1
|
NeuroPIpred: a tool to predict, design and scan insect neuropeptides. Sci Rep 2019; 9:5129. [PMID: 30914676 PMCID: PMC6435694 DOI: 10.1038/s41598-019-41538-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Insect neuropeptides and their associated receptors have been one of the potential targets for the pest control. The present study describes in silico models developed using natural and modified insect neuropeptides for predicting and designing new neuropeptides. Amino acid composition analysis revealed the preference of residues C, D, E, F, G, N, S, and Y in insect neuropeptides The positional residue preference analysis show that in natural neuropeptides residues like A, N, F, D, P, S, and I are preferred at N terminus and residues like L, R, P, F, N, and G are preferred at C terminus. Prediction models were developed using input features like amino acid and dipeptide composition, binary profiles and implementing different machine learning techniques. Dipeptide composition based SVM model performed best among all the models. In case of NeuroPIpred_DS1, model achieved an accuracy of 86.50% accuracy and 0.73 MCC on training dataset and 83.71% accuracy and 0.67 MCC on validation dataset whereas in case of NeuroPIpred_DS2, model achieved 97.47% accuracy and 0.95 MCC on training dataset and 97.93% accuracy and 0.96 MCC on validation dataset. In order to assist researchers, we created standalone and user friendly web server NeuroPIpred, available at (https://webs.iiitd.edu.in/raghava/neuropipred.)
Collapse
|
2
|
Yan HY, Mita K, Zhao X, Tanaka Y, Moriyama M, Wang H, Iwanaga M, Kawasaki H. The angiotensin-converting enzyme (ACE) gene family of Bombyx mori. Gene 2017; 608:58-65. [DOI: 10.1016/j.gene.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/09/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023]
|
3
|
Duressa TF, Boonen K, Huybrechts R. A quantitative peptidomics approach to unravel immunological functions of angiotensin converting enzyme in Locusta migratoria. Gen Comp Endocrinol 2016; 235:120-129. [PMID: 27320038 DOI: 10.1016/j.ygcen.2016.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 01/15/2023]
Abstract
Locusta migratoria angiotensin converting enzyme (LmACE) is encoded by multiple exons displaying variable number of genomic duplications. Treatments of lipopolysaccharide (LPS) as well as peptidoglycan but not β-1-3 glucan resulted in enhanced expression of angiotensin converting enzyme in hemocytes of Locusta migratoria. No such effect was observed in fat body cells. Differential peptidomics using locust plasma samples post infection with LPS in combination with both an LmACE transcript knockdown by RNAi and a functional knockdown using captopril allowed the identification of 5 circulating LPS induced peptides which only appear in the hemolymph of locust having full LmACE functionality. As these peptides originate from larger precursor proteins such as locust hemocyanin-like protein, having known antimicrobial properties, the obtained results suggest a possible direct or indirect role of LmACE in the release of these peptides from their precursors. Additionally, this experimental setup confirmed the role of LmACE in the clearance of multiple peptides from the hemolymph.
Collapse
Affiliation(s)
- Tewodros Firdissa Duressa
- Insect Physiology and Molecular Ethology, Biology Department, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Kurt Boonen
- Functional Genomics and Proteomics, Biology Department, KU Leuven, B-3000 Leuven, Belgium.
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology, Biology Department, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Li Z, An XK, Liu YD, Hou ML. Transcriptomic and Expression Analysis of the Salivary Glands in White-Backed Planthoppers, Sogatella furcifera. PLoS One 2016; 11:e0159393. [PMID: 27414796 PMCID: PMC4945012 DOI: 10.1371/journal.pone.0159393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
The white-backed planthopper (WBPH), Sogatella furcifera (Horváth), is one of the serious rice pests because of its destructive feeding. The salivary glands of the WBPH play an important role in the feeding behaviour. Currently, however, very little is known about the salivary glands at the molecular level. We sequenced the salivary gland transcriptome (sialotranscripome) of adult WBPHs using the Illumina sequencing. A total of 65,595 transcripts and 51,842 unigenes were obtained from salivary glands. According to annotations against the Nr database, many of the unigenes identified were associated with the most studied enzymes in hemipteran saliva. In the present study, we identified 32 salivary protein genes from the WBPH sialotranscripome, which were categorized as those involved in sugar metabolism, detoxification, suppression of plant defense responses, immunity-related responses, general digestion, and other phytophagy processes. Tissue expression profiles analysis revealed that four of 32 salivary protein genes (multicopper oxidase 4, multicopper oxidase 6, carboxylesterase and uridine phosphorylase 1 isform X2) were primarily expressed in the salivary gland, suggesting that they played putative role in insect-rice interactions. 13 of 32 salivary protein genes were primarily expressed in gut, which might play putative role in digestive and detoxify mechanism. Development expression profiles analysis revealed that the expression level of 26 of 32 salivary protein genes had no significant difference, suggesting that they may play roles in every developmental stages of salivary gland of WBPH. The other six genes have a high expression level in the salivary gland of adult. 31 of 32 genes (except putative acetylcholinesterase 1) have no significant difference in male and female adult, suggesting that their expression level have no difference between sexes. This report analysis of the sialotranscripome for the WBPH, and the transcriptome provides a foundational list of the genes involved in feeding. Our data will be useful to investigate the mechanisms of interaction between the WBPH and the host plant.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
| | - Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
| | - Yu-Di Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
- * E-mail:
| | - Mao-Lin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
| |
Collapse
|
5
|
De Mello WC. Regulation of cell volume and water transport--an old fundamental role of the renin angiotensin aldosterone system components at the cellular level. Peptides 2014; 58:74-7. [PMID: 24945466 PMCID: PMC7172966 DOI: 10.1016/j.peptides.2014.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 12/12/2022]
Abstract
The expression and the role of renin angiotensin aldosterone system (RAAS) components on regulation of cell volume and water transport on vertebrates and invertebrates were reviewed. The presence of these components even in simple organisms like leeches and their relevance for the control of cellular volume and water transport supports the view that the expression of these components, at cellular level, is an acquisition which was preserved throughout evolution.
Collapse
Affiliation(s)
- Walmor C De Mello
- School of Medicine, Medical Sciences Campus, UPR, San Juan, PR 00936, USA.
| |
Collapse
|
6
|
Hp1404, a new antimicrobial peptide from the scorpion Heterometrus petersii. PLoS One 2014; 9:e97539. [PMID: 24826994 PMCID: PMC4020842 DOI: 10.1371/journal.pone.0097539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/18/2014] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial peptides have attracted much interest as a novel class of antibiotics against a variety of microbes including antibiotics resistant strains. In this study, a new cationic antimicrobial peptide Hp1404 was identified from the scorpion Heterometrus petersii, which is an amphipathic α-helical peptide and has a specific inhibitory activity against gram-positive bacteria including methicillin-resistant Staphylococcus aureus. Hp1404 can penetrate the membrane of S. aureus at low concentration, and disrupts the cellular membrane directly at super high concentration. S. aureus does not develop drug resistance after multiple treatments with Hp1404 at sub MIC concentration, which is possibly associated with the antibacterial mechanism of the peptide. In addition, Hp1404 has low toxicity to both mammalian cells (HC50 = 226.6 µg/mL and CC50 > 100 µg/mL) and balb-c mice (Non-toxicity at 80 mg/Kg by intraperitoneal injection and LD50 = 89.8 mg/Kg by intravenous injection). Interestingly, Hp1404 can improve the survival rate of the MRSA infected balb-c mice in the peritonitis model. Taken together, Hp1404 may have potential applications as an antibacterial agent.
Collapse
|
7
|
Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:116-27. [PMID: 24731621 DOI: 10.1016/j.jchromb.2014.03.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 01/15/2023]
Abstract
Studies of protein nutrition and biochemistry require reliable methods for analysis of amino acid (AA) composition in polypeptides of animal tissues and foods. Proteins are hydrolyzed by 6M HCl (110°C for 24h), 4.2M NaOH (105°C for 20 h), or proteases. Analytical techniques that require high-performance liquid chromatography (HPLC) include pre-column derivatization with 4-chloro-7-nitrobenzofurazan, 9-fluorenyl methylchloroformate, phenylisothiocyanate, naphthalene-2,3-dicarboxaldehyde, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and o-phthaldialdehyde (OPA). OPA reacts with primary AA (except cysteine or cystine) in the presence of 2-mercaptoethanol or 3-mercaptopropionic acid to form a highly fluorescent adduct. OPA also reacts with 4-amino-1-butanol and 4-aminobutane-1,3-diol produced from oxidation of proline and 4-hydroxyproline, respectively, in the presence of chloramine-T plus sodium borohydride at 60°C, or with S-carboxymethyl-cysteine formed from cysteine and iodoacetic acid at 25°C. Fluorescence of OPA derivatives is monitored at excitation and emission wavelengths of 340 and 455 nm, respectively. Detection limits are 50 fmol for AA. This technique offers the following advantages: simple procedures for preparation of samples, reagents, and mobile-phase solutions; rapid pre-column formation of OPA-AA derivatives and their efficient separation at room temperature (e.g., 20-25°C); high sensitivity of detection; easy automation on the HPLC apparatus; few interfering side reactions; a stable chromatography baseline for accurate integration of peak areas; and rapid regeneration of guard and analytical columns. Thus, the OPA method provides a useful tool to determine AA composition in proteins of animal tissues (e.g., skeletal muscle, liver, intestine, placenta, brain, and body homogenates) and foods (e.g., milk, corn grain, meat, and soybean meal).
Collapse
|
8
|
Ctriporin, a new anti-methicillin-resistant Staphylococcus aureus peptide from the venom of the scorpion Chaerilus tricostatus. Antimicrob Agents Chemother 2011; 55:5220-9. [PMID: 21876042 DOI: 10.1128/aac.00369-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antibiotic-resistant microbes, such as methicillin-resistant Staphylococcus aureus, seriously threaten human health. The outbreak of "superbugs" in recent years emphasizes once again the need for the development of new antimicrobial agents or resources. Antimicrobial peptides have an evident bactericidal effect against multidrug-resistant pathogens. In the present study, a new antimicrobial peptide, ctriporin, was cloned and characterized from the venom of the scorpion Chaerilus tricostatus, an animal which has not yet been explored for toxic peptide resources. The MICs of ctriporin against Staphylococcus aureus, Bacillus thuringiensis, Bacillus subtilis, Micrococcus luteus, and Candida albicans are 5 to 20 μg/ml. Meanwhile, it MIC against clinical antibiotic-resistant bacterial strains is 10 μg/ml. Furthermore, the potential for ctriporin to be used as a topical antibiotic for treating staphylococcal skin infections was investigated. External use of the peptide ctriporin dramatically decreased the bacterial counts and cured skin infections in mice. In addition, ctriporin demonstrates antimicrobial efficacy via the bactericidal mechanism of rapid cell lysis. Together, these results suggest the potential of developing ctriporin as a new topical antibiotic.
Collapse
|
9
|
Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J. Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 2011; 6:e17274. [PMID: 21445293 PMCID: PMC3061863 DOI: 10.1371/journal.pone.0017274] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/28/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The desert locust (Schistocerca gregaria) displays a fascinating type of phenotypic plasticity, designated as 'phase polyphenism'. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. METHODOLOGY We have generated 34,672 raw expressed sequence tags (EST) from the CNS of desert locusts in both phases. These ESTs were assembled in 12,709 unique transcript sequences and nearly 4,000 sequences were functionally annotated. Moreover, the obtained S. gregaria EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. CONCLUSIONS In summary, we met the need for novel sequence data from desert locust CNS. To our knowledge, we hereby also present the first insect EST database that is derived from the complete CNS. The obtained S. gregaria EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jurgen Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gert Simonet
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisabeth Marchal
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Roger Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnold De Loof
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Venom proteins of the parasitoid wasp Nasonia vitripennis: recent discovery of an untapped pharmacopee. Toxins (Basel) 2010; 2:494-516. [PMID: 22069597 PMCID: PMC3153221 DOI: 10.3390/toxins2040494] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 01/08/2023] Open
Abstract
Adult females of Nasonia vitripennis inject a venomous mixture into its host flies prior to oviposition. Recently, the entire genome of this ectoparasitoid wasp was sequenced, enabling the identification of 79 venom proteins. The next challenge will be to unravel their specific functions, but based on homolog studies, some predictions already can be made. Parasitization has an enormous impact on hosts physiology of which five major effects are discussed in this review: the impact on immune responses, induction of developmental arrest, increases in lipid levels, apoptosis and nutrient releases. The value of deciphering this venom is also discussed.
Collapse
|
11
|
Nässel DR. Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? INVERTEBRATE NEUROSCIENCE 2009; 9:57-75. [PMID: 19756790 DOI: 10.1007/s10158-009-0090-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/24/2009] [Indexed: 12/15/2022]
Abstract
Neuropeptide signaling is functionally very diverse and one and the same neuropeptide may act as a circulating neurohormone, as a locally released neuromodulator or even as a cotransmitter of classical fast-acting neurotransmitters. Thus, neuropeptides are produced by a huge variety of neuron types in different parts of the nervous system. Within the central nervous system (CNS) there are numerous types of peptidergic interneurons, some with strictly localized and patterned branching morphologies, others with widespread and diffuse arborizations. From morphology alone it is often difficult to predict the sphere of influence of a peptidergic interneuron, especially since it has been shown that neuropeptides can diffuse over tens of micrometers within neuropils, and that peptides probably are released exclusively in perisynaptic (or non-synaptic) regions. This review addresses some questions related to peptidergic signaling in the insect CNS. How diverse are the spatial relations between peptidergic neurons and their target neurons and what determines the sphere of functional influence? At one extreme there is volume transmission and at the other targeted cotransmission at synapses. Also temporal aspects of peptidergic signaling are of interest: how transient are peptidergic messages? Factors important for these spatial and temporal aspects of peptidergic signaling are proximity between release sites and cognate receptors, distribution of peptidase activity that can terminate peptide action and colocalization of other neuroactive compounds in the presynaptic peptidergic neuron (and corresponding receptors in target neurons). Other factors such as expression of different channel types, receptor inactivation mechanisms and second messenger systems probably also contribute to the diversity in temporal properties of peptide signaling.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
12
|
Isaac RE, Bland ND, Shirras AD. Neuropeptidases and the metabolic inactivation of insect neuropeptides. Gen Comp Endocrinol 2009; 162:8-17. [PMID: 19135055 DOI: 10.1016/j.ygcen.2008.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 11/24/2008] [Accepted: 12/10/2008] [Indexed: 11/26/2022]
Abstract
Neuropeptidases play a key role in regulating neuropeptide signalling activity in the central nervous system of animals. They are oligopeptidases that are generally found on the surface of neuronal cells facing the synaptic and peri-synaptic space and therefore are ideally placed for the metabolic inactivation of neuropeptide transmitters/modulators. This review discusses the structure of insect neuropeptides in relation to their susceptibility to hydrolysis by peptidases and the need for specialist enzymes to degrade many neuropeptides. It focuses on five neuropeptidase families (neprilysin, dipeptidyl-peptidase IV, angiotensin-converting enzyme, aminopeptidase and dipeptidyl aminopeptidase III) that have been implicated in the metabolic inactivation of neuropeptides in the central nervous system of insects. Experimental evidence for the involvement of these peptidases in neuropeptide metabolism is reviewed and their properties are compared to similar neuropeptide inactivating peptidases of the mammalian brain. We also discuss how the sequencing of insect genomes has led to the molecular identification of candidate neuropeptidase genes.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
13
|
Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 2009; 9:2457-67. [PMID: 19402045 DOI: 10.1002/pmic.200800692] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Indexed: 11/07/2022]
Abstract
Nine proteins secreted in the saliva of the pea aphid Acyrthosiphon pisum were identified by a proteomics approach using GE-LC-MS/MS and LC-MS/MS, with reference to EST and genomic sequence data for A. pisum. Four proteins were identified by their sequences: a homolog of angiotensin-converting enzyme (an M2 metalloprotease), an M1 zinc-dependant metalloprotease, a glucose-methanol-choline (GMC)-oxidoreductase and a homolog to regucalcin (also known as senescence marker protein 30). The other five proteins are not homologous to any previously described sequence and included an abundant salivary protein (represented by ACYPI009881), with a predicted length of 1161 amino acids and high serine, tyrosine and cysteine content. A. pisum feeds on plant phloem sap and the metalloproteases and regucalcin (a putative calcium-binding protein) are predicted determinants of sustained feeding, by inactivation of plant protein defences and inhibition of calcium-mediated occlusion of phloem sieve elements, respectively. The amino acid composition of ACYPI009881 suggests a role in the aphid salivary sheath that protects the aphid mouthparts from plant defences, and the oxidoreductase may promote gelling of the sheath protein or mediate oxidative detoxification of plant allelochemicals. Further salivary proteins are expected to be identified as more sensitive MS technologies are developed.
Collapse
Affiliation(s)
- James C Carolan
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
14
|
Liu DW, Chen ZW, Xu HZ. Effects of leucine-enkephalin on catalase activity and hydrogen peroxide levels in the haemolymph of the Pacific Oyster (Crassostrea gigas). Molecules 2008; 13:864-70. [PMID: 18463588 PMCID: PMC6245476 DOI: 10.3390/molecules13040864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/06/2008] [Accepted: 04/07/2008] [Indexed: 11/17/2022] Open
Abstract
The nervous and immune systems of invertebrates can exchange information through neuropeptides. Furthermore, some opioid peptides can function as endogenous immune system messengers and participate in the regulation of the immune responses. The present study was designed to investigate the effects of leucine-enkephalin (L-ENK) on the activity of catalase (CAT) and hydrogen peroxide (H2O2) content in the haemolymph of the Pacific Oyster (Crassostrea gigas). The CAT activity and H2O2 content were investigated after the haemolymph of the species was exposed to 1, 5, and 50 μg/mL of L-ENK. The results indicate that the intracellular and extracellular CAT activity was increased with increasing concentration of L-ENK, while the intracellular and extracellular H2O2 content was decreased with increasing concentration of L-ENK. L-ENK may regulate the intracellular and extracellular CAT activity and H2O2 content via binding with opioid neuropeptide receptors on immunocytes of the oysters. The data strongly suggests an involvement of opioid peptides in the regulation of the antioxidant defence systems of Crassostrea gigas.
Collapse
Affiliation(s)
- Dong-wu Liu
- Analysis and Testing Center, Shandong University of Technology, 255049, Zibo, Shandong, PR China.
| | | | | |
Collapse
|
15
|
Lemeire E, Vanholme B, Van Leeuwen T, Van Camp J, Smagghe G. Angiotensin-converting enzyme in Spodoptera littoralis: molecular characterization, expression and activity profile during development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:166-175. [PMID: 18207078 DOI: 10.1016/j.ibmb.2007.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/07/2007] [Accepted: 10/09/2007] [Indexed: 05/25/2023]
Abstract
The characterization of the full-length angiotensin-converting enzyme (ACE) cDNA sequence of the lepidopteran Spodoptera littoralis is reported in this study. The predicted open reading frame encodes a 647 amino acids long protein (SlACE) and shows 63.6% identity with the Bombyx mori ACE sequence. A 3D-model, consisting of 26 alpha-helices and three beta-sheets, was predicted for the sequence. SlACE expression was studied in the embryonic, larval and pupal stages of S. littoralis and in different tissues of the last larval stage by reverse-transcribed PCR. This revealed that the gene is expressed throughout the life cycle and especially in brain, gut and fat body tissue of the last stage. These results are in agreement with a role of ACE in the metabolism of neuropeptides and gut hormones. In addition, ACE activity has been studied in more detail during development, making use of a fluorescent assay. High ACE peptidase activity coincides with every transition state, from embryo to larva, from larva to larva and from larva to pupa. A peak value in activity occurs during the early pupal stage. These results indicate the importance of SlACE during metamorphosis and reveal the high correlation of ACE activity with the insect's development, which is regulated by growth and developmental hormones.
Collapse
Affiliation(s)
- Els Lemeire
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
16
|
Rylett CM, Walker MJ, Howell GJ, Shirras AD, Isaac RE. Male accessory glands of Drosophila melanogaster make a secreted angiotensin I-converting enzyme (ANCE), suggesting a role for the peptide-processing enzyme in seminal fluid. ACTA ACUST UNITED AC 2007; 210:3601-6. [PMID: 17921161 DOI: 10.1242/jeb.009035] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiotensin I-converting enzyme (ACE) expressed on the surface of endothelial cells is responsible for the last step in the synthesis of circulating angiotensin II and the inactivation of bradykinin. Mammalian ACE is also expressed in the prostate with other components of the renin-angiotensin system, and in developing spermatids, where the peptidase activity is known to be critical for normal sperm function. The importance of an ACE gene to male fertility has also been demonstrated in Drosophila melanogaster, where Ance is expressed in spermatids, and hypomorphic alleles of Ance cause a defect in spermiogenesis. Here we show that ANCE, which shares many enzymatic properties with mammalian ACE, is also a product of the male accessory gland of D. melanogaster. It is expressed in the secondary cells and is associated with the electron dense granule within the large vesicles of these cells. ACE proteolytic activity is lost from the accessory glands during mating, consistent with transfer to the mated female in the seminal fluid. The accessory gland ACE-like activity might have an evolutionarily conserved function processing biologically active peptides with a role in male fertility.
Collapse
Affiliation(s)
- Caroline M Rylett
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
17
|
Effects of Leucine-enkephalin on Catalase Activity and Glutathione Level in Haemolymph of the Scallop Chlamys farreri. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Isaac RE, Lamango NS, Ekbote U, Taylor CA, Hurst D, Weaver RJ, Carhan A, Burnham S, Shirras AD. Angiotensin-converting enzyme as a target for the development of novel insect growth regulators. Peptides 2007; 28:153-62. [PMID: 17157962 DOI: 10.1016/j.peptides.2006.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 11/25/2022]
Abstract
Insect angiotensin converting enzyme (ACE) is a zinc metallopeptidase capable of inactivating a variety of small to medium size peptide hormones by cleavage of C-terminal dipeptides and dipeptideamides. High levels of ACE activity are found in the hemolymph and in reproductive tissues of insects, where the enzyme is considered to have an important role in the metabolism of bioactive peptides. Therefore, inhibiting ACE activity is expected to interfere with the peptidergic endocrine system and to have detrimental effects on growth, development and reproduction. We will review the studies showing that ACE inhibitors do indeed disrupt growth and reproduction in various insect species. We will also present some new genetic and pharmacological data that strengthens our conclusion that ACE should be considered as a potential target for the development of new insect growth regulators.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vercruysse L, Gelman D, Raes E, Hooghe B, Vermeirssen V, Van Camp J, Smagghe G. The angiotensin converting enzyme inhibitor captopril reduces oviposition and ecdysteroid levels in Lepidoptera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 57:123-132. [PMID: 15484260 DOI: 10.1002/arch.20023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The role of angiotensin converting enzyme (ACE, peptidyl dipeptidase A) in metamorphic- and reproductive-related events in the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera, Noctuidae) was studied by using the selective ACE inhibitor captopril. Although oral administration of captopril had no effect on larval growth, topical administration to new pupae resulted in a large decrease of successful adult formation. Oviposition and overall appearance of adults emerging from treated larvae did not differ significantly from those emerging from non-treated larvae. In contrast, topical or oral administration of captopril to newly emerged adults caused a reduction in oviposition. By evaluating the effect of captopril on ecdysteroid titers and trypsin activity, we revealed an additional physiological role for ACE. Captopril exerted an inhibitory effect on ecdysteroid levels in female but not in male adults. Larvae fed a diet containing captopril exhibited increased trypsin activity. A similar captopril-induced increase in trypsin activity was observed in female adults. In male adults, however, captopril elicited reduced levels of trypsin activity. Our results suggest that captopril downregulates oviposition by two independent pathways, one through ecdysteroid biosynthesis regulation, and the other through regulation of trypsin activity. Apparently, fecundity is influenced by a complex interaction of ACE, trypsin activity, and ecdysteroid levels.
Collapse
Affiliation(s)
- L Vercruysse
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
20
|
Macours N, Hens K. Zinc-metalloproteases in insects: ACE and ECE. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:501-510. [PMID: 15147752 DOI: 10.1016/j.ibmb.2004.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 03/26/2004] [Indexed: 05/24/2023]
Abstract
Research on the angiotensin-converting enzyme (ACE) in insects has substantially advanced during the recent decade. The cloning of this enzyme in many insect species, the determination of the 3D-structure and several molecular and physiological studies have contributed to the characterization of insect ACE as we know it today: a functional enzyme with a putative role in reproduction, development and defense. The discovery of the endothelin-converting enzyme in insects occurred more recently and cloning of the corresponding cDNA has been carried out in only one insect species so far. However, activity studies and analysis of insect genomes indicate that this enzyme is also widely distributed among insect species. Making hypotheses about its putative function would be preliminary, but its wide tissue distribution suggests a major and diverse biological role.
Collapse
Affiliation(s)
- Nathalie Macours
- Laboratory for Developmental Physiology, Genomics and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | |
Collapse
|
21
|
Macours N, Poels J, Hens K, Francis C, Huybrechts R. Structure, evolutionary conservation, and functions of angiotensin- and endothelin-converting enzymes. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:47-97. [PMID: 15464852 PMCID: PMC7126198 DOI: 10.1016/s0074-7696(04)39002-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angiotensin-converting enzyme, a member of the M2 metalloprotease family, and endothelin-converting enzyme, a member of the M13 family, are key components in the regulation of blood pressure and electrolyte balance in mammals. From this point of view, they serve as important drug targets. Recently, the involvement of these enzymes in the development of Alzheimer's disease was discovered. The existence of homologs of these enzymes in invertebrates indicates that these enzyme systems are highly conserved during evolution. Most invertebrates lack a closed circulatory system, which excludes the need for blood pressure regulators. Therefore, these organisms represent excellent targets for gaining new insights and revealing additional physiological roles of these important enzymes. This chapter reviews the structural and functional aspects of ACE and ECE and will particularly focus on these enzyme homologues in invertebrates.
Collapse
Affiliation(s)
- Nathalie Macours
- Laboratory for Developmental Physiology, Genomics and Proteomics, Katholieke Universteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
22
|
Dani MP, Richards EH, Isaac RE, Edwards JP. Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). JOURNAL OF INSECT PHYSIOLOGY 2003; 49:945-954. [PMID: 14511827 DOI: 10.1016/s0022-1910(03)00163-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Venom from the endoparasitic wasp, Pimpla hypochondriaca, is composed of a mixture of high and low molecular weight proteins, possesses phenoloxidase activity, has immunosuppressive properties, and induces paralysis in several insect species. In the present study we demonstrate that P. hypochondriaca venom also contains antibacterial and proteolytic activity. Antibacterial activity was detected against the Gram-negative bacteria Escherichia coli and Xanthamonas campestris but not against Pseudomonas syringae nor against two Gram-positive bacteria, Bacillus cereus and Bacillus subtilis. Endopeptidase and aminopeptidase activity in venom was detected using the synthetic fluorogenic substrates N-t-BOC-Phe-Ser-Arg-AMC, Arg-AMC and Leu-Arg. The aminopeptidase activity towards Arg-AMC was sensitive to amastatin (70% inhibition), an aminopeptidase inhibitor. Angiotensin-converting enzyme (ACE)-like enzyme activity was detected, by reverse-phase HPLC using the synthetic tripeptide Hip-His-Leu as a substrate. This activity was sensitive to captopril, an ACE inhibitor (IC(50) 3.8 x 10(-8) M). Using an antiserum raised against recombinant Drosophila melanogaster ACE-like enzyme, (rAnce), Western blot analysis revealed an immunoreactive protein, with a molecular weight estimate of 74 kDa, in P. hypochondriaca venom. The possibility that the endopeptidase, aminopeptidase and ACE are involved in the processing of peptide precursors in the venom sac is discussed.
Collapse
Affiliation(s)
- M P Dani
- Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | | | | | |
Collapse
|
23
|
Ekbote UV, Weaver RJ, Isaac RE. Angiotensin I-converting enzyme (ACE) activity of the tomato moth, Lacanobia oleracea: changes in levels of activity during development and after copulation suggest roles during metamorphosis and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:989-998. [PMID: 14505692 DOI: 10.1016/s0965-1748(03)00105-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Angiotensin I-converting enzyme (ACE) is a dipeptidyl carboxypeptidase that removes C-terminal dipeptides from relatively short oligopeptides, usually smaller than 15 amino acids. In mammals, the enzyme has several important roles in the metabolism of vasoactive peptides, but its physiological role in insects is not fully understood. We now report the properties of an ACE in a lepidopteran species (the tomato moth, Lacanobia oleracea) and suggest new physiological roles for the enzyme in this insect. ACE activity increases four-fold during the last stadium and in early pupae, a rise which, in its timing, is similar to what has been observed previously in the transition of larva to pupa in Drosophila melanogaster. This suggests that the increase in ACE activity might be of general importance for peptide metabolism during metamorphosis in holometabolous insects. High levels of ACE activity were found in the haemolymph of sixth stadium larvae and adult insects, and in the reproductive tissues of both male and female adults. Almost all of the ACE activity in the reproductive tissues was found in the accessory glands of the male and the spermatheca and bursa copulatrix of the female. The decline in accessory gland ACE in mated males and the concomitant rise in ACE activity in the spermatheca and bursa copulatrix of the female suggested the transfer of ACE from the male to the female during copulation. Using several convenient peptides as substrates, we have shown that the spermatophore/bursa copulatrix taken from mated female insects possess an aminopeptidase, a carboxypeptidase and a dipeptidase, in addition to high levels of ACE. These peptidases might be involved in the breakdown of proteins to peptides and eventually to amino acids in the spermatophore. Evidence for such a proteolytic pathway and its role in providing substrates for the TCA cycle has been obtained previously in a study of reproduction in Bombyx mori.
Collapse
Affiliation(s)
- U V Ekbote
- Molecular and Cellular Biosciences, Faculty of Biological Sciences, University of Leeds, LC Miall Building, Clarendon Way, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
24
|
Abstract
Angiotensin converting enzyme 1, found widely throughout the animal kingdom, is an integral membrane bound protein whose active sites are directed to the extracellular spaces. Two isoforms are expressed in mammals, a single domain germinal isoform required for male fertility, and a double domain somatic isoform which has a key role in the renin-angiotensin system. Both somatic domains are active with different substrate affinities. Mouse knockout experiments, and comparative work with invertebrate homologues, suggest that the two domains have clearly distinct roles. The importance of therapies involving inhibition of angiotensin converting enzyme are undisputed, but our understanding of how and why these therapies work is now being informed by the tools of genomic and comparative biology.
Collapse
Affiliation(s)
- David Coates
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
25
|
Ekbote U, Looker M, Isaac RE. ACE inhibitors reduce fecundity in the mosquito, Anopheles stephensi. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:593-8. [PMID: 12670786 DOI: 10.1016/s1096-4959(03)00019-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Angiotensin-converting enzyme (ACE) is a dipeptidyl carboxypeptidase, which cleaves dipeptides and, in some instances, dipeptide or tripeptide amides from the C-terminus of regulatory peptides (e.g. angiotensin I, bradykinin and substance P). The expression of ACE is highly regulated in insects, where it is thought to have a role in the metabolism of peptide hormones involved in regulating reproduction. After a blood meal, ACE activity in the female mosquito Anopheles stephensi, increases four-fold with much of the enzyme finally accumulating in the ovary. In the present study, we have studied the effect on reproduction of adding two selective inhibitors of ACE, captopril and lisinopril, to the blood meal. Both ACE inhibitors reduced the size of the batch of eggs laid by females in a dose-dependent manner, with no observable effects on the behaviour of the adult insect. The almost total failure to lay eggs after feeding on either 1 mM captopril or 1 mM lisinopril, did not result from interference with the development of the primary follicle, but was due to the inhibition of egg-laying. Since very similar effects on the size of the egg-batch were observed with two selective ACE inhibitors, belonging to different chemical classes, we suggest that these effects are mediated by the selective inhibition of the induced mosquito ACE, a peptidase probably involved in the activation/inactivation of a peptide regulating egg-laying activity in A. stephensi.
Collapse
Affiliation(s)
- Uma Ekbote
- Molecular and Cellular Biosciences, Faculty of Biological Sciences, Miall Building, University of Leeds, LS2 9JT, Leeds, UK
| | | | | |
Collapse
|
26
|
Kim HM, Shin DR, Yoo OJ, Lee H, Lee JO. Crystal structure of Drosophila angiotensin I-converting enzyme bound to captopril and lisinopril. FEBS Lett 2003; 538:65-70. [PMID: 12633854 DOI: 10.1016/s0014-5793(03)00128-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiotensin I-converting enzymes (ACEs) are zinc metallopeptidases that cleave carboxy-terminal dipeptides from short peptide hormones. We have determined the crystal structures of AnCE, a Drosophila homolog of ACE, with and without bound inhibitors to 2.4 A resolution. AnCE contains a large internal channel encompassing the entire protein molecule. This substrate-binding channel is composed of two chambers, reminiscent of a peanut shell. The inhibitor and zinc-binding sites are located in the narrow bottleneck connecting the two chambers. The substrate and inhibitor specificity of AnCE appears to be determined by extensive hydrogen-bonding networks and ionic interactions in the active site channel. The catalytically important zinc ion is coordinated by the conserved Glu395 and histidine residues from a HExxH motif.
Collapse
Affiliation(s)
- Ho Min Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Daejeon, South Korea
| | | | | | | | | |
Collapse
|
27
|
Hurst D, Rylett CM, Isaac RE, Shirras AD. The drosophila angiotensin-converting enzyme homologue Ance is required for spermiogenesis. Dev Biol 2003; 254:238-47. [PMID: 12591244 DOI: 10.1016/s0012-1606(02)00082-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Angiotensin-converting enzyme (Ance) gene of Drosophila melanogaster is a homologue of mammalian angiotensin-converting enzyme (ACE), a peptidyl dipeptidase implicated in regulation of blood pressure and male fertility. In Drosophila, Ance protein is present in vesicular structures within spermatocytes and immature spermatids. It is also present within the lumen of the testis and the waste bag, and is associated with the surface of elongated spermatid bundles. Ance mRNA is found mainly in large primary spermatocytes and is not detectable in cyst cells. Testes lacking germ cells have reduced levels of ACE activity, and no Ance protein is detectable by immunocytochemistry, indicating that the germ cells are the major site of Ance synthesis. Ance mutant testes lack individualised sperm and have very few actin-based individualisation complexes. Spermatid nuclei undergo scattering along the cyst and have abnormal morphology, similar to other individualisation mutants. Mutant spermatids also have abnormal ultrastructure with grossly defective mitochondrial derivatives. The failure of Ance mutant testes to form individualisation complexes may be due to a failure in correct spermatid differentiation. Taken together, the expression pattern and mutant phenotype suggest that Ance is required for spermatid differentiation, probably through the processing of a regulatory peptide synthesised within the developing cyst.
Collapse
Affiliation(s)
- Debra Hurst
- Department of Biological Sciences, Lancaster University, Lancaster LA 1 4YQ, UK
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Paul H Taghert
- Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
29
|
Abstract
The imaginal discs of Drosophila melanogaster give rise to the adult epidermis during metamorphosis. During this developmental period several peptidase genes are expressed in disc cells, but there is a paucity of biochemical information regarding substrate specificity. We have used peptides and peptidyl 7-amino-4-methylcoumarin (AMC) substrates to detect several peptidases either positioned on the surface of wing discs or secreted by the imaginal cells. Using [Leu(5)]enkephalin as a substrate, a captopril sensitive dipeptidyl carboxypeptidase (angiotensin I-converting enzyme) and an amastatin-sensitive aminopeptidase were detected as prominent activities associated with intact discs. The formation of [Leu(5)]enkephalin-derived Phe was attributed to the concerted action of the D. melanogaster angiotensin I-converting enzyme (Ance) and a dipeptidase. The disc Ance also showed endopeptidic activity towards locust tachykinin-1 (LomTK-I) by cleaving the Gly-Val peptide bond, but this enzyme was not the sole endopeptidase activity associated with discs. Complete inhibition of the endopeptidic hydrolysis of the LomTK-1 by a disc homogenate required a combination of captopril and the neprilysin inhibitor, phosphoramidon, providing biochemical evidence for a neprilysin-like peptidase, in addition to Ance, in imaginal discs of D. melanogaster. Peptidyl AMC substrates for furin, prohormone convertase and tryptase provided evidence for trypsin-like serine endopeptidases in addition to the metalloendopeptidases. We conclude that imaginal discs are endowed with a variety of peptidases from different families that together are capable of hydrolyzing a broad range of peptides and proteins. Some of these peptidases might be responsible for the metabolic activation/inactivation of signaling peptides, as well as being involved in the production of dipeptides and free amino acids required for protein synthesis and osmotic balance during adult morphogenesis.
Collapse
Affiliation(s)
- Claire L Wilson
- Molecular and Cellular Biosciences, Faculty of Biological Sciences, Miall Building, University of Leeds, UK
| | | | | |
Collapse
|
30
|
Siviter RJ, Nachman RJ, Dani MP, Keen JN, Shirras AD, Isaac RE. Peptidyl dipeptidases (Ance and Acer) of Drosophila melanogaster: major differences in the substrate specificity of two homologs of human angiotensin I-converting enzyme. Peptides 2002; 23:2025-34. [PMID: 12431741 DOI: 10.1016/s0196-9781(02)00190-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Drosophila melanogaster angiotensin converting enzyme (Ance) and angiotensin converting enzyme related (Acer) are single domain homologs of mammalian peptidyl dipeptidase A (angiotensin I-converting enzyme) whose physiological substrates have not as yet been identified. We have investigated the in vitro substrate specificities of the two peptidases towards a variety of insect and mammalian peptides. Ance was generally much better than Acer at hydrolyzing peptides of 5-13 amino acids in length. Only two of the peptides, [Leu(5)]enkephalinamide and leucokinin-I were cleaved faster by Acer. Increasing NaCl concentration had opposite affects on the cleavage of [Leu(5)]enkephalin and [Leu(5)]enkephalinamide by Acer, decreasing the activity towards [Leu(5)]enkephalin but increasing the activity towards [Leu(5)]enkephalinamide. Of the insect peptides tested, the tachykinin-related peptide, Lom TK-1, proved to be the best substrate for Ance with a k(cat)/K(m) ratio of 0.122s(-1) microM(-1). However, in comparison, the D. melanogaster tachykinins, DTK-1, DTK-2, DTK-3 and DTK-4 were poor Ance substrates. DTK-5 was the best substrate of this family, but the apparent high K(m) for hydrolysis by Ance suggested that this peptide would not be a natural Ance substrate. This low affinity for DTK-5 is the likely reason why the peptide was not rapidly degraded in D. melanogaster hemolymph, where Ance was shown to be a major peptide-degrading activity.
Collapse
Affiliation(s)
- Richard J Siviter
- Molecular and Cellular Biosciences Research, Faculty of Biological Sciences, University of Leeds, Miall Building, West Yorkshire LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
31
|
Siviter RJ, Taylor CAM, Cottam DM, Denton A, Dani MP, Milner MJ, Shirras AD, Isaac RE. Ance, a Drosophila angiotensin-converting enzyme homologue, is expressed in imaginal cells during metamorphosis and is regulated by the steroid, 20-hydroxyecdysone. Biochem J 2002; 367:187-93. [PMID: 12093364 PMCID: PMC1222869 DOI: 10.1042/bj20020567] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2002] [Revised: 05/30/2002] [Accepted: 07/02/2002] [Indexed: 11/17/2022]
Abstract
Ance is a single domain homologue of mammalian angiotensin-converting enzyme (ACE) and is important for normal development and reproduction in Drosophila melanogaster. Mammalian ACE is responsible for the synthesis of angiotensin II and the inactivation of bradykinin and N -acetyl-Ser-Asp-Lys-Pro, but the absence of similar peptide hormones in insects suggests novel functions for Ance. We now provide evidence in support of a role for Ance during Drosophila metamorphosis. The transition of larva to pupa was accompanied by a 3-fold increase in ACE-like activity, which subsequently dropped to larval levels on adult eclosion. This increase was attributed to the induction of Ance expression during the wandering phase of the last larval instar in the imaginal cells (imaginal discs, abdominal histoblasts, gut imaginal cells and imaginal salivary gland). Ance expression was particularly strong in the presumptive adult midgut formed as a result of massive proliferation of the imaginal midgut cells soon after pupariation. No Ance transcripts were detected in the midgut of the fully differentiated adult intestine. Ance protein and mRNA were not detected in imaginal discs from wandering larvae of flies homozygous for the ecd ( 1 ) allele, a temperature-sensitive ecdysone-less mutant, suggesting that Ance expression is ecdysteroid-dependent. Physiological levels of 20-hydroxyecdysone induced the synthesis of ACE-like activity and Ance protein by a wing disc cell line (Cl.8+), confirming that Ance is an ecdysteroid-responsive gene. We propose that the expression of Ance in imaginal cells is co-ordinated by exposure to ecdysteroid (moulting hormone) during the last larval instar moult to increase levels of ACE-like activity during metamorphosis. The enzyme activity may be required for the processing of a developmental peptide hormone or may function in concert with other peptidases to provide amino acids for the synthesis of adult proteins.
Collapse
Affiliation(s)
- Richard J Siviter
- Molecular and Cellular Biosciences, Faculty of Biological Sciences, L. C. Miall Building, University of Leeds, Leeds, LS2 9JT, U.K
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu D, Lee KY, Horodyski FM, Witten JL. Molecular characterization and cell-specific expression of a Manduca sexta FLRFamide gene. J Comp Neurol 2002; 446:377-96. [PMID: 11954036 DOI: 10.1002/cne.10205] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FMRFamide-related peptides (FaRPs) are a large group of neuropeptides containing a common RFamide C-terminus; they have been identified in vertebrates and invertebrates. We have isolated the cDNA that encodes three FaRPs in the tobacco hornworm, Manduca sexta, including the amidated decapeptide F10. The larger FaRPs are the partially processed precursors of F10, a neuropeptide belonging to the myosuppressin family of peptides. The presence of all three FaRPs in different tissues suggests differential utilization of typical dibasic processing sites and atypical processing sites C-terminal to leucine residues. F10 mRNA was detected in the brain, nerve cord, and midgut, and the mRNA levels in the nervous system are dynamically regulated during development. In situ hybridization analysis localized the F10 mRNA to a variety of cell types within the central nervous system (CNS), a peripheral neurosecretory cell (L1), and midgut endocrine cells, which suggests diverse functions. Distribution of the F10-containing neurons within the central nervous system is segment-specific, and the developmental profile suggests that the F10 gene products may have stage-specific functions. Molecular characterization of the F10 gene has provided insights into its regulation and cell-specific distribution that will enhance our understanding of how these FaRPs modulate different physiological systems and ultimately behavior.
Collapse
Affiliation(s)
- Dan Lu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Modulation of the renin-angiotensin system (RAS), and particularly inhibition of angiotensin-converting enzyme (ACE), a zinc metallopeptidase, has long been a prime strategy in the treatment of hypertension. However, other angiotensin metabolites are gaining in importance as our understanding of the RAS increases. Recently, genomic approaches have identified the first human homologue of ACE, termed ACEH (or ACE2). ACEH differs in specificity and physiological roles from ACE, which opens a potential new area for discovery biology. The gene that encodes collectrin, a homologue of ACEH, is upregulated in response to renal injury. Collectrin lacks a catalytic domain, which indicates that there is more to ACE-like function than simple peptide hydrolysis.
Collapse
Affiliation(s)
- Anthony J Turner
- Proteolysis Research Group, School of Biochemistry and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.
| | | |
Collapse
|
34
|
Salzet M, Deloffre L, Breton C, Vieau D, Schoofs L. The angiotensin system elements in invertebrates. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:35-45. [PMID: 11516771 DOI: 10.1016/s0165-0173(01)00063-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this review, the different components of the renin-angiotensin system (RAS) in invertebrates are discussed. This system is implicated in osmoregulation, reproduction, memory processes and immune system regulation. As the elements of this hormone-enzymatic system also exist in invertebrates, it appears that the RAS originated very early in evolution.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, UPRES-A 8017 CNRS, SN3, Université des Sciences et Technologie de Lille, F-59655, Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Neuropeptides form the most diverse class of chemical messenger molecules in metazoan nervous systems. They are usually generated from biosynthetic precursor polypeptides by enzymatic processing and modification. Many different peptides belonging to a number of distinct neuropeptide families have already been characterized from various insect species. The Drosophila Genome Sequencing Project has important implications for the future of neurobiological research. This paper describes the discovery of several new fruitfly neuropeptides by an in silico data mining approach. In addition, the state-of-the-art of Drosophila peptide research is reviewed.
Collapse
Affiliation(s)
- J Vanden Broeck
- Laboratory for Developmental Physiology and Molecular Biology, Zoological Institute, Naamsestraat 59, B-3000 Leuven, Belgium.
| |
Collapse
|
36
|
Quan GX, Mita K, Okano K, Shimada T, Ugajin N, Xia Z, Goto N, Kanke E, Kawasaki H. Isolation and expression of the ecdysteroid-inducible angiotensin-converting enzyme-related gene in wing discs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:97-103. [PMID: 11102839 DOI: 10.1016/s0965-1748(00)00112-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We isolated a clone encoding a putative angiotensin-converting enzyme-related gene from the wing disc cDNA library of the silkworm, Bombyx mori (refer to as BmAcer). The predicted open reading frame encoded 648 amino acids with about 50% identities with the Drosophila melanogaster angiotensin-converting enzyme Ance and Acer. Northern analysis identified a 2.2-kilobase mRNA which was abundant in wing discs two days after the beginning of wandering. An accumulation of the transcript was observed approximately 2 h after 20-hydroxyecdysone (20E) exposure in vitro and was blocked slightly by a protein synthetic inhibitor. These data suggest that the transcription of the BmAcer gene is directly 20E-inducible.
Collapse
Affiliation(s)
- G X Quan
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, 321-8505, Tochigi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang YJ, Zhao Y, Meredith J, Phillips JE, Theilmann DA, Brock HW. Mutational analysis of the C-terminus in ion transport peptide (ITP) expressed in Drosophila Kc1 cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 45:129-138. [PMID: 11169752 DOI: 10.1002/1520-6327(200011)45:3<129::aid-arch4>3.0.co;2-l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ion transport peptide (ITP) stimulates Cl(-) transport (measured as short-circuit current, I(sc)) and fluid reabsorption in Schistocerca gregaria ilea. We report that Drosophila Kc1 cells transfected with preproITP cDNA secrete a peptide (KcITP(75)) that, while cleaved correctly at the N-terminus, had reduced (10-fold) stimulatory activity on ileal I(sc) compared to both native ITP (ScgITP) and synthetic ITP (synITP). We provide evidence that the reduced activity of KcITP(75) is due to incomplete processing of the C-terminal sequence LGKK (KcITP(75)) to L-amide. In support of this, in vitro amidation of glycine extended ITP (i.e., KcITP(73) ending in LG) but not KcITP(75) (ending in LGKK) significantly increased specific activity in the bioassay. Further evidence for C-terminus involvement includes complete loss of stimulation by truncated mutants (e.g., KcITP(71) which lacks LGKK) and a mutant in which alanine is substituted for the terminal glycine in KcITP(73). Moreover a natural homologue (KcITP-L, which differs only in the C-terminal sequence) expressed by Kc1 cells does not stimulate ileal I(sc). Rather KcITP-L acts as a weak ITP antagonist, as does the truncated mutant KcITP(71). KcITP(70) has no antagonistic effect. A short synthetic peptide fragment of the C-terminus (VEIL-amide) does not stimulate ileal I(sc), indicating that other regions of ITP are also essential to biological activity. Arch.
Collapse
Affiliation(s)
- Y J Wang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Tasiemski A, Verger-Bocquet M, Cadet M, Goumon Y, Metz-Boutigue MH, Aunis D, Stefano GB, Salzet M. Proenkephalin A-derived peptides in invertebrate innate immune processes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:237-52. [PMID: 10762699 DOI: 10.1016/s0169-328x(00)00005-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Lipopolysaccharides (LPS) injection into the coelomic fluid of the leech Theromyzon tessulatum stimulates release of proenkephalin A (PEA)-derived peptides as determined by immunoprecipitation and Western blot analyses. This release occurs in the first 15 min after LPS exposure and yields a 5.3-kDa peptide fragment corresponding to the C-terminal part of the precursor. This fragment is then cleaved to free an antibacterial peptide related to mammals arginine phenylalanine extended enkelytin: the peptide B. These PEA processing peptides were characterized using a combination of techniques including reversed-phase HPLC, microsequencing and mass spectrometry. The isolated invertebrate peptide B presents a high sequence homology with the bovine's and the same activity against Gram+bacteria. Titrations revealed the simultaneous appearance of Methionine-enkephalin (ME) and peptide B in invertebrates after stimulation by LPS (in a dose-dependent manner), surgical trauma or electrical stimulations to neural tissues of the mussel. Furthermore, peptide B processing in vitro yields Methionine-enkephalin arginine phenylalanine (MERF), which exhibits via the delta receptors, immunocyte excitatory properties, i.e., movement and conformational changes, but no antibacterial activity. We surmise that this unified response to the various stimuli is a survival strategy for organism by providing immediate antibacterial activity and immunocyte stimulation, thereby reducing any immune latency period needed for an adequate immune response.
Collapse
Affiliation(s)
- A Tasiemski
- Laboratoire d'Endocrinologie des Annélides, UPRES-A CNRS 8017, SN3, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Isaac RE, Ekbote U, Coates D, Shirras AD. Insect angiotensin-converting enzyme. A processing enzyme with broad substrate specificity and a role in reproduction. Ann N Y Acad Sci 2000; 897:342-7. [PMID: 10676461 DOI: 10.1111/j.1749-6632.1999.tb07904.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Insect angiotensin-converting enzyme (ACE) is a peptidyl dipeptidase that removes dipeptides and dipeptideamides from the C-terminus of a broad range of in vitro oligopeptide substrates. In mammals, ACE has important roles in blood homeostasis and a recently recognized, but as yet undefined, role in the fertility of male mice. High levels of ACE are found in the male reproductive tissues of several insect species, and emerging data indicates an important role for the enzyme in insect reproduction. In this paper we review some of the recent findings about insect ACE, and we speculate as to the physiological role of this enzyme in insect reproduction.
Collapse
Affiliation(s)
- R E Isaac
- School of Biology, University of Leeds, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Ekbote U, Coates D, Isaac RE. A mosquito (Anopheles stephensi) angiotensin I-converting enzyme (ACE) is induced by a blood meal and accumulates in the developing ovary. FEBS Lett 1999; 455:219-22. [PMID: 10437776 DOI: 10.1016/s0014-5793(99)00870-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Angiotensin I-converting enzyme (ACE) has a key role in regulating levels of several circulating peptides in mammals and has a vital role in male fertility. ACE has recently been found in insects, where its role is unclear. A mutant allele of the ACE gene (Ance) of Drosophila melanogaster is embryonic lethal, indicating an important role for the enzyme in development. We now report the presence of ACE in female Anopheles stephensi mosquitoes and that the enzyme is induced by a blood meal. ACE accumulates in developing ovaries and passes into the mosquito eggs, where it may play a role in the metabolism of peptides during embryogenesis. The ovarian ACE has an Mr of 70 kDa and is inhibited by captopril and lisinopril with IC50 values of 0.1 microM and 0.6 microM, respectively.
Collapse
Affiliation(s)
- U Ekbote
- School of Biology, University of Leeds, UK
| | | | | |
Collapse
|
41
|
Loeb MJ, Jaffe H, Gelman DB, Hakim RS. Two polypeptide factors that promote differentiation of insect midgut stem cells in vitro. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1999; 40:129-140. [PMID: 10207992 DOI: 10.1002/(sici)1520-6327(1999)40:3<129::aid-arch2>3.0.co;2-b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Isolated stem cells from the midguts of Manduca sexta and Heliothis virescens can be induced to differentiate in vitro by either of two polypeptide factors. One of the peptides was isolated from culture medium conditioned by differentiating mixed midgut cells; we used high performance liquid chromatographic separation and Edman degradation of the most prominent active peak. It is a polypeptide with 30 amino acid residues (3,244 Da), with the sequence HVGKTPIVGQPSIPGGPVRLCPGRIRYFKI, and is identical to the C-terminal peptide of bovine fetuin. A portion of this molecule (HVGKTPIVGQPSIPGGPVRLCPGRIR) was synthesized and was found to be very active in inducing differentiation of H. virescens midgut stem cells. It was designated Midgut Differentiation Factor 1 (MDF1). Proteolysis of bovine fetuin with chymotrypsin allowed isolation of a pentamer, Midgut Differentiation Factor 2 (MDF2) with the sequence HRAHY corresponding to a portion of the fetuin molecule near MDF1. Synthetic MDF2 was also biologically active in midgut stem cell bioassays. Dose response curves indicate activity in physiological ranges from 10(-14) to 10(-9) M for MDF1 and 10(-15) to 10(-5) M for MDF2.
Collapse
Affiliation(s)
- M J Loeb
- Insect Biocontrol Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Amino acid composition analysis is a classical protein analysis method, which finds a wide application in medical and food science research and is indispensable for protein quantification. It is a complex technique, comprising two steps, hydrolysis of the substrate and chromatographic separation and detection of the residues. A properly performed hydrolysis is a prerequisite of a successful analysis. The most significant developments of the technology in the last decade consist in the (i) reduction of the hydrolysis time by the use of microwave radiation energy; (ii) improvement in the sensitivity of the residue detection, the quantification of the sensitive residues and separation of the enantiomeric forms of the amino acids; (iii) application of amino acid analysis in the large-scale protein identification by database search; and (iv) gradual replacement of the original ion exchange residue separation by reversed-phase high-performance liquid chromatography. Amino acid analysis is currently facing an enormous competition in the determination of the identity of proteins and amino acid homologs by the essentially faster mass spectrometry techniques. The amino acid analysis technology needs further simplification and automation of the hydrolysis, chromatography and detection steps to withstand the pressure exerted by the other technologies.
Collapse
Affiliation(s)
- M Fountoulakis
- F. Hoffman-La Roche Ltd., Pharma Division, Preclinical Central System--Gene Technology, Basel, Switzerland.
| | | |
Collapse
|
43
|
Loeb MJ, De Loof A, Schoofs L, Isaac E. Angiotensin II and angiotensin-converting enzyme as candidate compounds modulating the effects of testis ecdysiotropin in testes of the gypsy moth, Lymantria dispar1. Gen Comp Endocrinol 1998; 112:232-9. [PMID: 9784306 DOI: 10.1006/gcen.1998.7169] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lymantria dispar testes synthesize immunodetectable ecdysteroid in vitro in response to the brain peptide, testis ecdysiotropin (TE), acting primarily via a cascade involving Gi protein, diacyl glycerol, and phosphokinase C. However, a component of TE activation also involves the opposite cascade, Gs protein, cAMP, and phosphokinase A. Excess cAMP inhibits the action of TE, acting as a feedback modulator. Here, we show that bovine angiotensin II (AII) and bovine angiotensin converting enzyme (ACE) act like cAMP, inducing synthesis of immunodetectable ecdysteroid by pupal testes in vitro, but are antagonistic to coincubated TE. In addition, an insect ACE antibody clearly stains the spermatogenic cells through all stages of development, as well as testis sheath tissue where ecdysteroid is synthesized. AII induces synthesis of cAMP by pupal testes in vitro. Therefore, insect homologs of mammalian AII and ACE are good candidates for the peptides responsible for the cAMP cascade and as modulators of TE action in lepidopteran testes. Saralasin, an analog of AII that blocks angiotensin receptors in mammals, behaved like AII in inducing ecdysteroid secretion with ecdysteroidogenic effects additive to either angiotensin or ACE. Therefore, the receptors for the insect form of angiotensin on lepidopteran testis cells are probably different from those in mammals. Saralasin also inhibited ecdysteroid synthesis when combined with TE, as did AII.
Collapse
Affiliation(s)
- M J Loeb
- Insect Biocontrol Laboratory, U.S. Department of Agriculture, Beltsville, Maryland, 20705, USA
| | | | | | | |
Collapse
|