1
|
Courville AB, Majchrzak-Hong S, Yang S, Turner S, Wilhite B, Ness Shipley K, Horneffer Y, Domenichiello AF, Schwandt M, Cutler RG, Chen KY, Hibbeln JR, Ramsden CE. Dietary linoleic acid lowering alone does not lower arachidonic acid or endocannabinoids among women with overweight and obesity: A randomized, controlled trial. Lipids 2023; 58:271-284. [PMID: 38100748 PMCID: PMC10767670 DOI: 10.1002/lipd.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
The linoleic acid (LA)-arachidonic acid (ARA)-inflammatory axis suggests dietary LA lowering benefits health because it lowers ARA and ARA-derived endocannabinoids (ECB). Dietary LA reduction increases concentrations of omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DHA derived ECB. The aim of this study was to examine targeted reduction of dietary LA, with and without EPA and DHA, on plasma EPA and DHA and ECB (2-arachidonoyl glycerol [2-AG], anandamide [AEA], and docosahexaenoyl ethanolamide [DHA-EA]). Healthy, pre-menopausal women (n = 62, BMI 30 ± 3 kg/m2 , age 35 ± 7 years; mean ± SD) were randomized to three 12-week controlled diets: (1) high LA, low omega-3 EPA and DHA (H6L3); (2) low LA, low omega-3 EPA and DHA (L6L3); or (3) low LA, high omega-3 EPA and DHA (L6H3). Baseline plasma fatty acids and ECB were similar between diets. Starting at 4 weeks, L6L3 and L6H3 lowered plasma LA compared to H6L3 (p < 0.001). While plasma ARA changed from baseline by 8% in L6L3 and -8% in L6H3, there were no group differences. After 4 weeks, plasma EPA and DHA increased from baseline in women on the L6H3 diet (ps < 0.001) and were different than the H6L3 and L6L3 diets. No differences were found between diets for AEA or 2-AG, however, in L6L3 and L6H3, AEA increased by 14% (ps < 0.02). L6H3 resulted in 35% higher DHA-EA (p = 0.013) whereas no changes were seen with the other diets. Lowering dietary LA did not result in the expected changes in fatty acids associated with the LA-ARA inflammatory axis in women with overweight and obesity.
Collapse
Affiliation(s)
- Amber B Courville
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Sharon Majchrzak-Hong
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Shanna Yang
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Sara Turner
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Breanne Wilhite
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Katherine Ness Shipley
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Yvonne Horneffer
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Anthony F Domenichiello
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Melanie Schwandt
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Roy G Cutler
- National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| | - Kong Y Chen
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Joseph R Hibbeln
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Christopher E Ramsden
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Sun J, Dahiya N, Schmitt T, Stewart C, Anderson J, MacGregor S, Maclean M, Beger RD, Atreya CD. Metabolomics evaluation of the photochemical impact of violet-blue light (405 nm) on ex vivo platelet concentrates. Metabolomics 2023; 19:88. [PMID: 37855954 DOI: 10.1007/s11306-023-02050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Microbicidal violet-blue light in the visible spectrum (405 nm) has been under evaluation for pathogen inactivation in ex vivo human plasma and platelets (PLTs) stored in plasma. Results to date have demonstrated that several blood-borne infectious disease-causing pathogens can be successfully reduced to significantly low levels in the light-treated plasma and PLTs. METHOD In order to evaluate whether the microbicidal 405 nm light is safe for the treatment of PLT concentrates for pathogen inactivation, LC/MS-based metabolomics analyses were performed to evaluate the overall impact of 405 nm violet-blue light treatment on ex vivo PLT concentrates suspended in plasma and on plasma itself, and to identify metabolome changes in intra-platelet and extra-cellular medium (i.e., plasma). RESULTS The metabolomics data identified that platelet activating factors (PAFs), agonists and prostaglandins, which can influence PLT basic functions such as integrity, activation, and aggregation potential were unaltered, suggesting that 405 nm light illumination is safe regarding PLT basic functions. Distinct increases in hydroxyl fatty acids and aldehydes, as well as decreases in antioxidant metabolites indicated that reactive oxygen species (ROS) were generated at high levels after only one hour of exposure to 405 nm light. Distinctly changed endogenous photosensitizer metabolites after 1 h of light exposure provided good evidence that 405 nm light was an effective microbicide acting through ROS mechanism and no external additive photosensitizers were required.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Neetu Dahiya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas Schmitt
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Caitlin Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
3
|
Chun CKY, Roth M, Welti R, Richards MP, Hsu WW, O'Quinn T, Chao MD. Exploring the potential effect of phospholipase A2 antibody to extend beef shelf-life in a beef liposome model system. Meat Sci 2023; 198:109091. [PMID: 36587462 DOI: 10.1016/j.meatsci.2022.109091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The objective of this study was to elucidate the effect of phospholipase A2 (PLA2) and a PLA2 antibody (aPLA2) on phospholipid (PL) hydrolysis in beef and to understand how the altered PL composition may affect lipid oxidation and antioxidant capacity of beef in an in vitro system. Various combinations of PLA2 and aPLA2 were introduced to a beef liposome model system and exposed to a retail display. The PL and free fatty acid (FFA) profiles, antioxidant capacity and lipid oxidation were measured for the liposome system. Key PL classes were reduced and the release of polyunsaturated FFAs was increased with the inclusion of PLA2 in the treatments (P < 0.05). There was no inhibition of PL hydrolysis with the addition of aPLA2. PLA2 showed strong antioxidant capacity in the liposome system (P < 0.01), but lipid oxidation still increased in samples treated with PLA2 throughout the retail display (P < 0.01). Finally, aPLA2 treatments demonstrated potential to decrease lipid oxidation (P < 0.01).
Collapse
Affiliation(s)
- Colin K Y Chun
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Mary Roth
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Ruth Welti
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Mark P Richards
- University of Wisconsin Madison, Animal and Dairy Sciences, Madison, WI 53706-1205, USA
| | - Wei-Wen Hsu
- University of Cincinnati, Environmental and Public Health Sciences, Cincinnati, OH 45267, USA
| | - Travis O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Michael D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA.
| |
Collapse
|
4
|
Watkins OC, Cracknell-Hazra VKB, Pillai RA, Selvam P, Yong HEJ, Sharma N, Patmanathan SN, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Myo-Inositol Moderates Glucose-Induced Effects on Human Placental 13C-Arachidonic Acid Metabolism. Nutrients 2022; 14:nu14193988. [PMID: 36235641 PMCID: PMC9572372 DOI: 10.3390/nu14193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal hyperglycemia is associated with disrupted transplacental arachidonic acid (AA) supply and eicosanoid synthesis, which contribute to adverse pregnancy outcomes. Since placental inositol is lowered with increasing glycemia, and since myo-inositol appears a promising intervention for gestational diabetes, we hypothesized that myo-inositol might rectify glucose-induced perturbations in placental AA metabolism. Term placental explants (n = 19) from women who underwent a mid-gestation oral glucose-tolerance-test were cultured with 13C-AA for 48 h in media containing glucose (5, 10 or 17 mM) and myo-inositol (0.3 or 60 µM). Newly synthesized 13C-AA-lipids were quantified by liquid-chromatography-mass-spectrometry. Increasing maternal fasting glycemia was associated with decreased proportions of 13C-AA-phosphatidyl-ethanolamines (PE, PE-P), but increased proportions of 13C-AA-triacylglycerides (TGs) relative to total placental 13C-AA lipids. This suggests altered placental AA compartmentalization towards storage and away from pools utilized for eicosanoid production and fetal AA supply. Compared to controls (5 mM glucose), 10 mM glucose treatment decreased the amount of four 13C-AA-phospholipids and eleven 13C-AA-TGs, whilst 17 mM glucose increased 13C-AA-PC-40:8 and 13C-AA-LPC. Glucose-induced alterations in all 13C-AA lipids (except PE-P-38:4) were attenuated by concurrent 60 µM myo-inositol treatment. Myo-inositol therefore rectifies some glucose-induced effects, but further studies are required to determine if maternal myo-inositol supplementation could reduce AA-associated pregnancy complications.
Collapse
Affiliation(s)
- Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Victoria K. B. Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sathya Narayanan Patmanathan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Rohan M. Lewis
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- Correspondence: ; Tel.: +65-67-722-672
| |
Collapse
|
5
|
Chang CC, Jan HM, Tseng CJ, Mondal S, Abera AB, Hsieh MY, Yang TC, Muthusamy S, Huang SC, Lin CH, Tony Mong KK. Metabolic Isolation, Stereochemical Determination, and Total Synthesis of Predominant Native Cholesteryl Phosphatidyl-α-glucoside from Carcinogenic Helicobacter pylori. Org Lett 2022; 24:5045-5050. [PMID: 35816729 DOI: 10.1021/acs.orglett.2c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the isolation and stereochemical determination of the predominant native cholesteryl 6-O-phosphatidyl α-glucoside (CPG) from Helicobacter pylori via an integrated biological and chemical strategy. The strategy employed (i) the metabolic isolation of a CPG analogue and (ii) the enzymatic degradation of the analogue to obtain the native lactobacillic acid for the stereochemical determination. The absolute stereochemistry of the acid was found to be 11R and 12S. Using the new stereochemical data, we accomplished the total synthesis of predominant native CPG and other predominant αCG derivatives.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Chieh-Jen Tseng
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| | - Soumik Mondal
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| | - Andualem Bahiru Abera
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Tsai-Chen Yang
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Sasikala Muthusamy
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Sheng-Cih Huang
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| |
Collapse
|
6
|
Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer. J Lipid Res 2022; 63:100223. [PMID: 35537528 PMCID: PMC9184569 DOI: 10.1016/j.jlr.2022.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/18/2023] Open
Abstract
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.
Collapse
|
7
|
Roy MC, Kim Y. sPLA 2 behaves like a prophylactic agent and mediates cellular and humoral immune responses in Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21670. [PMID: 32196735 DOI: 10.1002/arch.21670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Most immune effectors are inducible to microbial pathogen infection while some are already present to act as prophylactic immunity against as yet unseen infection. This study identified secretory phospholipase A2 (sPLA2 ) as a prophylactic factor in diamondback moth, Plutella xylostella. Western blotting using a polyclonal antibody raised against other lepidopteran sPLA2 reacted specifically with ∼25 kDa protein, which was present at approximately 0.4 mM in the plasma of naïve larvae. Interrogation of P. xylostella transcriptomes revealed an open-reading frame for sPLA2 (Px-sPLA2 ), exhibiting high homology with other Group III sPLA2 s. Px-sPLA2 was expressed in all developmental stages. In the larval stage, bacterial challenge induced its expression in hemocytes and fat body but not in gut or epidermis. RNA interference (RNAi) suppressed Px-sPLA2 messenger RNA level and sPLA2 activity in plasma. An inhibition zone assay showed that Px-sPLA2 exhibited antibacterial activities against different species, because specific RNAi knockdown impaired the activity. The RNAi treatment also suppressed the cellular immune response assessed by hemocyte nodule formation and humoral immune response assessed by antimicrobial peptide gene expression. Finally, benzylideneacetone (BZA, a specific sPLA2 inhibitor) treatment inhibited plasma sPLA2 activity of naive larvae in a dose-dependent manner. An addition of BZA significantly increased the bacterial virulence of an entomopathogen, Bacillus thuringiensis. These results suggest that Px-sPLA2 is an immune-associated factor of P. xylostella and its relatively high level of concentration in the plasma of naive larvae strongly suggests its role as a prophylactic factor in defending against pathogens at early infection stages.
Collapse
Affiliation(s)
- Miltan Chandra Roy
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
8
|
Md Abdullah AB, Lee DW, Jung J, Kim Y. Deletion mutant of sPLA 2 using CRISPR/Cas9 exhibits immunosuppression, developmental retardation, and failure of oocyte development in legume pod borer, Maruca vitrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103500. [PMID: 31589887 DOI: 10.1016/j.dci.2019.103500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Phospholipase A2 (PLA2) catalyzes release of free fatty acids linked to phospholipids at sn-2 position. Some of these released free fatty acids are used to synthesize eicosanoids that mediate various physiological processes in insects. Although a large number of PLA2s form a superfamily consisting of at least 16 groups, few PLA2s have been identified and characterized in insects. Furthermore, physiological functions of insect PLA2s remain unclear. Clustered regularly interspaced short parlindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) has been a useful research tool to validate gene function. This study identified and characterized a secretory PLA2 (sPLA2) from legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), and validated its physiological functions using CRISPR/Cas9. An open reading frame of M. vitrata sPLA2 (Mv-sPLA2) encoding 192 amino acids contained signal peptide, calcium-binding domain, and catalytic site. Phylogenetic analysis indicated that Mv-sPLA2 was related to other Group III sPLA2s. Mv-sPLA2 was expressed in both larval and adult stages. It was inducible by immune challenge. RNA interference (RNAi) of Mv-sPLA2 significantly suppressed cellular immunity and impaired larval development. Furthermore, RNAi treatment in female adults prevented oocyte development. These physiological alterations were also observed in a mutant line of M. vitrata with Mv-sPLA2 deleted by using CRISPR/Cas9. Mv-sPLA2 was not detected in the mutant line from western blot analysis. Addition of an eicosanoid, PGE2, significantly rescued oocyte development of females of the mutant line. These results suggest that Mv-sPLA2 plays crucial role in immune, developmental, and reproductive processes of M. vitrata.
Collapse
Affiliation(s)
- Al Baki Md Abdullah
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Dae-Weon Lee
- School of Chemistry and Life Sciences, Kyungsung University, Busan, 48434, South Korea
| | - Jinkyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
9
|
Lipid mediators in platelet concentrate and extracellular vesicles: Molecular mechanisms from membrane glycerophospholipids to bioactive molecules. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1168-1182. [DOI: 10.1016/j.bbalip.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/15/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
10
|
Metabolic Disturbances Identified in Plasma Samples from ST-Segment Elevation Myocardial Infarction Patients. DISEASE MARKERS 2019; 2019:7676189. [PMID: 31354891 PMCID: PMC6636502 DOI: 10.1155/2019/7676189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022]
Abstract
ST-segment elevation myocardial infarction (STEMI) is the most severe form of myocardial infarction (MI) and the main contributor to morbidity and mortality caused by MI worldwide. Frequently, STEMI is caused by complete and persistent occlusion of a coronary artery by a blood clot, which promotes heart damage. STEMI impairment triggers changes in gene transcription, protein expression, and metabolite concentrations, which grants a biosignature to the heart dysfunction. There is a major interest in identifying novel biomarkers that could improve the diagnosis of STEMI. In this study, the phenotypic characterization of STEMI patients (n = 15) and healthy individuals (n = 19) was performed, using a target metabolomics approach. Plasma samples were analyzed by UPLC-MS/MS (ultra-high-performance liquid chromatography-tandem mass spectrometry) and FIA-MS (MS-based flow injection analysis). The goal was to identify novel plasma biomarkers and metabolic signatures underlying STEMI. Concentrations of phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, and biogenic amines were altered in STEMI patients in relation to healthy subjects. Also, after multivariate analysis, it was possible to identify alterations in the glycerophospholipids, alpha-linolenic acid, and sphingolipid metabolisms in STEMI patients.
Collapse
|
11
|
Declèves AE, Mathew AV, Armando AM, Han X, Dennis EA, Quehenberger O, Sharma K. AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat-induced kidney disease in mice. J Lipid Res 2019; 60:937-952. [PMID: 30862696 PMCID: PMC6495162 DOI: 10.1194/jlr.m088690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) causes renal lipotoxicity that is ameliorated with AMP-activated protein kinase (AMPK) activation. Although bioactive eicosanoids increase with HFD and are essential in regulation of renal disease, their role in the inflammatory response to HFD-induced kidney disease and their modulation by AMPK activation remain unexplored. In a mouse model, we explored the effects of HFD on eicosanoid synthesis and the role of AMPK activation in ameliorating these changes. We used targeted lipidomic profiling with quantitative MS to determine PUFA and eicosanoid content in kidneys, urine, and renal arterial and venous circulation. HFD increased phospholipase expression as well as the total and free pro-inflammatory arachidonic acid (AA) and anti-inflammatory DHA in kidneys. Consistent with the parent PUFA levels, the AA- and DHA-derived lipoxygenase (LOX), cytochrome P450, and nonenzymatic degradation (NE) metabolites increased in kidneys with HFD, while EPA-derived LOX and NE metabolites decreased. Conversely, treatment with 5-aminoimidazole-4-carboxamide-1-β-D-furanosyl 5'-monophosphate (AICAR), an AMPK activator, reduced the free AA and DHA content and the DHA-derived metabolites in kidney. Interestingly, kidney and circulating AA, AA metabolites, EPA-derived LOX, and NE metabolites are increased with HFD; whereas, DHA metabolites are increased in kidney in contrast to their decreased circulating levels with HFD. Together, these changes showcase HFD-induced pro- and anti-inflammatory eicosanoid dysregulation and highlight the role of AMPK in correcting HFD-induced dysregulated eicosanoid pathways.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Institute of Metabolomic Medicine University of California, San Diego, La Jolla, CA; Laboratory of Metabolic and Molecular Biochemistry Faculty of Medicine, Université of Mons, Mons, Belgium.
| | - Anna V Mathew
- Division of Nephrology Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Aaron M Armando
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Xianlin Han
- Barshop Institute of Aging, Department of Medicine University of Texas Health San Antonio, San Antonio, TX
| | - Edward A Dennis
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA; Chemistry and Biochemistry University of California, San Diego, La Jolla, CA
| | - Oswald Quehenberger
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA; Medicine, University of California, San Diego, La Jolla, CA
| | - Kumar Sharma
- Institute of Metabolomic Medicine University of California, San Diego, La Jolla, CA; Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
12
|
Ochoa JC, Peñagaricano F, Baez GM, Melo LF, Motta JCL, Garcia-Guerra A, Meidan R, Pinheiro Ferreira JC, Sartori R, Wiltbank MC. Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2α†. Biol Reprod 2017; 98:465-479. [DOI: 10.1093/biolre/iox183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/25/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julian C Ochoa
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Giovanni M Baez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Agricultural and Animal Sciences, Universidad Francisco de Paula Santander, Cucuta, Colombia
| | - Leonardo F Melo
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Jessica C L Motta
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Alvaro Garcia-Guerra
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Rina Meidan
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - João C Pinheiro Ferreira
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Roberto Sartori
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Milo C Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Hellwing C, Tigistu-Sahle F, Fuhrmann H, Käkelä R, Schumann J. Lipid composition of membrane microdomains isolated detergent-free from PUFA supplemented RAW264.7 macrophages. J Cell Physiol 2017; 233:2602-2612. [DOI: 10.1002/jcp.26138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Christine Hellwing
- Clinic for Anesthesiology and Surgical Intensive Care; University Hospital Halle (Saale); Halle (Saale) Germany
| | - Feven Tigistu-Sahle
- Division of Physiology and Neuroscience, Department of Biosciences; Helsinki University Lipidomics Unit, University of Helsinki; Helsinki Finland
| | - Herbert Fuhrmann
- Institute of Biochemistry; Faculty of Veterinary Medicine, University of Leipzig; Leipzig Germany
| | - Reijo Käkelä
- Division of Physiology and Neuroscience, Department of Biosciences; Helsinki University Lipidomics Unit, University of Helsinki; Helsinki Finland
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care; University Hospital Halle (Saale); Halle (Saale) Germany
| |
Collapse
|
14
|
Palavicini JP, Wang C, Chen L, Hosang K, Wang J, Tomiyama T, Mori H, Han X. Oligomeric amyloid-beta induces MAPK-mediated activation of brain cytosolic and calcium-independent phospholipase A 2 in a spatial-specific manner. Acta Neuropathol Commun 2017; 5:56. [PMID: 28750656 PMCID: PMC5530945 DOI: 10.1186/s40478-017-0460-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is histopathologically characterized by the build-up of fibrillar amyloid beta (Aβ) in the form of amyloid plaques and the development of intraneuronal neurofibrillary tangles consisting of aggregated hyperphosphorylated Tau. Although amyloid fibrils were originally considered responsible for AD pathogenesis, recent convincing evidence strongly implicates soluble oligomeric Aβ as the primary neurotoxic species driving disease progression. A third largely ignored pathological hallmark, originally described by Alois Alzheimer, is the presence of "adipose inclusions", suggestive of aberrant lipid metabolism. The molecular mechanisms underlying these "lipoid granules", as well as their potential link to soluble and/or fibrillar Aβ remain largely unknown. Seeking to better-understand these conundrums, we took advantage of the powerful technology of multidimensional mass spectrometry-based shotgun lipidomics and an AD transgenic mouse model overexpressing mutant amyloid precursor protein (APP E693Δ-Osaka-), where AD-like pathology and neurodegeneration occur as a consequence of oligomeric Aβ accumulation in the absence of amyloid plaques. Our results revealed for the first time that APP overexpression and oligomeric Aβ accumulation lead to an additive global accumulation of nonesterified polyunsaturated fatty acids (PUFAs) independently of amyloid plaques. Furthermore, we revealed that this accumulation is mediated by an increase in phospholipase A2 (PLA2) activity, evidenced by an accumulation of sn-1 lysophosphatidylcholine and by MAPK-mediated phosphorylation/activation of group IV Ca2+-dependent cytosolic (cPLA2) and the group VI Ca2+-independent PLA2 (iPLA2) independently of PKC. We further revealed that Aβ-induced oxidative stress also disrupts lipid metabolism via reactive oxygen species-mediated phospholipid cleavage leading to increased sn-2 lysophosphatidylcholine as well as lipid peroxidation and the subsequent accumulation of 4-hydroxynonenal. Brain histological studies implicated cPLA2 activity with arachidonic acid accumulation within myelin-rich regions, and iPLA2 activity with docosahexaenoic acid accumulation within pyramidal neuron-rich regions. Taken together, our results suggest that PLA2-mediated accumulation of free PUFAs drives AD-related disruption of brain lipid metabolism.
Collapse
|
15
|
Tigistu-Sahle F, Lampinen M, Kilpinen L, Holopainen M, Lehenkari P, Laitinen S, Käkelä R. Metabolism and phospholipid assembly of polyunsaturated fatty acids in human bone marrow mesenchymal stromal cells. J Lipid Res 2016; 58:92-110. [PMID: 27856675 DOI: 10.1194/jlr.m070680] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
High arachidonic acid (20:4n-6) and low n-3 PUFA levels impair the capacity of cultured human bone marrow mesenchymal stromal cells (hBMSCs) to modulate immune functions. The capacity of the hBMSCs to modify PUFA structures was found to be limited. Therefore, different PUFA supplements given to the cells resulted in very different glycerophospholipid (GPL) species profiles and substrate availability for phospholipases, which have preferences for polar head group and acyl chains when liberating PUFA precursors for production of lipid mediators. When supplemented with 20:4n-6, the cells increased prostaglandin E2 secretion. However, they elongated 20:4n-6 to the less active precursor, 22:4n-6, and also incorporated it into triacylglycerols, which may have limited the proinflammatory signaling. The n-3 PUFA precursor, 18:3n-3, had little potency to reduce the GPL 20:4n-6 content, while the eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acid supplements efficiently displaced the 20:4n-6 acyls, and created diverse GPL species substrate pools allowing attenuation of inflammatory signaling. The results emphasize the importance of choosing appropriate PUFA supplements for in vitro hBMSC expansion and suggests that for optimal function they require an exogenous fatty acid source providing 20:5n-3 and 22:6n-3 sufficiently, but 20:4n-6 moderately, which calls for specifically designed optimal PUFA supplements for the cultures.
Collapse
Affiliation(s)
| | - Milla Lampinen
- Department of Biosciences University of Helsinki, Helsinki, Finland
| | - Lotta Kilpinen
- Department of Biosciences University of Helsinki, Helsinki, Finland.,Advanced Therapies and Product Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Minna Holopainen
- Advanced Therapies and Product Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Petri Lehenkari
- Institute of Biomedicine, Division of Surgery, University of Oulu and Clinical Research Centre, Department of Surgery and Intensive Care, Oulu, Finland.,Department of Anatomy and Cell Biology, University of Oulu, Finland and Institute of Clinical Medicine, Division of Surgery, University of Oulu and Clinical Research Centre, Department of Surgery and Intensive Care, Oulu, Finland
| | - Saara Laitinen
- Advanced Therapies and Product Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Reijo Käkelä
- Department of Biosciences University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Shih PB, Yang J, Morisseau C, German JB, Zeeland AASV, Armando AM, Quehenberger O, Bergen AW, Magistretti P, Berrettini W, Halmi KA, Schork N, Hammock BD, Kaye W. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa. Mol Psychiatry 2016; 21:537-46. [PMID: 25824304 PMCID: PMC4591075 DOI: 10.1038/mp.2015.26] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment.
Collapse
Affiliation(s)
- P B Shih
- Department of Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - J Yang
- Department of Entomology, University of California at Davis, Davis, CA, USA
| | - C Morisseau
- Department of Entomology, University of California at Davis, Davis, CA, USA
| | - J B German
- Department of Entomology, University of California at Davis, Davis, CA, USA
| | | | - A M Armando
- Department of Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - O Quehenberger
- Department of Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - A W Bergen
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - P Magistretti
- Division of Biological and Environmental Sciences and Engineering, KAUST, Thuwal, KSA and Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - W Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - K A Halmi
- Department of Psychiatry, Cornell University, New York, NY, USA
| | - N Schork
- Department of Human Biology, J. Craig Venter Institute, San Diego, CA, USA
| | - B D Hammock
- Department of Entomology, University of California at Davis, Davis, CA, USA
| | - W Kaye
- Department of Psychiatry, University of California at San Diego, San Diego, CA, USA
| |
Collapse
|
17
|
Itokazu Y, Tajima N, Kerosuo L, Somerharju P, Sariola H, Yu RK, Käkelä R. A2B5+/GFAP+ Cells of Rat Spinal Cord Share a Similar Lipid Profile with Progenitor Cells: A Comparative Lipidomic Study. Neurochem Res 2016; 41:1527-44. [PMID: 26915109 DOI: 10.1007/s11064-016-1867-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
The central nervous system (CNS) harbors multiple glial fibrillary acidic protein (GFAP) expressing cell types. In addition to the most abundant cell type of the CNS, the astrocytes, various stem cells and progenitor cells also contain GFAP+ populations. Here, in order to distinguish between two types of GFAP expressing cells with or without the expression of the A2B5 antigens, we performed lipidomic analyses on A2B5+/GFAP+ and A2B5-/GFAP+ cells from rat spinal cord. First, A2B5+/GFAP- progenitors were exposed to the leukemia inhibitory factor (LIF) or bone morphogenetic protein (BMP) to induce their differentiation to A2B5+/GFAP+ cells or A2B5-/GFAP+ astrocytes, respectively. The cells were then analyzed for changes in their phospholipid, sphingolipid or acyl chain profiles by mass spectrometry and gas chromatography. Compared to A2B5+/GFAP- progenitors, A2B5-/GFAP+ astrocytes contained higher amounts of ether phospholipids (especially the species containing arachidonic acid) and sphingomyelin, which may indicate characteristics of cellular differentiation and inability for multipotency. In comparison, principal component analyses revealed that the lipid composition of A2B5+/GFAP+ cells retained many of the characteristics of A2B5+/GFAP- progenitors, but their lipid profile was different from that of A2B5-/GFAP+ astrocytes. Thus, our study demonstrated that two GFAP+ cell populations have distinct lipid profiles with the A2B5+/GFAP+ cells sharing a phospholipid profile with progenitors rather than astrocytes. The progenitor cells may require regulated low levels of lipids known to mediate signaling functions in differentiated cells, and the precursor lipid profiles may serve as one measure of the differentiation capacity of a cell population.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Biosciences, University of Helsinki, Biocenter 3, P.O. Box 65, 00014, Helsinki, Finland.,Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, 00014, Helsinki, Finland.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Nobuyoshi Tajima
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, 00014, Helsinki, Finland.,Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Laura Kerosuo
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, 00014, Helsinki, Finland.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pentti Somerharju
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, 00014, Helsinki, Finland
| | - Hannu Sariola
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, 00014, Helsinki, Finland
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Reijo Käkelä
- Department of Biosciences, University of Helsinki, Biocenter 3, P.O. Box 65, 00014, Helsinki, Finland. .,Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
18
|
Liu X, Yamada N, Osawa T. Amide-type adduct of dopamine - plausible cause of Parkinson diseases. Subcell Biochem 2014; 77:49-60. [PMID: 24374917 DOI: 10.1007/978-94-007-7920-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dopamine is the endogenous neurotransmitter produced by nigral neurons. Dopamine loss can trigger not only prominent secondary morphological changes, but also changes in the density and sensitivity of dopamine receptors; therefore, it is a sign of PD development. The reasons for dopamine loss are attributed to dopamine's molecular instability due to it is a member of catecholamine family, whose catechol structure contributes to high oxidative stress through enzymatic and non-enzymatic oxidation. Oxidative stress in the brain easily leads to the lipid peroxidation reaction due to a high concentration of polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA, C22:6/ω-3) and arachidonic acid (AA, C18:4/ω-6). Recent studies have shown that lipid hydroperoxides, the primary peroxidative products, could non-specifically react with primary amino groups to form N-acyl-type (amide-linkage) adducts. Therefore, based on the NH2-teminals in dopamine's structure, the aims of this chapter are to describes the possibility that reactive LOOH species derived from DHA/AA lipid peroxidation may modify dopamine to form amide-linkage dopamine adducts, which might be related to etiology of Parkinson's diseases.
Collapse
Affiliation(s)
- Xuebo Liu
- The Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, 464-8601, Japan,
| | | | | |
Collapse
|
19
|
Kilpinen L, Tigistu-Sahle F, Oja S, Greco D, Parmar A, Saavalainen P, Nikkilä J, Korhonen M, Lehenkari P, Käkelä R, Laitinen S. Aging bone marrow mesenchymal stromal cells have altered membrane glycerophospholipid composition and functionality. J Lipid Res 2012; 54:622-635. [PMID: 23271708 DOI: 10.1194/jlr.m030650] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSC) are increasingly used in advanced cellular therapies. The clinical use of hMSCs demands sequential cell expansions. As it is well established that membrane glycerophospholipids (GPL) provide precursors for signaling lipids that modulate cellular functions, we studied the effect of the donor's age and cell doublings on the GPL profile of human bone marrow MSC (hBMSC). The hBMSCs, which were harvested from five young and five old adults, showed clear compositional changes during expansion seen at the level of lipid classes, lipid species, and acyl chains. The ratio of phosphatidylinositol to phosphatidylserine increased toward the late-passage samples. Furthermore, 20:4n-6-containing species of phosphatidylcholine and phosphatidylethanolamine accumulated while the species containing monounsaturated fatty acids (FA) decreased during passaging. Additionally, in the total FA pool of the cells, 20:4n-6 increased, which happened at the expense of n-3 polyunsaturated FAs, especially 22:6n-3. The GPL and FA correlated with the decreased immunosuppressive capacity of hBMSCs during expansion. Our observations were further supported by alterations in the gene expression levels of several enzymes involved in lipid metabolism and immunomodulation. The results show that extensive expansion of hBMSCs harmfully modulates membrane GPLs, affecting lipid signaling and eventually impairing functionality.
Collapse
Affiliation(s)
- Lotta Kilpinen
- Advanced Therapies and Product Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Guijas C, Pérez-Chacón G, Astudillo AM, Rubio JM, Gil-de-Gómez L, Balboa MA, Balsinde J. Simultaneous activation of p38 and JNK by arachidonic acid stimulates the cytosolic phospholipase A2-dependent synthesis of lipid droplets in human monocytes. J Lipid Res 2012; 53:2343-54. [PMID: 22949356 DOI: 10.1194/jlr.m028423] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure of human peripheral blood monocytes to free arachidonic acid (AA) results in the rapid induction of lipid droplet (LD) formation by these cells. This effect appears specific for AA in that it is not mimicked by other fatty acids, whether saturated or unsaturated. LDs are formed by two different routes: (i) the direct entry of AA into triacylglycerol and (ii) activation of intracellular signaling, leading to increased triacylglycerol and cholesteryl ester formation utilizing fatty acids coming from the de novo biosynthetic route. Both routes can be dissociated by the arachidonyl-CoA synthetase inhibitor triacsin C, which prevents the former but not the latter. LD formation by AA-induced signaling predominates, accounting for 60-70% of total LD formation, and can be completely inhibited by selective inhibition of the group IVA cytosolic phospholipase A(2)α (cPLA(2)α), pointing out this enzyme as a key regulator of AA-induced signaling. LD formation in AA-treated monocytes can also be blocked by the combined inhibition of the mitogen-activated protein kinase family members p38 and JNK, which correlates with inhibition of cPLA(2)α activation by phosphorylation. Collectively, these results suggest that concomitant activation of p38 and JNK by AA cooperate to activate cPLA(2)α, which is in turn required for LD formation possibly by facilitating biogenesis of this organelle, not by regulating neutral lipid synthesis.
Collapse
Affiliation(s)
- Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003 Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Peppelenbosch MP. Kinome profiling. SCIENTIFICA 2012; 2012:306798. [PMID: 24278683 PMCID: PMC3820527 DOI: 10.6064/2012/306798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 07/12/2012] [Indexed: 06/02/2023]
Abstract
The use of arrays in genomics has led to a fast and reliable way to screen the transcriptome of an organism. It can be automated and analysis tools have become available and hence the technique has become widely used within the past few years. Signal-transduction routes rely mainly on the phosphorylation status of already available proteins; therefore kinases are central players in signal-transduction routes. The array technology can now also be used for the analysis of the kinome. To enable array analysis, consensus peptides for kinases are spot on a solid support. After incubation with cell lysates and in the presence of radioactive ATP, radioactive peptides can be visualized and the kinases that are active in the cells can be determined. The present paper reviews comprehensively the different kinome array platforms available and results obtained hitherto using such platforms. It will appear that this technology does not disappoint its high expectations and is especially powerful because of its species independence. Nevertheless, improvements are still possible and I shall also sketch future possible directions.
Collapse
Affiliation(s)
- Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, L-459, P.O. Box 2040, NL-3000 CA Rotterdam, The Netherlands
| |
Collapse
|
22
|
Guijas C, Astudillo AM, Gil-de-Gómez L, Rubio JM, Balboa MA, Balsinde J. Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1386-93. [PMID: 22824377 DOI: 10.1016/j.bbalip.2012.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/08/2012] [Accepted: 07/13/2012] [Indexed: 02/04/2023]
Abstract
Cells metabolize arachidonic acid (AA) to adrenic acid (AdA) via 2-carbon elongation reactions. Like AA, AdA can be converted into multiple oxygenated metabolites, with important roles in various physiological and pathophysiological processes. However, in contrast to AA, there is virtually no information on how the cells regulate the availability of free AdA for conversion into bioactive products. We have used a comparative lipidomic approach with both gas chromatography and liquid chromatography coupled to mass spectrometry to characterize changes in the levels of AA- and AdA-containing phospholipid species in RAW 264.7 macrophage-like cells. Incubation of the cells with AA results in an extensive conversion to AdA but both fatty acids do not compete with each other for esterification into phospholipids. AdA but not AA, shows preference for incorporation into phospholipids containing stearic acid at the sn-1 position. After stimulation of the cells with zymosan, both AA and AdA are released in large quantities, albeit AA is released to a greater extent. Finally, a variety of phosphatidylcholine and phosphatidylinositol molecular species contribute to AA; however, AdA is liberated exclusively from phosphatidylcholine species. Collectively, these results identify significant differences in the cellular utilization of AA and AdA by the macrophages, suggesting non-redundant biological actions for these two fatty acids.
Collapse
Affiliation(s)
- Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Wang HYJ, Wu HW, Tsai PJ, Liu CB. MALDI-mass spectrometry imaging of desalted rat brain sections reveals ischemia-mediated changes of lipids. Anal Bioanal Chem 2012; 404:113-24. [PMID: 22610601 DOI: 10.1007/s00216-012-6077-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/21/2012] [Accepted: 04/24/2012] [Indexed: 11/28/2022]
Abstract
Ischemia-mediated lipidomic changes in rat brains were explored by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) profiling and imaging after in situ desalting which drastically simplified the spectral presentation of tissue lipids. Removal of interference from the massively changed cations in response to tissue damage permitted the revelation of subtle yet important lipidomic changes. The identities of the detected lipids were confirmed by MALDI tandem mass spectrometry (MALDI-MS/MS). The MALDI-MS imaging (MALDI-MSI) result of lysophosphatidylcholine 16:0 (LPC 16:0) in the desalted brain section appeared essentially identical to that of sodiated LPC 16:0 in the adjacent undesalted section and verified the suitability of the desalting method for the MALDI-MSI studies of lipids in tissue. Other than the consistently decreased phosphatidylcholine (PC) 16:0/18:1, images of PCs containing all saturated, or combined saturated and monounsaturated fatty acyl (MUFA) residues revealed their parenchymal increase by ischemia. Images of PCs containing polyunsaturated fatty acyl (PUFA) residues in normal cortex showed laminated patterns similar to cortical lamina. Ischemia reduced the abundance of PC 16:0/20:4 and PC 16:0/22:6 and disrupted the laminated distribution of the former. However, ischemia increased the subcortical abundance of PUFA-PCs containing stearoyl residue and confined their cortical increase within limited areas. Image of parenchymal sphingomyelin 18:0 (SM 18:0) showed its consistent decrease by ischemia that paralleled the increase of ceramide 18:0-H(2)O in region of moderate to high SM abundance. The above results presented the lipidomic changes largely different from previous MALDI-MSI results and suggested a window of intervention that may benefit the management of cerebrovascular accident and other brain injuries.
Collapse
Affiliation(s)
- Hay-Yan J Wang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
24
|
Ferguson EL, Richardson SCW, Duncan R. Studies on the Mechanism of Action of Dextrin−Phospholipase A2 and Its Suitability for Use in Combination Therapy. Mol Pharm 2010; 7:510-21. [DOI: 10.1021/mp900232a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elaine L. Ferguson
- Centre for Polymer Therapeutics, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3XF, U.K
| | - Simon C. W. Richardson
- Centre for Polymer Therapeutics, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3XF, U.K
| | - Ruth Duncan
- Centre for Polymer Therapeutics, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3XF, U.K
| |
Collapse
|
25
|
Balgoma D, Astudillo AM, Pérez-Chacón G, Montero O, Balboa MA, Balsinde J. Markers of monocyte activation revealed by lipidomic profiling of arachidonic acid-containing phospholipids. THE JOURNAL OF IMMUNOLOGY 2010; 184:3857-65. [PMID: 20181887 DOI: 10.4049/jimmunol.0902883] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stimulated human monocytes undergo an intense trafficking of arachidonic acid (AA) among glycerophospholipidclasses. Using HPLC coupled to electrospray ionization mass spectrometry, we have characterized changes in the levels of AA-containing phospholipid species in human monocytes. In resting cells, AA was found esterified into various molecular species of phosphatidylinositol (PI), choline glycerophospholipids (PCs), and ethanolamine glycerophospholipids (PEs). All major AA-containing PC and PI molecular species decreased in zymosan-stimulated cells; however, no PE molecular species was found to decrease. In contrast, the levels of three AA-containing species increased in zymosan-activated cells compared with resting cells: 1,2-diarachidonyl-glycero-3-phosphoinositol [PI(20:4/20:4)]; 1,2-diarachidonyl-glycero-3-phosphocholine [PC(20:4/20:4)]; and 1-palmitoleoyl-2-arachidonyl-glycero-3-phosphoethanolamine [PE(16:1/20:4)]. PI(20:4/20:4) and PC(20:4/20:4), but not PE(16:1/20:4), also significantly increased when platelet-activating factor or PMA were used instead of zymosan to stimulate the monocytes. Analysis of the pathways involved in the synthesis of these three lipids suggest that PI(20:4/20:4) and PC(20:4/20:4) were produced in a deacylation/reacylation pathway via acyl-CoA synthetase-dependent reactions, whereas PE(16:1/20:4) was generated via a CoA-independent transacylation reaction. Collectively, our results define the increases in PI(20:4/20:4) and PC(20:4/20:4) as lipid metabolic markers of human monocyte activation and establish lipidomics as a powerful tool for cell typing under various experimental conditions.
Collapse
Affiliation(s)
- David Balgoma
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Haimi P, Hermansson M, Batchu KC, Virtanen JA, Somerharju P. Substrate efflux propensity plays a key role in the specificity of secretory A-type phospholipases. J Biol Chem 2010; 285:751-60. [PMID: 19887372 PMCID: PMC2804224 DOI: 10.1074/jbc.m109.061218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/01/2009] [Indexed: 01/01/2023] Open
Abstract
To better understand the principles underlying the substrate specificity of A-type phospholipases (PLAs), a high throughput mass spectrometric assay was employed to study the effect of acyl chain length and unsaturation of phospholipids on their rate of hydrolysis by three different secretory PLAs in micelles and vesicle bilayers. With micelles, each enzyme responded differently to substrate acyl chain unsaturation and double bond position, probably reflecting differences in the accommodative properties of their substrate binding sites. Experiments with saturated acyl positional isomers indicated that the length of the sn2 chain was more critical than that of the sn1 chain, suggesting tighter association of the former with the enzyme. Only the first 9-10 carbons of the sn2 acyl chain seem to interact intimately with the active site. Strikingly, no discrimination between positional isomers was observed with vesicles, and the rate of hydrolysis decreased far more with increasing chain length than with micelles, suggesting that translocation of the phospholipid substrate to the active site is rate-limiting with bilayers. Supporting this conclusion, acyl chain structure affected hydrolysis and spontaneous intervesicle transfer, which correlates with lipid efflux propensity, analogously. We conclude that substrate efflux propensity plays a more important role in the specificity of secretory PLA(2)s than commonly thought and could also be a key attribute in phospholipid homeostasis in which (unknown) PLA(2)s are key players.
Collapse
Affiliation(s)
- Perttu Haimi
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Martin Hermansson
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Krishna Chaithanya Batchu
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Jorma A. Virtanen
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Pentti Somerharju
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| |
Collapse
|
27
|
Rosa AO, Rapoport SI. Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:697-705. [PMID: 19327408 PMCID: PMC2735787 DOI: 10.1016/j.bbalip.2009.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/01/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) and Ca(2+)-independent phospholipase A(2) (iPLA(2)), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca(2+), even though iPLA(2) has been thought to be Ca(2+)-independent. The source of Ca(2+) for activation of cPLA(2) is largely extracellular, whereas Ca(2+) released from the endoplasmic reticulum can activate iPLA(2) by a number of mechanisms. This review focuses on the role of Ca(2+) in modulating cPLA(2) and iPLA(2) activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca(2+) signal.
Collapse
Affiliation(s)
- Angelo O Rosa
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
28
|
Abstract
Lipids from dietary sources or from de novo synthesis are transported while bound to proteins to other tissues where they are used for cell membrane synthesis or stored for energy generation. In cell membranes or in plasma, lipids can undergo several modifications that are important in cell function. Several proteins orchestrate the transport, biosynthesis, and modification of lipids. Thus, the intersection of lipids and proteins is important in human metabolic pathways. Recent advances in mass spectrometry and bioinformatics have made it possible to obtain compositional (structural and functional) data of lipid molecular species and proteins in biological samples. This combination of lipidomics and proteomics is advantageous because it allows us to better define biochemical pathways, discover new drug targets, and better understand the pathophysiology of several diseases.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA, USA
| | | |
Collapse
|
29
|
Liu X, Yamada N, Maruyama W, Osawa T. Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease. J Biol Chem 2008; 283:34887-95. [PMID: 18922792 PMCID: PMC3259879 DOI: 10.1074/jbc.m805682200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/08/2008] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress appears to be directly involved in the pathogenesis of the neurodegeneration of dopaminergic systems in Parkinson disease. In this study, we formed four dopamine modification adducts derived from docosahexaenoic acid (C22:6/omega-3) and arachidonic acid (C18:4/omega-6), which are known as the major polyunsaturated fatty acids in the brain. Upon incubation of dopamine with fatty acid hydroperoxides and an in vivo experiment using rat brain tissue, all four dopamine adducts were detected. Furthermore, hexanoyl dopamine (HED), an arachidonic acid-derived adduct, caused severe cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells, whereas the other adducts were only slightly affected. The HED-induced cell death was found to include apoptosis, which also seems to be mediated by reactive oxygen species generation and mitochondrial abnormality. Additionally, the experiments using monoamine transporter inhibitor and mouse embryonic fibroblast NIH-3T3 cells that lack the monoamine transporter indicate that the HED-induced cytotoxicity might specially occur in the neuronal cells. These data suggest that the formation of the docosahexaenoic acid- and arachidonic acid-derived dopamine adducts in vitro and in vivo, and HED, the arachidonic acid-derived dopamine modification adduct, which caused selective cytotoxicity of neuronal cells, may indicate a novel mechanism responsible for the pathogenesis in Parkinson disease.
Collapse
Affiliation(s)
- Xuebo Liu
- Laboratory of Food and Biodynamics,
Graduate School of Bioagricultural Science, Nagoya University, Nagoya
464-8601, Japan and the Department of Basic
Gerontology, National Institute for Longevity Science, Obu 474-8522,
Japan
| | - Naruomi Yamada
- Laboratory of Food and Biodynamics,
Graduate School of Bioagricultural Science, Nagoya University, Nagoya
464-8601, Japan and the Department of Basic
Gerontology, National Institute for Longevity Science, Obu 474-8522,
Japan
| | - Wakako Maruyama
- Laboratory of Food and Biodynamics,
Graduate School of Bioagricultural Science, Nagoya University, Nagoya
464-8601, Japan and the Department of Basic
Gerontology, National Institute for Longevity Science, Obu 474-8522,
Japan
| | - Toshihiko Osawa
- Laboratory of Food and Biodynamics,
Graduate School of Bioagricultural Science, Nagoya University, Nagoya
464-8601, Japan and the Department of Basic
Gerontology, National Institute for Longevity Science, Obu 474-8522,
Japan
| |
Collapse
|
30
|
Balboa MA, Pérez R, Balsinde J. Calcium-independent phospholipase A2 mediates proliferation of human promonocytic U937 cells. FEBS J 2008; 275:1915-24. [DOI: 10.1111/j.1742-4658.2008.06350.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Mayer RJ, Marshall LA. Section Review: Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis: Therapeutic regulation of 14 kDa phospholipase A2(s). Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.5.535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Ruipérez V, Casas J, Balboa MA, Balsinde J. Group V phospholipase A2-derived lysophosphatidylcholine mediates cyclooxygenase-2 induction in lipopolysaccharide-stimulated macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:631-8. [PMID: 17579085 DOI: 10.4049/jimmunol.179.1.631] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of macrophages and macrophage cell lines by bacterial LPS elicits a delayed phase of PG biosynthesis that appears to be entirely mediated by cyclooxygenase-2 (COX-2). In previous work, we found that a catalytically active group V secreted phospholipase A(2) (sPLA(2)-V) was required for COX-2 induction, but the nature of the sPLA(2)-V metabolite involved was not defined. In this study, we identify lysophosphatidylcholine (lysoPC) as the sPLA(2)-V downstream mediator involved in COX-2 induction by LPS-stimulated macrophages. Inhibition of sPLA(2)-V by RNA interference or by the cell-permeable compound scalaradial blocked LPS-induced COX-2 expression, and this inhibition was overcome by incubating the cells with a nonhydrolyzable lysoPC analog, but not by arachidonic acid or oleic acid. Moreover, inhibition of sPLA(2)-V by scalaradial also prevented the activation of the transcription factor c-Rel, and such an inhibition was also selectively overcome by the lysoPC analog. Collectively, these results support a model whereby sPLA(2)-V hydrolysis of phospholipids upon LPS stimulation results in lysoPC generation, which in turn regulates COX-2 expression by a mechanism involving the transcriptional activity of c-Rel.
Collapse
Affiliation(s)
- Violeta Ruipérez
- Institute of Molecular Biology and Genetics, Spanish National Research Council and University of Valladolid School of Medicine, Valladolid, Spain
| | | | | | | |
Collapse
|
33
|
Lilbaek HM, Fatum TM, Ipsen R, Sørensen NK. Modification of milk and whey surface properties by enzymatic hydrolysis of milk phospholipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2970-8. [PMID: 17373808 DOI: 10.1021/jf062705b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phospholipase A1 were shown to improve foaming properties of skim milk and whey, implying that phospholipases can be useful tools for modifying the functionality of dairy products and ingredients. The ability of three fungal phospholipases and porcine pancreatic phospholipase A2 to hydrolyze milk phospholipids was investigated by using sodium deoxycholate-solubilized milk phospholipid and whole milk. The enzyme with the highest activity in milk was Fusarium venenatum phospholipase A1. Milk and whey were subsequently characterized using tensiometry and interfacial shear rheology. The lysophospholipids released from the fat globule membrane decreased the surface tension of skim milk and whey. A dramatic decrease in the surface shear viscous and elastic moduli indicated a shift from a protein-dominated to a surfactant-dominated interface. The surface shear moduli did not correlate with the foam stability, which was improved by phospholipase A1.
Collapse
Affiliation(s)
- Hanna M Lilbaek
- Institute of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK- Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
34
|
|
35
|
Walters I, Bennion C, Connolly S, Croshaw PJ, Hardy K, Hartopp P, Jackson CG, King SJ, Lawrence L, Mete A, Murray D, Robinson DH, Stein L, Wells E, John Withnall W. Synthesis and evaluation of substrate-mimicking cytosolic phospholipase A 2 inhibitors––reducing the lipophilicity of the arachidonyl chain isostere. Bioorg Med Chem Lett 2004; 14:3645-9. [PMID: 15203135 DOI: 10.1016/j.bmcl.2004.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 05/10/2004] [Accepted: 05/13/2004] [Indexed: 10/26/2022]
Abstract
The high lipophilicity of a series of cytosolic phospholipase A(2) inhibitors has been reduced by the modification of a decyloxyphenyl chain designed to mimic the arachidonyl group of the natural substrate. These changes have resulted in an improvement in the whole cell potency of the inhibitors.
Collapse
Affiliation(s)
- Iain Walters
- Departments of Medicinal Chemistry, Molecular Biology, and Discovery BioScience, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Phospholipase A(2) (PLA(2)) enzymes are involved in lipid metabolism and, as such, are central to several cellular processes. The different PLA(2)s identified to date can be classified into three groups: secreted PLA(2) (sPLA(2)), calcium-independent PLA(2) (iPLA(2)) and calcium-dependent cytosolic PLA(2) (cPLA(2)). In addition to their role in cellular signalling, PLA(2)s have been implicated in diverse pathological conditions, including inflammation, tissue repair and cancer. Elevated levels of sPLA(2) and cPLA(2) have been reported in several tumour types. Here, we summarize the current views on the PLA(2)s, and look at their expression, role in human malignancy and potential as targets for anticancer drug development.
Collapse
Affiliation(s)
- Jonathan P Laye
- Cancer Research UK Laboratories, Tom Connors Cancer Research Centre, University of Bradford, West Yorkshire BD7 1DP, UK
| | | |
Collapse
|
37
|
Balboa MA, Pérez R, Balsinde J. Amplification mechanisms of inflammation: paracrine stimulation of arachidonic acid mobilization by secreted phospholipase A2 is regulated by cytosolic phospholipase A2-derived hydroperoxyeicosatetraenoic acid. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:989-94. [PMID: 12847271 DOI: 10.4049/jimmunol.171.2.989] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response.
Collapse
Affiliation(s)
- María A Balboa
- Institute of Molecular Biology and Genetics, University of Valladolid School of Medicine, Valladolid, Spain
| | | | | |
Collapse
|
38
|
Balboa MA, Sáez Y, Balsinde J. Calcium-independent phospholipase A2 is required for lysozyme secretion in U937 promonocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5276-80. [PMID: 12734377 DOI: 10.4049/jimmunol.170.10.5276] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As a part of their surveillance functions in the immune system, monocytes/macrophages secrete large amounts of the bactericidal enzyme lysozyme to the extracellular medium. We report here that lysozyme secretion in activated U937 promonocytes depends on a functional calcium-independent phospholipase A(2) (iPLA(2)). Inhibition of the enzyme by bromoenol lactone or by treatment with a specific antisense oligonucleotide results in a diminished capacity of the cells to secrete lysozyme to the extracellular medium. Calcium-independent PLA(2) is largely responsible for the maintenance of the steady state of lysophosphatidylcholine (lysoPC) levels within the cells, as manifested by the marked decrease in the levels of this metabolite in cells deficient in iPLA(2) activity. Reconstitution experiments reveal that lysoPC efficiently restores lysozyme secretion in iPLA(2)-deficient cells, whereas other lysophospholipids, including lysophosphatidic acid, lysophosphatidylserine, and lysophosphatidylethanolamine, are without effect. Arachidonic acid mobilization in activated U937 cells is under control of cytosolic phospholipase A(2) (cPLA(2)). Selective inhibition of cPLA(2) results in a complete abrogation of the arachidonate mobilization response, but has no effect on lysozyme secretion. These results identify iPLA(2)-mediated lysoPC production as a necessary component of the molecular machinery leading to lysozyme secretion in U937 cells and rule out a role for cPLA(2) in the response. Collectively, the results demonstrate distinct roles in inflammatory cell signaling for these two intracellular phospholipases.
Collapse
Affiliation(s)
- María A Balboa
- Institute of Molecular Biology and Genetics, University of Valladolid School of Medicine, Valladolid, Spain
| | | | | |
Collapse
|
39
|
Balboa MA, Balsinde J. Involvement of calcium-independent phospholipase A2 in hydrogen peroxide-induced accumulation of free fatty acids in human U937 cells. J Biol Chem 2002; 277:40384-9. [PMID: 12181317 DOI: 10.1074/jbc.m206155200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that U937 cells are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in response to receptor-directed and soluble stimuli by a mechanism that involves the activation of Group IV cytosolic phospholipase A(2)alpha. In this paper we show that these cells also mobilize AA in response to an oxidative stress induced by H(2)O(2) through a mechanism that appears not to be mediated by cytosolic phospholipase A(2)alpha but by the calcium-independent Group VI phospholipase A(2) (iPLA(2)). This is supported by the following lines of evidence: (i) the response is essentially calcium-independent, (ii) it is inhibited by bromoenol lactone, and (iii) it is inhibited by an iPLA(2) antisense oligonucleotide. Enzyme assays conducted under a variety of conditions reveal that the specific activity of the iPLA(2) does not change as a result of H(2)O(2) exposure, which argues against the activation of a specific signaling cascade ending in the iPLA(2). Rather, the oxidant acts to perturb membrane homeostasis in a way that the enzyme susceptibility/accessibility to its substrate increases, and this results in altered fatty acid release. In support of this view, not only AA, but also other fatty acids, were found to be liberated in an iPLA(2)-dependent manner in the H(2)O(2)-treated cells. Collectively, these studies underscore the importance of the iPLA(2) in modulating homeostatic fatty acid deacylation reactions and document a potentially important route under pathophysiological conditions for increasing free fatty acid levels during oxidative stress.
Collapse
Affiliation(s)
- María A Balboa
- Institute of Molecular Biology and Genetics, School of Medicine, University of Valladolid, Avenida Ramón y Cajal 7, E-47005 Valladolid, Spain
| | | |
Collapse
|
40
|
Guenther MG, Witmer MR, Burke JR. Cytosolic phospholipase A2 shows burst kinetics consistent with the slow, reversible formation of a dead-end complex. Arch Biochem Biophys 2002; 398:101-8. [PMID: 11811954 DOI: 10.1006/abbi.2001.2696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytosolic phospholipase A2 catalyzes the hydrolysis of the sn-2 ester of arachidonate-containing phospholipids. In the present research, a "burst" of arachidonate which precedes a somewhat slower, linear rate (upsilon) of product formation was observed and characterized using covesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol (DMPM) containing <10 mol% 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine as substrate. The magnitude of the burst (pi) was enzyme dependent, in both the presence and absence of glycerol. Upon subsequent addition of enzyme after the primary burst was complete, a second burst of arachidonate production was observed. This is consistent with the effect resulting from an enzyme effect and not from changes in the substrate. The use of 1,2-dioleoyl-sn-glycero-3-phosphomethanol as the carrier phospholipid instead of DMPM greatly reduced the rate of hydrolysis without a large effect on the pi/upsilon ratio, consistent with the burst not being the result of limitations in the lateral diffusion rate of phospholipids within the covesicles. When the assay is performed in the presence of glycerol, the burst phenomenon was also observed with the monoarachidonoyl glycerol transacylase product which shows that the effect occurs through a common mechanism. The burst and subsequent linear rate of hydrolysis are highly temperature dependent, with a pronounced increase in the pi/upsilon ratio as the temperature is increased from 35 to 45 degrees C. A mechanism in which a slow equilibrium between an active and less active (inactive) state of substrate-bound enzyme is proposed. This may provide a means by which the enzyme is switched off after a few hundred turnovers in order to prevent unabated phospholipid hydrolysis in cells which may be deleterious to membrane integrity.
Collapse
Affiliation(s)
- Matthew G Guenther
- Drug Discovery and Exploratory Development, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA
| | | | | |
Collapse
|
41
|
12(S)-Hydroperoxy-eicosatetraenoic acid increases arachidonic acid availability in collagen-primed platelets. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)30280-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Capper EA, Marshall LA. Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog Lipid Res 2001; 40:167-97. [PMID: 11275266 DOI: 10.1016/s0163-7827(01)00002-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E A Capper
- SmithKline Beecham Pharmaceuticals, Department of Immunology, Upper Merion, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | |
Collapse
|
43
|
Santiago MF, López-Aparicio P, Recio MN, Pérez-Albarsanz MA. Redistribution of cPLA(2) in rat renal tubular cell cultures in response to PCBs. Cell Signal 2001; 13:111-8. [PMID: 11257455 DOI: 10.1016/s0898-6568(00)00148-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The influence of different polychlorinated biphenyls (PCBs) upon the cytosolic phospholipase A(2) (cPLA(2)) redistribution to the particulate fraction has been investigated in rat renal proximal tubule culture cells. Treatment with Aroclor 1248 increased PLA(2) activity in the particulate fraction in a concentration-dependent manner using two radioactive substrates. However, the activity of PLA(2) in the cytosolic fraction decreased. This work also shows that 2,2',4,4',5,5'-hexachlorobiphenyl (HCB) (a di-ortho-substituted nonplanar congener) can increase the activity of PLA(2) in the particulate fraction and decrease the enzyme activity in the cytosolic fraction. The exposure of cell cultures to 3,3',4,4'-tetrachlorobiphenyl (TCB) (a non-ortho-subtituted planar congener) does not alter PLA(2) activity. These results suggest that PCBs, depending on their planar or nonplanar structures, cause a translocation of the enzyme from the cytosol to membranes. To evaluate this possibility, the contents of immunoreactive cPLA(2) were examined by immunoblot analysis in the high-speed supernatant and the particulate fraction of treated cell cultures. The increases/decreases in the amounts of cPLA(2) protein agree with the increases/decreases of PLA(2) activity previously cited. These data demonstrate that the PCB-stimulated redistribution of cPLA(2) to membranes is associated, at least in part, with the changes detected in the activity of the enzyme.
Collapse
Affiliation(s)
- M F Santiago
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
44
|
Deregnaucourt C, Schrével J. Bee venom phospholipase A2 induces stage-specific growth arrest of the intraerythrocytic Plasmodium falciparum via modifications of human serum components. J Biol Chem 2000; 275:39973-80. [PMID: 10988294 DOI: 10.1074/jbc.m006712200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secreted phospholipases A(2) (sPLA(2)s) from snake and insect venoms and from mammalian pancreas are structurally related enzymes that have been associated with several toxic, pathological, or physiological processes. We addressed the issue of whether toxic sPLA(2)s might exert specific effects on the Plasmodium falciparum intraerythrocytic development. We showed that both toxic and non-toxic sPLA(2)s are lethal to P. falciparum grown in vitro, with large discrepancies between respective IC(50) values; IC(50) values from toxic PLA(2)s ranged from 1.1 to 200 pm, and IC(50) values from non-toxic PLA(2)s ranged from 0.14 to 1 microm. Analysis of the molecular mechanisms responsible for cytotoxicity of bee venom PLA(2) (toxic) and hog pancreas PLA(2) (non-toxic) demonstrated that, in both cases, enzymatic hydrolysis of serum phospholipids present in the culture medium was responsible for parasite growth arrest. However, bee PLA(2)-lipolyzed serum induced stage-specific inhibition of P. falciparum development, whereas hog PLA(2)-lipolyzed serum killed parasites at either stage. Sensitivity to bee PLA(2)-treated serum appeared restricted to the 19-26-h period of the 48 h parasite cycle. Analysis of the respective role of the different lipoprotein classes as substrates of bee PLA(2) showed that enzyme treatment of high density lipoproteins, low density lipoproteins, and very low density lipoproteins/chylomicrons fractions induces cytotoxicity of either fraction. In conclusion, our results demonstrate that toxic and non-toxic PLA(2)s 1) are cytotoxic to P. falciparum via hydrolysis of lipoprotein phospholipids and 2) display different killing processes presumably involving lipoprotein by-products recognizing different targets on the infected red blood cell.
Collapse
Affiliation(s)
- C Deregnaucourt
- Laboratoire de Biologie Parasitaire, Muséum National d'Histoire Naturelle IFR 63, 61 rue Buffon, 75231 Paris Cedex 05 France
| | | |
Collapse
|
45
|
Hirabayashi T, Shimizu T. Localization and regulation of cytosolic phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:124-38. [PMID: 11080682 DOI: 10.1016/s1388-1981(00)00115-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liberation of arachidonic acid by cytosolic phospholipase A(2) (cPLA(2)) upon cell activation is often the initial and rate-limiting step in leukotriene and prostaglandin biosynthesis. This review discusses the essential features of cPLA(2) isoforms and addresses intriguing insights into the catalytic and regulatory mechanisms. Gene expression, posttranslational modification and subcellular localization can regulate these isoforms. Translocation of cPLA(2)alpha from the cytosol to the perinuclear region in response to calcium transients is critical for the immediate arachidonic acid release. Therefore, particular emphasis is placed on the mechanism of the translocation and the role of the proteins and lipids implicated in this process. The regional distribution and cellular localization of cPLA(2) may help to better understand its function as an arachidonic acid supplier to downstream enzymes and as a regulator of specific cellular processes.
Collapse
Affiliation(s)
- T Hirabayashi
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Japan.
| | | |
Collapse
|
46
|
Birbes H, Gothié E, Pageaux JF, Lagarde M, Laugier C. Hydrogen peroxide activation of Ca(2+)-independent phospholipase A(2) in uterine stromal cells. Biochem Biophys Res Commun 2000; 276:613-8. [PMID: 11027521 DOI: 10.1006/bbrc.2000.3479] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rat uterine stromal cells (U(III) cells), an oxidative stress induced by H(2)O(2) caused a dose-dependent release of arachidonic acid (AA) that was independent of intracellular Ca(2+) concentration and was not inhibited by Ca(2+)-dependent phospholipase A(2) (cPLA(2)) inhibitors, nor by protein kinase C (PKC) inhibitors or by PKC down-regulation. H(2)O(2) treatment did not impair AA esterification but significantly increased Ca(2+)-independent PLA(2) (iPLA(2)) activity. Since iPLA(2) specific inhibitor bromoenollactone almost completely suppressed the release of AA induced by H(2)O(2), we conclude that iPLA(2) activity represents the major mechanism by which H(2)O(2) increases the availability of non-esterified AA in U(III) cells. Moreover, PKC inhibitors sphingosine and calphostin C markedly potentiated the release of AA trigger by H(2)O(2), suggesting a regulatory mechanism of iPLA(2) by PKC that remains to be clarified.
Collapse
Affiliation(s)
- H Birbes
- Biochimie & Pharmacologie, INSERM U352, INSA-Lyon, Bât. 406, Villeurbanne Cedex, 69621, France
| | | | | | | | | |
Collapse
|
47
|
Marshall LA, Bolognese B, Roshak A. Respective roles of the 14 kDa and 85 kDa phospholipase A2 enzymes in human monocyte eicosanoid formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:215-9. [PMID: 10667333 DOI: 10.1007/978-1-4615-4793-8_32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Human monocytes possess both the cytosolic 85 kDa phospholipase (PLA) A2 and a 14 kDa PLA2 and are capable of simultaneously producing prostanoids (PG), leukotrienes (LT) and platelet activating factor (PAF). As the exact roles of the two enzymes in monocyte lipid mediator formation was unclear, both selective PLA2 inhibitors and antisense were used to elucidate their respective roles. Reduction in 85 kDa PLA2 cellular protein levels by initiation site-directed antisense (SK 7111) or exposure to the 85 kDa PLA2 inhibitor, arachidonyl trifluormethyl ketone (AACOCF3), prevented A23187 or zymosan-stimulated monocytes prostanoid formation but not LTC4 or PAF production. This confirmed the important role of the 85 kDa PLA2 in prostanoid formation but indicated a less significant role in LT or PAF biosynthesis. Alternatively, treatment of monocytes with the selective, active-site-directed 14 kDa PLA2 inhibitor, SB 203347, totally inhibited LT and PAF formation, while prostanoid formation was not altered. Addition of 20 uM exogenous arachidonic acid (AA) to monocytes exposed to SB 203347 did not alter A23187-induced LTC4 generation, indicating that SB 203347 had no effect on downstream AA metabolizing enzymes in this setting. Taken together, these results provide evidence that the 14 kDa PLA2 provides substrate for monocyte LT and PAF formation, while the 85 kDa PLA2 plays a more significant role in the formation of PG.
Collapse
Affiliation(s)
- L A Marshall
- Department of Immunopharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA.
| | | | | |
Collapse
|
48
|
|
49
|
Xue D, Xu J, McGuire SO, Devitre D, Sun GY. Studies on the cytosolic phospholipase A2 in immortalized astrocytes (DITNC) revealed new properties of the calcium ionophore, A23187. Neurochem Res 1999; 24:1285-91. [PMID: 10492524 DOI: 10.1023/a:1020981224876] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Besides playing an important role in the maintenance of cell membrane phospholipids, phospholipases A2 (PLA2) are responsible for the release of arachidonic acid (AA) which is a precursor for prostaglandin biosynthesis. The cytosolic PLA2 has been the focus of recent studies, probably due to its ability to respond to protein kinases and changes in intracellular calcium levels. In this study, we examined agents for stimulation of the cytosolic phospholipase A2 in immortalized astrocytes (DITNC). Incubation of DITNC cells with [14C]arachidonic acid (AA) resulted in a time-dependent uptake of the label into phospholipids (PL) and neutral glycerides. In prelabeled cells, release of labeled AA could be stimulated by calcium mobilizing agents such as calcium ionophore A23187 (4-20 microM) and thimerosal (100 microM), and by phorbol myristate acetate (PMA, 100 nM), an agent for activation of protein kinase C. The release of AA could also be stimulated by ATP (200 microM), probably through activation of the purinergic receptor but not by glutamate (1 mM). The stimulated release of AA was dependent on extracellular Ca2+ and was inhibited by mepacrine (50 microM), a non-specific PLA2 inhibitor. Western blot analysis further confirmed the presence of an 85 kDa cPLA2 in both membrane and cytosol fractions of these cells and stimulation by A23187 resulted in translocation of this protein to the membrane fraction. Besides labeled fatty acids, A23187 also stimulated the concomitant release of labeled PL into the culture medium and this event was accompanied by the increased release in lactate dehydrogenase (LDH). Results thus revealed that besides activation of cPLA2, the calcium ionophore A23187 is capable of perturbating cell membrane integrity.
Collapse
Affiliation(s)
- D Xue
- Biochemistry Department and Nutritional Sciences Program, University of Missouri, Columbia 65212, USA
| | | | | | | | | |
Collapse
|
50
|
Ghomashchi F, Loo R, Balsinde J, Bartoli F, Apitz-Castro R, Clark JD, Dennis EA, Gelb MH. Trifluoromethyl ketones and methyl fluorophosphonates as inhibitors of group IV and VI phospholipases A(2): structure-function studies with vesicle, micelle, and membrane assays. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1420:45-56. [PMID: 10446289 DOI: 10.1016/s0005-2736(99)00056-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A series of fatty alkyl trifluoromethyl ketones and methyl fluorophosphonates have been prepared and tested as inhibitors and inactivators of human groups IV and VI phospholipases A(2) (cPLA(2) and iPLA(2)). Compounds were analyzed with phospholipid vesicle-, detergent-phospholipid mixed-micelle-, and natural membrane-based assays, and, with few exceptions, the relative inhibitor potencies measured with the three assays were similar. Ph(CH(2))(4)COCF(3) and Ph(CH(2))(4)PO(OMe)F emerged as a potent inhibitor and inactivator, respectively, of iPLA(2), and both are poorly effective against cPLA(2). Of all 13 fatty alkyl trifluoromethyl ketones tested, the trifluoromethyl ketone analog of arachidonic acid is the most potent cPLA(2) inhibitor, and structurally similar compounds including the trifluoromethyl ketone analog of docosahexenoic acid are much poorer cPLA(2) inhibitors. Inactivation of cPLA(2) by fatty alkyl fluoromethylphosphonates is greatly promoted by binding of enzyme to the interface. The use of both vesicles and mixed micelles to assay phospholipase A(2) inhibitors and inactivators present at low mol fraction in the interface provides reliable rank order potencies of a series of compounds that correlate with their behavior in a natural membrane assay.
Collapse
Affiliation(s)
- F Ghomashchi
- Departments of Chemistry and Biochemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | | | | | | | | | |
Collapse
|