuss the paradox of protein aggregation, i.e. its potential toxic/protective effect in neurodegeneration. The relations between some of the dysfunctional components of the pathway and neurodegeneration are presented. We highlight possible ubiquitin/proteasome pathway-targeting therapeutic approaches, such as activating the proteasome, enhancing ubiquitination and promoting SUMOylation that might be important to slow/treat the progression of neurodegeneration. Finally, a model time line is presented for neurodegeneration starting at the initial injurious events up to protein aggregation and cell death, with potential time points for therapeutic intervention.
Collapse
|
22
|
Ban HS, Minegishi H, Shimizu K, Maruyama M, Yasui Y, Nakamura H. Discovery of Carboranes as Inducers of 20S Proteasome Activity. ChemMedChem 2010; 5:1236-41. [DOI: 10.1002/cmdc.201000112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Chondrogianni N, Gonos ES. Proteasome Function Determines Cellular Homeostasis and the Rate of Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:38-46. [DOI: 10.1007/978-1-4419-7002-2_4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Role of the ubiquitin proteasome system in regulating skin pigmentation. Int J Mol Sci 2009; 10:4428-4434. [PMID: 20057953 PMCID: PMC2790116 DOI: 10.3390/ijms10104428] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/29/2009] [Accepted: 10/09/2009] [Indexed: 11/16/2022] Open
Abstract
Pigmentation of the skin, hair and eyes is regulated by tyrosinase, the critical rate-limiting enzyme in melanin synthesis by melanocytes. Tyrosinase is degraded endogenously, at least in part, by the ubiquitin proteasome system (UPS). Several types of inherited hypopigmentary diseases, such as oculocutaneous albinism and Hermansky-Pudlak syndrome, involve the aberrant processing and/or trafficking of tyrosinase and its subsequent degradation which can occur due to the quality-control machinery. Studies on carbohydrate modifications have revealed that tyrosinase in the endoplasmic reticulum (ER) is proteolyzed via ER-associated protein degradation and that tyrosinase degradation can also occur following its complete maturation in the Golgi. Among intrinsic factors that regulate the UPS, fatty acids have been shown to modulate tyrosinase degradation in contrasting manners through increased or decreased amounts of ubiquitinated tyrosinase that leads to its accelerated or decelerated degradation by proteasomes.
Collapse
|
25
|
Abstract
This mini review covers the drug discovery aspect of both proteasome activators and inhibitors. The proteasome is involved in many essential cellular functions, such as regulation of cell cycle, cell differentiation, signal transduction pathways, antigen processing for appropriate immune responses, stress signaling, inflammatory responses, and apoptosis. Due to the importance of the proteasome in cellular functions, inhibition or activation of the proteasome could become a useful therapeutic strategy for a variety of diseases. Many proteasome inhibitors have been identified and can be classified into two groups according to their source: chemically synthesized small molecules and compounds derived from natural products. A successful example of development of a proteasome inhibitor as a clinically useful drug is the peptide boronate, PS341 (Bortezomib), was approved for the treatment of multiple myeloma. In contrast to proteasome inhibitors, small molecules that can activate or enhance proteasome activity are rare and are not well studied. The fact that over-expression of the cellular proteasome activator PA28 exhibited beneficial effects on the Huntington's disease neuronal model cells raised the prospect that small molecule proteasome activators could become useful therapeutics. The beneficial effect of oleuropein, a small molecule proteasome activator, on senescence of human fibroblasts also suggested that proteasome activators might have the potential to be developed into anti-aging agents.
Collapse
Affiliation(s)
- Li Huang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
26
|
Abstract
Homeostasis is a key feature of cellular lifespan. Maintenance of cellular homeostasis influences the rate of aging and is determined by several factors, including efficient proteolysis of damaged proteins. Protein degradation is predominantly catalyzed by the proteasome. Specifically, the proteasome is responsible for cell clearance of abnormal, denatured or in general damaged proteins as well as for the regulated degradation of short-lived proteins. As proteasome has an impaired function during aging, emphasis has been given recently in identifying ways of its activation. A number of studies have shown that the proteasome can be activated by genetic manipulations as well as by factors that affect its conformation and stability. Importantly the developed proteasome activated cell lines exhibit an extended lifespan. This review article discusses in details the various factors that are involved in proteasome biosynthesis and assembly and how they contribute to its activation. Finally as few natural compounds have been identified having proteasome activation properties, we discuss the advantages of this novel antiaging strategy.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, Athens 11635, Greece
| | | |
Collapse
|
27
|
Chouduri AU, Tokumoto T, Dohra H, Ushimaru T, Yamada S. Functional and biochemical characterization of the 20S proteasome in a yeast temperature-sensitive mutant, rpt6-1. BMC BIOCHEMISTRY 2008; 9:20. [PMID: 18644121 PMCID: PMC2515314 DOI: 10.1186/1471-2091-9-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 07/21/2008] [Indexed: 11/16/2022]
Abstract
Background Rpt6-1 is a thermosensitive yeast mutant with a deletion of a gene encoding a regulatory subunit of the 26S proteasome, RPT6, which is able to grow at 25°C but not at 37°C. In this study, peptidase activities, activation profiles, and the subunit composition of the 20S proteasome purified from the rpt6-1 mutant was characterized. Results The 20S proteasome purified from rpt6-1 exhibited low levels of peptidase activities in the absence of activators, but nearly same activated activities in the presence of activators, suggesting a gating defect in the proteasome channel. Detailed analyses of the composition of the 20S proteasome through separation of all subunits by two-dimensional gel electrophoresis followed by identification of each subunit using MALDI-TOF-MS revealed that two subunits, α1 and α7, differed from those of wild-type cells in both electrophoretic mobility and pI values. The changes in these two α-subunits were apparent at the permissive temperature, but disappeared during stress response at the restrictive temperature. Interestingly, upon disappearance of these changes, the levels of peptidase activity of the 20S proteasome in the rpt6-1 mutant were restored as the wild-type. These results suggest that two different forms of the α-subunits, α1 and α7, block the proteasome channel in the rpt6-1 mutant. Conclusion Two α-subunits (α1 and α7) of the 20S proteasome in the rpt6-1 mutant differed from their wild-type counterparts and peptidase activities were found to be lower in the mutant than in the wild-type strain.
Collapse
Affiliation(s)
- Aktar Uzzaman Chouduri
- Department of Biology, Faculty of Science, National University Corporation, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8529, Japan.
| | | | | | | | | |
Collapse
|
28
|
Jaenicke E, Decker H. Kinetic properties of catecholoxidase activity of tarantula hemocyanin. FEBS J 2008; 275:1518-1528. [DOI: 10.1111/j.1742-4658.2008.06311.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elmar Jaenicke
- Institut für Molekulare Biophysik, Johannes Gutenberg Universität, Mainz, Germany
| | - Heinz Decker
- Institut für Molekulare Biophysik, Johannes Gutenberg Universität, Mainz, Germany
| |
Collapse
|
29
|
Zhang F, Paterson AJ, Huang P, Wang K, Kudlow JE. Metabolic control of proteasome function. Physiology (Bethesda) 2008; 22:373-9. [PMID: 18073410 DOI: 10.1152/physiol.00026.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteasomes are major cellular proteases that are important for protein turnover and cell survival. Dysregulation of proteasome is related to many major human diseases. Regulation of the proteasome is beginning to be understood by the recent findings that proteasomes are modified and regulated by metabolic factors O-GlcNAcylation and PKA phosphorylation.
Collapse
Affiliation(s)
- Fengxue Zhang
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, USA
| | | | | | | | | |
Collapse
|
30
|
Towards the control of intracellular protein turnover: mitochondrial Lon protease inhibitors versus proteasome inhibitors. Biochimie 2007; 90:260-9. [PMID: 18021745 DOI: 10.1016/j.biochi.2007.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/19/2007] [Indexed: 01/21/2023]
Abstract
Cellular protein homeostasis results from the combination of protein biogenesis processes and protein quality control mechanisms, which contribute to the functional state of cells under normal and stress conditions. Proteolysis constitutes the final step by which short-lived, misfolded and damaged intracellular proteins are eliminated. Protein turnover and oxidatively modified protein degradation are mainly achieved by the proteasome in the cytosol and nucleus of eukaryotic cells while several ATP-dependent proteases including the matrix protease Lon take part in the mitochondrial protein degradation. Moreover, Lon protease seems to play a major role in the elimination of oxidatively modified proteins in the mitochondrial matrix. Specific inhibitors are commonly used to assess cellular functions of proteolytic systems as well as to identify their protein substrates. Here, we present and discuss known proteasome and Lon protease inhibitors. To date, very few inhibitors of Lon have been described and no specific inhibitors of this protease are available. The current knowledge on both catalytic mechanisms and inhibitors of these two proteases is first described and attempts to define specific non-peptidic inhibitors of the human Lon protease are presented.
Collapse
|
31
|
Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 2007; 10:157-72. [PMID: 17518699 DOI: 10.1089/rej.2006.0513] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Normal human fibroblasts undergo replicative senescence due to both genetic and environmental factors. Senescence and aging can be further accelerated by exposure of cells to a variety of oxidative agents that contribute among other effects to the accumulation of damaged proteins. The proteasome, a multicatalytic nonlysosomal protease, has impaired function during aging, while its increased expression delays senescence in human fibroblasts. The aim of this study was to identify natural compounds that enhance proteasome activity and exhibit antiaging properties. We demonstrate that oleuropein, the major constituent of Olea europea leaf extract, olive oil and olives, enhances the proteasome activities in vitro stronger than other known chemical activators, possibly through conformational changes of the proteasome. Moreover, continuous treatment of early passage human embryonic fibroblasts with oleuropein decreases the intracellular levels of reactive oxygen species (ROS), reduces the amount of oxidized proteins through increased proteasome-mediated degradation rates and retains proteasome function during replicative senescence. Importantly, oleuropein-treated cultures exhibit a delay in the appearance of senescence morphology and their life span is extended by approximately 15%. In summary, these data demonstrate the beneficial effect of oleuropein on human fibroblasts undergoing replicative senescence and provide new insights towards enhancement of cellular antioxidant mechanisms by natural compounds that can be easily up-taken through normal diet.
Collapse
Affiliation(s)
- Magda Katsiki
- Institute of Biological Research and Biotechnology, Laboratory of Molecular and Cellular Aging, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | |
Collapse
|
32
|
Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 2007; 282:22460-71. [PMID: 17565987 DOI: 10.1074/jbc.m702439200] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of the proteasome has been documented in a variety of human diseases such as Alzheimer, muscle atrophy, cataracts etc. Proteolytic activity of 26 S proteasome is ATP- and ubiquitin-dependent. O-GlcNAcylation of Rpt2, one of the AAA ATPases in the 19 S regulatory cap, shuts off the proteasome through the inhibition of ATPase activity. Thus, through control of the flux of glucose into O-GlcNAc, the function of the proteasome is coupled to glucose metabolism. In the present study we found another metabolic control of the proteasome via cAMP-dependent protein kinase (PKA). Contrary to O-Glc-NAcylation, PKA activated proteasomes both in vitro and in vivo in association with the phosphorylation at Ser(120) of another AAA ATPase subunit, Rpt6. Mutation of Ser(120) to Ala blocked proteasome function. The stimulatory effect of PKA and the phosphorylation of Rpt6 were reversible by protein phosphatase 1 gamma. Thus, hormones using the PKA system can also regulate proteasomes often in concert with glucose metabolism. This finding might lead to novel strategies for the treatment of proteasome-related diseases.
Collapse
Affiliation(s)
- Fengxue Zhang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
33
|
Dutaud D, Aubry L, Sentandreu MA, Ouali A. Bovine muscle 20S proteasome: I. Simple purification procedure and enzymatic characterization in relation with postmortem conditions. Meat Sci 2006; 74:327-36. [PMID: 22062843 DOI: 10.1016/j.meatsci.2006.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 03/17/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
Over the last decade, several sets of evidence support a possible contribution of the 20S proteasome to the meat tenderizing process. This assumption was emphasized by recent investigations demonstrating that the 20S proteasome was active in the absence of activators and exhibited endo- and exoproteolytic activities, a status often strongly debated before. In the present work, we developed a new rapid and simple purification procedure for muscle 20S proteasome and revisited the physicochemical properties of this complex in relation with the postmortem muscle environmental conditions, i.e. temperature, pH, osmolarity, etc. From a crude extract obtained from freshly excised muscle tissue, reasonable amounts of highly pure proteasome were prepared within a maximum of 4 days using only three chromatography steps. This purified proteasome was used to investigate the effect of pH, temperature, ionic strength and sodium dodecyl sulphate (SDS) on the major hydrolytic activities of this complex, i.e. trypsin-like (TL), chymotrypsin-like (CL) and peptidylglutamyl peptide hydrolase (PGPH) activities. Taken together, the data obtained suggest that the 20S proteasome constitutes a high hydrolytic potential in postmortem muscle conditions. To attest this finding, the 20S proteasome was further quantified by ELISA in at death and postmortem muscles including Longissimus, Rectus abdominis, Diaphragma pedialis and Tensor fascia latae bovine muscles. The primary conclusion was that time course changes in proteasome concentrations were not dependent on the kinetics of the pH fall. Secondly, the proteasome concentration in conditioned meat was in good agreement with previously reported proteolytic activity. Furthermore, the decrease in the muscle proteasome concentration can be considered as slow and this is particularly true in type 1 muscles for which the decrease in the amount of this complex did not exceed 7% during the first three days postmortem. This would suggest that the 20S proteasome was relatively stable during meat conditioning, a feature supporting a potential role in the meat tenderizing process.
Collapse
Affiliation(s)
- D Dutaud
- Unité de biochimie, SRV, INRA-Theix, 63122 Saint Genès Champanelle, France
| | | | | | | |
Collapse
|
34
|
Ando H, Wen ZM, Kim HY, Valencia J, Costin GE, Watabe H, Yasumoto KI, Niki Y, Kondoh H, Ichihashi M, Hearing V. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J 2006; 394:43-50. [PMID: 16232122 PMCID: PMC1386001 DOI: 10.1042/bj20051419] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteasomes are multicatalytic proteinase complexes within cells that selectively degrade ubiquitinated proteins. We have recently demonstrated that fatty acids, major components of cell membranes, are able to regulate the proteasomal degradation of tyrosinase, a critical enzyme required for melanin biosynthesis, in contrasting manners by relative increases or decreases in the ubiquitinated tyrosinase. In the present study, we show that altering the intracellular composition of fatty acids affects the post-Golgi degradation of tyrosinase. Incubation with linoleic acid (C18:2) dramatically changed the fatty acid composition of cultured B16 melanoma cells, i.e. the remarkable increase in polyunsaturated fatty acids such as linoleic acid and arachidonic acid (C20:4) was compensated by the decrease in monounsaturated fatty acids such as oleic acid (C18:1) and palmitoleic acid (C16:1), with little effect on the proportion of saturated to unsaturated fatty acid. When the composition of intracellular fatty acids was altered, tyrosinase was rapidly processed to the Golgi apparatus from the ER (endoplasmic reticulum) and the degradation of tyrosinase was increased after its maturation in the Golgi. Retention of tyrosinase in the ER was observed when cells were treated with linoleic acid in the presence of proteasome inhibitors, explaining why melanin synthesis was decreased in cells treated with linoleic acid and a proteasome inhibitor despite the abrogation of tyrosinase degradation. These results suggest that the intracellular composition of fatty acid affects the processing and function of tyrosinase in connection with the ubiquitin-proteasome pathway and suggest that this might be a common physiological approach to regulate protein degradation.
Collapse
Affiliation(s)
- Hideya Ando
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Zhi-Ming Wen
- †Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, U.S.A
| | - Hee-Yong Kim
- †Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, U.S.A
| | - Julio C. Valencia
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Gertrude-E. Costin
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Hidenori Watabe
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Ken-ichi Yasumoto
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | | | | | | | - Vincent J. Hearing
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Bulteau AL, Moreau M, Saunois A, Nizard C, Friguet B. Algae extract-mediated stimulation and protection of proteasome activity within human keratinocytes exposed to UVA and UVB irradiation. Antioxid Redox Signal 2006; 8:136-43. [PMID: 16487047 DOI: 10.1089/ars.2006.8.136] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sun exposure is the major environmental influence for epidermal cells; the harmful effect of UV radiation on skin is related to the generation of reactive oxygen species that alter cellular components including proteins. It is now well established that the proteasome is responsible for the degradation of most of oxidized proteins and that impairment of proteasome function is a hallmark of cellular aging. In a previous study, we investigated the effects of UV irradiation on proteasomes in human keratinocyte cultures and showed that all three peptidase activities were decreased 24 h after irradiation of the cells. Increased levels of oxidatively modified proteins were observed in irradiated cells and were found to act as endogenous inhibitors of the proteasome. We report here on the stimulating and protective effects of an algae extract, prepared from Phaeodactylum tricornutum, on proteasome peptidase activities of human keratinocytes exposed to UVA and UVB irradiation. In addition, preserving proteasome function resulted in lowering the extent of the irradiation-induced protein oxidative damage, opening up new strategies for protection of epidermal cells against the detrimental effects of UV irradiation.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Paris 7-Denis Diderot, Paris, France
| | | | | | | | | |
Collapse
|
36
|
Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R. Molecular machines for protein degradation. Chembiochem 2005; 6:222-56. [PMID: 15678420 DOI: 10.1002/cbic.200400313] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the most precisely regulated processes in living cells is intracellular protein degradation. The main component of the degradation machinery is the 20S proteasome present in both eukaryotes and prokaryotes. In addition, there exist other proteasome-related protein-degradation machineries, like HslVU in eubacteria. Peptides generated by proteasomes and related systems can be used by the cell, for example, for antigen presentation. However, most of the peptides must be degraded to single amino acids, which are further used in cell metabolism and for the synthesis of new proteins. Tricorn protease and its interacting factors are working downstream of the proteasome and process the peptides into amino acids. Here, we summarise the current state of knowledge about protein-degradation systems, focusing in particular on the proteasome, HslVU, Tricorn protease and its interacting factors and DegP. The structural information about these protein complexes opens new possibilities for identifying, characterising and elucidating the mode of action of natural and synthetic inhibitors, which affects their function. Some of these compounds may find therapeutic applications in contemporary medicine.
Collapse
Affiliation(s)
- Michael Groll
- Adolf-Butenandt-Institut Physiological Chemistry, LMU München, Butenandtstrasse 5, Gebäude B, 81377 München, Germany.
| | | | | | | | | |
Collapse
|
37
|
Thomas AR, Oosthuizen V, Naudé RJ. Differential effects of detergents, fatty acids, cations and heating on ostrich skeletal muscle 20S proteasome. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:343-8. [PMID: 15694581 DOI: 10.1016/j.cbpc.2004.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/05/2004] [Accepted: 08/06/2004] [Indexed: 10/25/2022]
Abstract
The 20S proteasome, the catalytic core of the 26S proteasome, has previously been isolated, purified and partially characterised from ostrich skeletal muscle (Thomas, A.R., Oosthuizen, V., Naude, R.J., Muramoto, K. 2002. Biol. Chem. 383, 1267-1270). Due to the apparent latency of the 20S proteasome purified from various sources, this study focuses on further characterising the ostrich enzyme in terms of the effects of selected detergents, fatty acids and cations, as well as heating at 60 degrees C, on four of its activities. Results showed that ostrich skeletal muscle 20S proteasome was affected in a non-concentration-dependent manner by the selected detergents and fatty acids. Monounsaturated fatty acids, unlike unsaturated fatty acids, showed no major effects on the activities of the ostrich enzyme. The enzyme did not show sensitivity towards monovalent cations and the only divalent cations that showed a relevant effect were Ca2+ and Mg2+. Heating at 60 degrees C for 1-2 min had a substantial activating effect only on the peptidylglutamylpeptide-hydrolase (PGPH) and caseinolytic activities. In conclusion, many of the effects by the abovementioned reagents and conditions were noticeably different to those shown on different sources of the enzyme, further demonstrating the unique kinetic characteristics of the ostrich skeletal muscle 20S proteasome.
Collapse
Affiliation(s)
- Adele R Thomas
- Department of Biochemistry and Microbiology, University of Port Elizabeth, PO Box 1600, Port Elizabeth 6000, South Africa
| | | | | |
Collapse
|
38
|
Ferrington DA, Husom AD, Thompson LV. Altered proteasome structure, function, and oxidation in aged muscle. FASEB J 2005; 19:644-6. [PMID: 15677694 DOI: 10.1096/fj.04-2578fje] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proteasome is the main protease for degrading oxidized proteins. We asked whether altered proteasome function contributes to the accumulation of oxidized muscle proteins with aging. Proteasome structure, function, and oxidation state were compared in young and aged F344BN rat fast-twitch skeletal muscle. In proteasome-enriched homogenates from aged muscle, we observed a two- to threefold increase in content of the 20S proteasome that was due to a corresponding increase in immunoproteasome. Content of the regulatory proteins, PA700 and PA28, relative to the 20S were reduced 75% with aging. Upon addition of exogenous PA700, there was a twofold increase in peptide hydrolysis in aged muscle, suggesting the endogenous content of PA700 is inadequate for complete activation of the 20S. Measures of catalytic activity showed a 50% reduction in specific activity for proteasome-enriched homogenates with aging. With purification of the 20S, proteasome specific activity was equivalent between ages, indicating that endogenous regulators inhibit proteasome in aged muscle. Significantly less degradation of oxidized calmodulin by the 20S from aged muscle was observed. Partial rescue of activity for aged 20S by DTT implies oxidation of functionally significant cysteines. These results demonstrate significant age-related changes in proteasome structure, function, and oxidation state that could inhibit removal of oxidized proteins.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology, 380 Lions Research Bldg., 2001 6th Street SE, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
39
|
Abstract
Intracellular protein degradation is one of the most precisely regulated processes in living cells. The main component of the degradation machinery is the 20S proteasome present in eukaryotes as well as in prokaryotes. We have developed successful purification protocols for the 20S proteasome in its native state using an affinity tag strategy. This chapter describes in detail the purification protocols, proteolytic activity assays, crystallization, and structure determination for the yeast 20S proteasome. The crystal structure of the eukaryotic proteasome opens new possibilities for identifying, characterizing, and elucidating the mode of action for natural and synthetic inhibitors, which affect its function. Some of these compounds may find therapeutic applications in contemporary medicine.
Collapse
Affiliation(s)
- Michael Groll
- Institute für Physiologische Chemie, Ludwig Maximilians Universitat-München, 81377 Munich, Germany
| | | |
Collapse
|
40
|
Wong SBJ, Buck CB, Shen X, Siliciano RF. An Evaluation of Enforced Rapid Proteasomal Degradation as a Means of Enhancing Vaccine-Induced CTL Responses. THE JOURNAL OF IMMUNOLOGY 2004; 173:3073-83. [PMID: 15322167 DOI: 10.4049/jimmunol.173.5.3073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HIV-1 Gag protein is an attractive target for CTL-based vaccine strategies because it shows less sequence variability than other HIV-1 proteins. In an attempt to increase the immunogenicity of HIV-1 Gag, we created Gag variants that were targeted to the proteasomal pathway for rapid degradation. This enhanced rate of degradation was associated with increased presentation of MHC class I-associated antigenic peptides on the cell surface. Despite this, immunizing mice with either plasmid DNA or recombinant vaccinia vectors expressing unstable Gag failed to produce significant increases in bulk CTL responses or Ag-specific production of IFN-gamma by CD8(+) T cells compared with mice immunized with stable forms of Gag. Production of IFN-gamma by CD4(+) T cells was also impaired, and we speculate that the abrogation of CD4(+) T cell help was responsible for the impaired CTL response. These results suggest that vaccine strategies designed to increase the density of peptide-MHC class I complexes on the surfaces of APC may not necessarily enhance immunogenicity with respect to CTL responses.
Collapse
Affiliation(s)
- S B Justin Wong
- Program in Cellular and Molecular Medicine, Department of Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
41
|
Ando H, Watabe H, Valencia JC, Yasumoto KI, Furumura M, Funasaka Y, Oka M, Ichihashi M, Hearing VJ. Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase: a new aspect of ubiquitin-proteasome function. J Biol Chem 2004; 279:15427-33. [PMID: 14739285 DOI: 10.1074/jbc.m313701200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acids are common components of biological membranes that are known to play important roles in intracellular signaling. We report here a novel mechanism by which fatty acids regulate the degradation of tyrosinase, a critical enzyme associated with melanin biosynthesis in melanocytes and melanoma cells. Linoleic acid (unsaturated fatty acid, C18:2) accelerated the spontaneous degradation of tyrosinase, whereas palmitic acid (saturated fatty acid, C16:0) retarded the proteolysis. The linoleic acid-induced acceleration of tyrosinase degradation could be abrogated by inhibitors of proteasomes, the multicatalytic proteinase complexes that selectively degrade intracellular ubiquitinated proteins. Linoleic acid increased the ubiquitination of many cellular proteins, whereas palmitic acid decreased such ubiquitination, as compared with untreated controls, when a proteasome inhibitor was used to stabilize ubiquitinated proteins. Immunoprecipitation analysis also revealed that treatment with fatty acids modulated the ubiquitination of tyrosinase, i.e. linoleic acid increased the amount of ubiquitinated tyrosinase whereas, in contrast, palmitic acid decreased it. Furthermore, confocal immunomicroscopy showed that the colocalization of ubiquitin and tyrosinase was facilitated by linoleic acid and diminished by palmitic acid. Taken together, these data support the view that fatty acids regulate the ubiquitination of tyrosinase and are responsible for modulating the proteasomal degradation of tyrosinase. In broader terms, the function of the ubiquitin-proteasome pathway might be regulated physiologically, at least in part, by fatty acids within cellular membranes.
Collapse
Affiliation(s)
- Hideya Ando
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bey L, Akunuri N, Zhao P, Hoffman EP, Hamilton DG, Hamilton MT. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity. Physiol Genomics 2003; 13:157-67. [PMID: 12582208 DOI: 10.1152/physiolgenomics.00001.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Physical inactivity and unloading lead to diverse skeletal muscle alterations. Our goal was to identify the genes in skeletal muscle whose expression is most sensitive to periods of unloading/reduced physical activity and that may be involved in triggering initial responses before phenotypic changes are evident. The ability of short periods of physical activity/loading as an effective countermeasure against changes in gene expression mediated by inactivity was also tested. Affymetrix microarrays were used to compare mRNA levels in the soleus muscle under three experimental treatments (n = 20-29 rats each): 12-h hindlimb unloading (HU), 12-h HU followed by 4 h of intermittent low-intensity ambulatory and postural activity (4-h reloading), and control (with ambulatory and postural activity). Using a combination of criteria, we identified a small set of genes (approximately 1% of 8,738 genes on the array or 4% of significant expressed genes) with the most reproducible and largest responses to altered activity. Analysis revealed a coordinated regulation of transcription for a large number of key signaling proteins and transcription factors involved in protein synthesis/degradation and energy metabolism. Most (21 of 25) of the gene expression changes that were downregulated during HU returned at least to control levels during the reloading. In surprising contrast, 27 of 38 of the genes upregulated during HU remained significantly above control, but most showed trends toward reversal. This introduces a new concept that, in general, genes that are upregulated during unloading/inactivity will be more resistant to periodic reloading than those genes that are downregulated. This study reveals genes that are the most sensitive to loading/activity in rat skeletal muscle and indicates new targets that may initiate muscle alterations during inactivity.
Collapse
Affiliation(s)
- Lionel Bey
- Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
43
|
The Influence of Potential Pre-Treatment and Processing Parameters on General Proteolytic Activity Characteristics in Atlantic Salmon (Salmo salar), Studied in a Model System. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2002. [DOI: 10.1300/j030v11n03_07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Abstract
The proteasome is an essential part of our immune surveillance mechanisms: by generating peptides from intracellular antigens it provides peptides that are then 'presented' to T cells. But proteasomes--the waste-disposal units of the cell--typically do not generate peptides for antigen presentation with high efficiency. How, then, does the proteasome adapt to serve the immune system well?
Collapse
Affiliation(s)
- P M Kloetzel
- Institut für Biochemie, Medical Faculty, Charité, Humboldt University, Monbijoustrasse 2, 10117 Berlin, Germany.
| |
Collapse
|
45
|
Orlowski M, Wilk S. Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 2000; 383:1-16. [PMID: 11097171 DOI: 10.1006/abbi.2000.2036] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome, a multisubunit, multicatalytic proteinase complex, is attracting growing attention as the main intracellular, extralysosomal, proteolytic system involved in ubiquitin-(Ub) dependent and Ub-independent intracellular proteolysis. Its involvement in the mitotic cycle, and control of the half-life of most cellular proteins, functions absolutely necessary for cell growth and viability, make it an attractive target for researchers of intracellular metabolism and an important target for pharmacological intervention. The proteasome belongs to a new mechanistic class of proteases, the N-terminal nucleophile hydrolases, where the N-terminal threonine residue functions as the nucleophile. This minireview focuses on the three classical catalytic activities of the proteasome, designated chymotrypsin-like, trypsin-like, and peptidyl-glutamyl-peptide hydrolyzing in eukaryotes and also the activities of the more simple Archaebacteria and Eubacteria proteasomes. Other catalytic activities of the proteasome and their possible origin are also examined. The specificity of the catalytic components toward synthetic substrates, natural peptides, and proteins and their relationship to the catalytic centers are reviewed. Some unanswered questions and future research directions are suggested.
Collapse
Affiliation(s)
- M Orlowski
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
46
|
Schmidtke G, Emch S, Groettrup M, Holzhutter HG. Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome. J Biol Chem 2000; 275:22056-63. [PMID: 10806206 DOI: 10.1074/jbc.m002513200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 20 S proteasome is an endoprotease complex that preferentially cleaves peptides C-terminal of hydrophobic, basic, and acidic residues. Recently, we showed that these specific activities, classified as chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide-hydrolyzing (PGPH) activity, are differently affected by Ritonavir, an inhibitor of human immunodeficiency virus-1 protease. Ritonavir competitively inhibited the chymotrypsin-like activity, whereas the trypsin-like activity was enhanced. Here we demonstrate that the Ritonavir-mediated up-regulation of the trypsin-like activity is not affected by specific active site inhibitors of the chymo-trypsin-like and PGPH activity. Moreover, we show that the mutual regulation of chymotrypsin-like and PGPH activities by their substrates as described previously by a "cyclical bite-chew" model is not affected by selective inhibitors of the respective active sites. These data challenge the bite-chew model and suggest that effectors of proteasome activity can act by binding to non-catalytic sites. Accordingly, we propose a kinetic "two-site modifier" model that assumes that the substrate (or effector) may bind to an active site as well as to a second non-catalytic modifier site. This model appears to be valid as it describes the complex kinetic effects of Ritonavir very well. Since Ritonavir partially inhibits major histocompatibility complex class I restricted antigen presentation, the postulated modifier site may be required to coordinate the active centers of the proteasome for the production of class I peptide ligands.
Collapse
Affiliation(s)
- G Schmidtke
- Research Department, Cantonal Hospital St. Gall, CH-9007 St. Gallen, Switzerland
| | | | | | | |
Collapse
|
47
|
Farout L, Lamare MC, Cardozo C, Harrisson M, Briand Y, Briand M. Distribution of proteasomes and of the five proteolytic activities in rat tissues. Arch Biochem Biophys 2000; 374:207-12. [PMID: 10666299 DOI: 10.1006/abbi.1999.1585] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five peptidase activities (ChT-L, T-L, PGPH, BrAAP, and SNAAP) of the proteasome, and its caseinolytic activity, were measured in crude extracts of 10 rat tissues under experimental conditions simulating those found in vivo, thereby eliminating the alterations observed with the purified enzyme. The total and individual peptidase activities varied considerably from one tissue to another, whereas the proteolytic activity measured with [(14)C]methylcasein varied no more than twofold. The tissue-specific variations in individual peptidase activities may reflect tissue-specific differences in proteasome subunit composition, or the presence of regulators. Immunological assay using an antibody directed against the iota (alpha1) subunit showed that there was no correlation between protein abundance and peptidase activity. The results also show that the different peptidase activities are not representative of proteasome distribution in the different tissues.
Collapse
Affiliation(s)
- L Farout
- Laboratory of Biochemistry, University Blaise Pascal, Clermont 2, Aubiere Cedex, 63177, France
| | | | | | | | | | | |
Collapse
|
48
|
Andersson M, Sjöstrand J, Karlsson JO. Differential inhibition of three peptidase activities of the proteasome in human lens epithelium by heat and oxidation. Exp Eye Res 1999; 69:129-38. [PMID: 10375457 DOI: 10.1006/exer.1999.0688] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome is a large protease complex that is thought to be responsible for proteolytic removal of damaged proteins. We have previously shown that the level of proteolytic activity due to the proteasome is lower in lens epithelium from human cataractous lenses compared to the activity in epithelium from clear donor lenses. This study aimed to characterize the three main peptidase activities of the proteasome in human lens epithelium with respect to kinetic properties and sensitivity to heat and oxidation. Human lens epithelia were obtained from cataract surgery and analysis performed on pools of epithelial cell cytoplasm. Using the fluorogenic peptide substrates Suc-Leu-Leu-Val-Tyr-AMC (LLVY), Boc-Val-Gly-Arg-AMC (VGR) and Z-Leu-Leu-Glu-betaNA (LLE), Km-values of 56, 678 and 108 micrometers were obtained. All peptidase activities were inhibited by lactacystin, a specific proteasome inhibitor, but at very different rates; with LLVY-hydrolysing activity being the most sensitive (Ki50%=0.15 micrometers). Thermostability was investigated by performing the proteolytic assay at 20 degrees, 37 degrees and 53 degrees C. The trypsin-like activity, as measured by VGR, was completely stable at 53 degrees C for at least 24 hr whereas hydrolysis of LLVY and LLE declined after a few hours at 37 degrees C. Oxidative inhibition was induced by incubation of the samples in 0.5 m m H2O2for 1 or 24 hr. One hour exposure to H2O2caused moderate inhibition of all peptidase activities. The activity could be partially restored by adding 1 m m dithiotreitol, indicating the dependency on intact SH-groups. After 24 hr, peptidase activities were decreased to 25% (LLVY), 73% (VGR) and 44% (LLE) of corresponding control. This inhibition was irreversible for VGR and LLE, but could be partly prevented by the presence of heat shock protein 90 (LLVY and VGR) or alpha-crystallin (LLVY). These data show that the peptidase activities of the human lens proteasome can be modulated by metabolites, such as reactive oxygen species, and by endogenous proteins such as alpha-crystallin and heat shock protein 90.
Collapse
Affiliation(s)
- M Andersson
- Institute of Clinical Neuroscience, Department of Ophthalmology, Göteborg, Sweden
| | | | | |
Collapse
|
49
|
Tokumoto T. Nature and role of proteasomes in maturation of fish oocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 186:261-94. [PMID: 9770302 DOI: 10.1016/s0074-7696(08)61056-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The proteasome is an essential component of the proteolytic pathway in eukaryotic cells and is responsible for the degradation of most cellular proteins. Proteasomes are sorted into two types, 20S and 26S. The 20S proteasome forms the catalytic core of the 26S proteasome. The 26S proteasome is involved in the ubiquitin-dependent protein degradation pathway. Cyclins and cdk inhibitors or c-mos products, proteins critical to the regulation of the cell cycle, are known to be degraded by the ubiquitin pathway. Thus the 26S proteasome is thought to be involved in the regulation of cell cycle events. This review focuses on advances in the study of the biochemical properties and functions of the 20S and 26S proteasomes in the fish meiotic cell cycle.
Collapse
Affiliation(s)
- T Tokumoto
- Department of Biology and Geosciences, Faculty of Science, Shizuoka University, Japan
| |
Collapse
|
50
|
Otsuka Y, Homma N, Shiga K, Ushiki J, Ikeuchi Y, Suzuki A. Purification and properties of rabbit muscle proteasome, and its effect on myofibrillar structure. Meat Sci 1998; 49:365-78. [DOI: 10.1016/s0309-1740(97)00141-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1997] [Accepted: 11/02/1997] [Indexed: 11/30/2022]
|