1
|
Yang X, Bolatai A, An J, Wu N. Research Progress of Alternative Polyadenylation in Diseases Related to Glycolipid Metabolism. Diabetes Metab Syndr Obes 2024; 17:4277-4286. [PMID: 39568802 PMCID: PMC11577258 DOI: 10.2147/dmso.s470647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
With changes in lifestyle, sedentary behavior or lack of physical exercise increases the risk of various glycolipid metabolic disorders. Glycolipid metabolic dysregulation refers to abnormalities in the metabolism of carbohydrates and lipids, including diseases such as diabetes, obesity, and metabolic syndrome. In-depth research into the molecular mechanisms of glycolipid metabolic dysregulation can help develop more effective treatment strategies and preventive measures to prevent the occurrence of long-term complications such as cardiovascular diseases. Alternative polyadenylation (APA) is an important form of RNA modification that helps regulate gene expression and generate protein diversity. This modification can affect processes such as RNA stability, post-transcriptional modification, and translational regulation. Recent studies have confirmed that APA can influence the expression of genes involved in glucose and lipid metabolism, increasing the probability of developing immune, endocrine, and metabolic diseases. The review explains the research progress of APA involvement in various metabolic diseases and explores these mechanisms, providing new insights and directions for novel metabolic disorder treatment strategies.
Collapse
Affiliation(s)
- Xiyao Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People' s Republic of China
| | - Alayi Bolatai
- Department of Student Affairs, Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, People' s Republic of China
| | - Jiaxin An
- Department of Student Affairs, Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, People' s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People' s Republic of China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People' s Republic of China
| |
Collapse
|
2
|
de Prisco N, Ford C, Elrod ND, Lee W, Tang LC, Huang KL, Lin A, Ji P, Jonnakuti VS, Boyle L, Cabaj M, Botta S, Õunap K, Reinson K, Wojcik MH, Rosenfeld JA, Bi W, Tveten K, Prescott T, Gerstner T, Schroeder A, Fong CT, George-Abraham JK, Buchanan CA, Hanson-Khan A, Bernstein JA, Nella AA, Chung WK, Brandt V, Jovanovic M, Targoff KL, Yalamanchili HK, Wagner EJ, Gennarino VA. Alternative polyadenylation alters protein dosage by switching between intronic and 3'UTR sites. SCIENCE ADVANCES 2023; 9:eade4814. [PMID: 36800428 PMCID: PMC9937581 DOI: 10.1126/sciadv.ade4814] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.
Collapse
Affiliation(s)
- Nicola de Prisco
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Caitlin Ford
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Winston Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ai Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, WC67+HC Dongcheng, Beijing, China
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Venkata S. Jonnakuti
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Lia Boyle
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Maximilian Cabaj
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Salvatore Botta
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Katrin Õunap
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Monica H. Wojcik
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation and Department of Pediatrics, Hospital of Southern Norway, Arendal, Norway
| | - Audrey Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Chin-To Fong
- Department of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jaya K. George-Abraham
- Dell Children’s Medical Group, Austin, TX, USA
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Andrea Hanson-Khan
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
- Department of Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jonathan A. Bernstein
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aikaterini A. Nella
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Vicky Brandt
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kimara L. Targoff
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
4
|
Wang Y, Xu Y, Yan W, Han P, Liu J, Gong J, Li D, Ding X, Wang H, Lin Z, Tian D, Liao J. CFIm25 inhibits hepatocellular carcinoma metastasis by suppressing the p38 and JNK/c-Jun signaling pathways. Oncotarget 2018; 9:11783-11793. [PMID: 29545935 PMCID: PMC5837768 DOI: 10.18632/oncotarget.24364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023] Open
Abstract
Alternative polyadenylation (APA), a post-transcriptional modification, has been implicated in many diseases, but especially in tumor proliferation. CFIm25, the 25 kDa subunit of human cleavage factor Im (CFIm), is a key factor in APA. We show that CFIm25 expression is reduced in human hepatocellular carcinoma (HCC), and its expression correlates with metastasis. Kaplan-Meier analysis indicated that CFIm25 is related to overall survival in HCC. Moreover, CFIm25 expression is negatively related to the metastatic potential of HCC cell lines. CFIm25 knockdown promotes cell invasion and migration in vitro, while overexpression of CFIm25 inhibits cell invasion and migration in vitro and inhibits intrahepatic and lung metastasis in vivo. Additional studies showed that CFIm25 disrupts epithelial-mesenchymal transition by increasing E-cadherin, that it inhibits HCC cell migration and invasion by blocking the p38 and JNK/c-Jun signaling pathways, and that CFIm25 knockdown increases the transcriptional activity of activating protein-1 (AP-1). These findings indicate that therapy directed at increasing CFIm25 expression is a potential HCC treatment.
Collapse
Affiliation(s)
- Yunwu Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Xu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jin Gong
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dongxiao Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangming Ding
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhuoying Lin
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Chang JW, Yeh HS, Yong J. Alternative Polyadenylation in Human Diseases. Endocrinol Metab (Seoul) 2017; 32:413-421. [PMID: 29271615 PMCID: PMC5744726 DOI: 10.3803/enm.2017.32.4.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/02/2022] Open
Abstract
Varying length of messenger RNA (mRNA) 3'-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway.
Collapse
Affiliation(s)
- Jae Woong Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities College of Biological Sciences, Minneapolis, MN, USA
| | - Hsin Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities College of Biological Sciences, Minneapolis, MN, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities College of Biological Sciences, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Erson-Bensan AE. Alternative polyadenylation and RNA-binding proteins. J Mol Endocrinol 2016; 57:F29-34. [PMID: 27208003 DOI: 10.1530/jme-16-0070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022]
Abstract
Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches.
Collapse
Affiliation(s)
- Ayse Elif Erson-Bensan
- Department of Biological SciencesOrta Dogu Teknik Universitesi (ODTU) (METU), Universiteler Mahallesi, Cankaya, Ankara, Turkey
| |
Collapse
|
7
|
Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A. Implications of polyadenylation in health and disease. Nucleus 2014; 5:508-19. [PMID: 25484187 DOI: 10.4161/nucl.36360] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyadenylation is the RNA processing step that completes the maturation of nearly all eukaryotic mRNAs. It is a two-step nuclear process that involves an endonucleolytic cleavage of the pre-mRNA at the 3'-end and the polymerization of a polyadenosine (polyA) tail, which is fundamental for mRNA stability, nuclear export and efficient translation during development. The core molecular machinery responsible for the definition of a polyA site includes several recognition, cleavage and polyadenylation factors that identify and act on a given polyA signal present in a pre-mRNA, usually an AAUAAA hexamer or similar sequence. This mechanism is tightly regulated by other cis-acting elements and trans-acting factors, and its misregulation can cause inefficient gene expression and may ultimately lead to disease. The majority of genes generate multiple mRNAs as a result of alternative polyadenylation in the 3'-untranslated region. The variable lengths of the 3' untranslated regions created by alternative polyadenylation are a recognizable target for differential regulation and clearly affect the fate of the transcript, ultimately modulating the expression of the gene. Over the past few years, several studies have highlighted the importance of polyadenylation and alternative polyadenylation in gene expression and their impact in a variety of physiological conditions, as well as in several illnesses. Abnormalities in the 3'-end processing mechanisms thus represent a common feature among many oncological, immunological, neurological and hematological disorders, but slight imbalances can lead to the natural establishment of a specific cellular state. This review addresses the key steps of polyadenylation and alternative polyadenylation in different cellular conditions and diseases focusing on the molecular effectors that ensure a faultless pre-mRNA 3' end formation.
Collapse
Key Words
- 3′ untranslated region
- 3′READS, 3′ Region Extraction and Deep Sequencing
- AD, Alzheimer disease
- APA, Alternative polyadenylation
- AREs, Au-rich elements
- BPV, bovine papilloma virus
- CAH, congenital adrenal hyperplasia
- CFIm25, Cleavage Factor Im 25 kDa
- COX-2, cyclooxygenase 2
- CPSF, Cleavage and Polyadenylation Specificity Factor
- CSTF2, cleavage stimulatory factor-64kDa
- DMKN, dermokine
- DSE, downstream sequence element
- ESC, embryonic stem cells
- FMR1, Fragil X mental retardation 1
- FOXP3, forkhead box P3
- FXPOI, fragile X-associated immature ovarian insufficiency
- FXS, Fragile X syndrome
- FXTAS, fragile X-associated tremor/ataxia syndrome
- HGRG-14, high-glucose-regulated gene
- IMP-1, Insulin-like growth factor 2 mRNA binding protein 1
- IPEX, immune dysfunction, polyendocrinopathy, enteropathy, X-linked
- LPS, lipopolysaccharide
- OPMD, oculopharyngeal muscular dystrophy
- PABPN1, poly(A) binding protein
- PAP, polyA polymerase
- PAS, polyA site
- PD, Parkinson disease
- PDXK, pyridoxal kinase
- PPIE, peptidylpropylisomerase E
- RBP, RNA-binding protein
- RNA Pol II, RNA polymerase II
- SLE, systemic lupus erythematosus
- SMA, Spinal Muscular Atrophy
- SMN, Survival Motor Neuron
- SNP, single nucleotide polymorphism
- StAR, steroigogenic acute regulatory
- TCF/LEF, T cell factor/lymphoid enhancer factor.
- TCF7L2, transcription factor 7-like 2
- TCR, T cell receptor
- TLI, tandem UTR length index
- TNF-α, tumor necrosis factor-α
- USE, upstream sequence element
- UTR, untranslated region
- WAS, Wiskott-Aldrich syndrome
- WASP, Wiskott-Aldrich syndrome protein
- aSyn, α-Synuclein
- aSynL, longest aSyn isoform
- alternative polyadenylation
- cell state
- disease
- gene expression
- miRNA, microRNA
- nuclear 1
- pA signal, polyA signal
- pA tail, polyA tail
- polyadenylation
- siRNAs, small interfering RNAs
- snRNPs, spliceosomal small nuclear ribonucleoproteins
- α-GalA, α-galactosidase A
- μ, IgM heavy-chain mRNA
Collapse
Affiliation(s)
- Ana Curinha
- a Gene Regulation Group; IBMC-Instituto de Biologia Molecular e Celular ; Universidade do Porto ; Porto , Portugal
| | | | | | | | | |
Collapse
|
8
|
Rehfeld A, Plass M, Krogh A, Friis-Hansen L. Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 2013; 4:53. [PMID: 23658553 PMCID: PMC3647115 DOI: 10.3389/fendo.2013.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. PERSPECTIVES Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SUMMARY This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.
Collapse
Affiliation(s)
- Anders Rehfeld
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Lennart Friis-Hansen
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 4113, Blegdamsvej 9, DK2100 Copenhagen, Denmark. e-mail:
| |
Collapse
|
9
|
Peregrino-Uriarte AB, Muhlia-Almazan AT, Arvizu-Flores AA, Gomez-Anduro G, Gollas-Galvan T, Yepiz-Plascencia G, Sotelo-Mundo RR. Shrimp invertebrate lysozyme i-lyz: gene structure, molecular model and response of c and i lysozymes to lipopolysaccharide (LPS). FISH & SHELLFISH IMMUNOLOGY 2012; 32:230-236. [PMID: 22080112 DOI: 10.1016/j.fsi.2011.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/22/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
The invertebrate lysozyme (i-lyz or destabilase) is present in shrimp. This protein may have a function as a peptidoglycan-breaking enzyme and as a peptidase. Shrimp is commonly infected with Vibrio sp., a Gram-negative bacteria, and it is known that the c-lyz (similar to chicken lysozyme) is active against these bacteria. To further understand the regulation of lysozymes, we determined the gene sequence and modeled the protein structure of i-lyz. In addition, the expression of i-lyz and c-lyz in response to lipopolysaccharide (LPS) was studied. The shrimp i-lyz gene is interrupted by two introns with canonical splice junctions. The expression of the shrimp i-lyz was transiently down-regulated after LPS injection followed by induction after 6 h in hepatopancreas. In contrast, c-lyz was up-regulated in hepatopancreas 4 h post-injection and slightly down-regulated in gills. The L. vannamei i-lyz does not contain the catalytic residues for muramidase (glycohydrolase) neither isopeptidase activities; however, it is known that the antibacterial activity does not solely rely on the enzymatic activity of the protein. The study of invertebrate lysozyme will increase our understanding of the regulatory process of the defense mechanisms.
Collapse
Affiliation(s)
- Alma B Peregrino-Uriarte
- Aquatic Molecular Biology Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | | | | | | | | | | | | |
Collapse
|
10
|
Ling KH, Hewitt CA, Beissbarth T, Hyde L, Cheah PS, Smyth GK, Tan SS, Hahn CN, Thomas T, Thomas PQ, Scott HS. Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. ACTA ACUST UNITED AC 2010; 21:683-97. [PMID: 20693275 DOI: 10.1093/cercor/bhq141] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Nrgn and Camk2n1 are highly expressed in the brain and play an important role in synaptic long-term potentiation via regulation of Ca(2+)/calmodulin-dependent protein kinase II. We have shown that the gene loci for these 2 proteins are actively transcribed in the adult cerebral cortex and feature multiple overlapping transcripts in both the sense and antisense orientations with alternative polyadenylation. These transcripts were upregulated in the adult compared with embryonic and P1.5 mouse cerebral cortices, and transcripts with different 3' untranslated region lengths showed differing expression profiles. In situ hybridization (ISH) analysis revealed spatiotemporal regulation of the Nrgn and Camk2n1 sense and natural antisense transcripts (NATs) throughout cerebral corticogenesis. In addition, we also demonstrated that the expression of these transcripts was organ-specific. Both Nrgn and Camk2n1 sense and NATs were also upregulated in differentiating P19 teratocarcinoma cells. RNA fluorescent ISH analysis confirmed the capability of these NATs to form double-stranded RNA aggregates with the sense transcripts in the cytoplasm of cells obtained from the brain. We propose that the differential regulation of multiple sense and novel overlapping NATs at the Nrgn and Camk2n1 loci will increase the diversity of posttranscriptional regulation, resulting in cell- and time-specific regulation of their gene products during cerebral corticogenesis and function.
Collapse
Affiliation(s)
- King-Hwa Ling
- Department of Molecular Pathology, The Institute of Medical and Veterinary Science, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ling KH, Hewitt CA, Beissbarth T, Hyde L, Banerjee K, Cheah PS, Cannon PZ, Hahn CN, Thomas PQ, Smyth GK, Tan SS, Thomas T, Scott HS. Molecular networks involved in mouse cerebral corticogenesis and spatio-temporal regulation of Sox4 and Sox11 novel antisense transcripts revealed by transcriptome profiling. Genome Biol 2009; 10:R104. [PMID: 19799774 PMCID: PMC2784319 DOI: 10.1186/gb-2009-10-10-r104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 07/20/2009] [Accepted: 10/02/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Development of the cerebral cortex requires highly specific spatio-temporal regulation of gene expression. It is proposed that transcriptome profiling of the cerebral cortex at various developmental time points or regions will reveal candidate genes and associated molecular pathways involved in cerebral corticogenesis. RESULTS Serial analysis of gene expression (SAGE) libraries were constructed from C57BL/6 mouse cerebral cortices of age embryonic day (E) 15.5, E17.5, postnatal day (P) 1.5 and 4 to 6 months. Hierarchical clustering analysis of 561 differentially expressed transcripts showed regionalized, stage-specific and co-regulated expression profiles. SAGE expression profiles of 70 differentially expressed transcripts were validated using quantitative RT-PCR assays. Ingenuity pathway analyses of validated differentially expressed transcripts demonstrated that these transcripts possess distinctive functional properties related to various stages of cerebral corticogenesis and human neurological disorders. Genomic clustering analysis of the differentially expressed transcripts identified two highly transcribed genomic loci, Sox4 and Sox11, during embryonic cerebral corticogenesis. These loci feature unusual overlapping sense and antisense transcripts with alternative polyadenylation sites and differential expression. The Sox4 and Sox11 antisense transcripts were highly expressed in the brain compared to other mouse organs and are differentially expressed in both the proliferating and differentiating neural stem/progenitor cells and P19 (embryonal carcinoma) cells. CONCLUSIONS We report validated gene expression profiles that have implications for understanding the associations between differentially expressed transcripts, novel targets and related disorders pertaining to cerebral corticogenesis. The study reports, for the first time, spatio-temporally regulated Sox4 and Sox11 antisense transcripts in the brain, neural stem/progenitor cells and P19 cells, suggesting they have an important role in cerebral corticogenesis and neuronal/glial cell differentiation.
Collapse
Affiliation(s)
- King-Hwa Ling
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia
- The School of Medicine, The University of Adelaide, SA, 5005, Australia
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia
- Department of Molecular Pathology, The Institute of Medical and Veterinary Science and The Hanson Institute, Adelaide, SA 5000, Australia
| | - Chelsee A Hewitt
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia
- Current address: Pathology Department, The Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia
| | - Tim Beissbarth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia
- Current address: Department of Medical Statistics (Biostatistics), University of Göttingen, Humboldtalle 32, 37073 Göttingen, Germany
| | - Lavinia Hyde
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia
- Current address: The Bioinformatics Unit, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Kakoli Banerjee
- School of Molecular and Biomedical Science, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Pike-See Cheah
- School of Molecular and Biomedical Science, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia
| | - Ping Z Cannon
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia
| | - Christopher N Hahn
- Department of Molecular Pathology, The Institute of Medical and Veterinary Science and The Hanson Institute, Adelaide, SA 5000, Australia
| | - Paul Q Thomas
- School of Molecular and Biomedical Science, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia
| | - Seong-Seng Tan
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tim Thomas
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia
| | - Hamish S Scott
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia
- The School of Medicine, The University of Adelaide, SA, 5005, Australia
- Department of Molecular Pathology, The Institute of Medical and Veterinary Science and The Hanson Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
12
|
Hyodo S, Kawakoshi A, Bartolo RC, Takei Y, Toop T, Donald JA. Extremely high conservation in the untranslated region as well as the coding region of CNP mRNAs throughout elasmobranch species. Gen Comp Endocrinol 2006; 148:181-6. [PMID: 16620814 DOI: 10.1016/j.ygcen.2006.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 02/18/2006] [Accepted: 02/24/2006] [Indexed: 11/25/2022]
Abstract
C-type natriuretic peptide (CNP) is a crucial osmoregulatory hormone in elasmobranchs, participating in salt secretion and drinking. In contrast to teleosts and tetrapods in which the NP family is composed of a group of structurally related peptides, we have shown that CNP is the sole NP in sharks. In the present study, CNP cDNAs were cloned from four species of batoids, another group of elasmobranchs. The cloned batoid CNP precursors contained a plausible mature peptide of 22 amino acid residues that is identical to most shark CNP-22s, but five successive amino acids were consistently deleted in the prosegment compared with shark precursors, supporting the diphyletic classification of sharks and rays. In addition, molecular phylogenetic trees of CNP precursors were consistent with a diphyletic interpretation. Except for the deletion, the nucleotide and deduced amino acid sequences of the CNP cDNAs are extremely well-conserved among all elasmobranch species, even between sharks and rays. Surprisingly, high conservation is evident not only for the coding region, but also for the untranslated regions. It is most likely that the high conservation is due to the low nucleotide substitution rate in the elasmobranch genome, and high selection pressure. The 3'-untranslated region of the elasmobranch CNP cDNAs contained three to six repeats of the ATTTA motif that is associated with the regulation of mRNA stability and translation efficiency. Alternative polyadenylation sites were also found; the long 3'-untranslated region contains a core of ATTTA motifs while the short form has only one or no ATTTA motif, indicating that the post-transcriptional modification of mRNA is important for regulation of CNP synthesis. These characteristics in the 3'-untranslated region were conserved among all elasmobranch CNP cDNAs. Since CNP has been implicated as a fast-acting hormone to facilitate salt secretion from the rectal gland, the conserved 3'-untranslated region most likely contributes to rapid regulation of CNP synthesis in elasmobranchs in response to acute changes in internal and external environments.
Collapse
Affiliation(s)
- Susumu Hyodo
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, Nakano, Tokyo 164-8639, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Shell SA, Hesse C, Morris SM, Milcarek C. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection. J Biol Chem 2005; 280:39950-61. [PMID: 16207706 DOI: 10.1074/jbc.m508848200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipopolysaccharide (LPS) activation of murine RAW 264.7 macrophages influences the expression of multiple genes through transcriptional and post-transcriptional mechanisms. We observed a 5-fold increase in CstF-64 expression following LPS treatment of RAW macrophages. The increase in CstF-64 protein was specific in that several other factors involved in 3'-end processing were not affected by LPS stimulation. Activation of RAW macrophages with LPS caused an increase in proximal poly(A) site selection within a reporter mini-gene containing two linked poly(A) sites that occurred concomitant with the increase in CstF-64 expression. Furthermore, forced overexpression of the CstF-64 protein also induced alternative poly(A) site selection on the reporter minigene. Microarray analysis performed on CstF-64 overexpressing RAW macrophages revealed that elevated levels of CstF-64 altered the expression of 51 genes, 14 of which showed similar changes in gene expression with LPS stimulation. Sequence analysis of the 3'-untranslated regions of these 51 genes revealed that over 45% possess multiple putative poly(A) sites. Two of these 51 genes demonstrated alternative polyadenylation under both LPS-stimulating and CstF-64-overexpressing conditions. We concluded that the physiologically increased levels of CstF-64 observed in LPS-stimulated RAW macrophages contribute to the changes in expression and alternative polyadenylation of a number of genes, thus identifying another level of gene regulation that occurs in macrophages activated with LPS.
Collapse
MESH Headings
- 3' Untranslated Regions
- Algorithms
- Animals
- Binding Sites
- Blotting, Western
- Cell Proliferation
- Cells, Cultured
- Cleavage Stimulation Factor/chemistry
- Cleavage Stimulation Factor/physiology
- Gene Expression Regulation
- Genes, Reporter
- Lipopolysaccharides/metabolism
- Lipopolysaccharides/pharmacology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Models, Genetic
- Models, Statistical
- Oligonucleotide Array Sequence Analysis
- Oligonucleotides/chemistry
- Open Reading Frames
- Poly A/chemistry
- Polyadenylation
- Promoter Regions, Genetic
- Protein Binding
- Protein Conformation
- RNA/chemistry
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Scott A Shell
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15221, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Diabetic nephropathy is characterized by excessive deposition of extracellular matrix proteins in the mesangium and basement membrane of the glomerulus and in the renal tubulointerstitium. This review summarizes the main changes in protein composition of the glomerular mesangium and basement membrane and the evidence that, in the mesangium, these are initiated by changes in glucose metabolism and the formation of advanced glycation end products. Both processes generate reactive oxygen species (ROS). The review includes discussion of how ROS may activate intracellular signaling pathways leading to the activation of redox-sensitive transcription factors. This in turn leads to change in the expression of genes encoding extracellular matrix proteins and the protease systems responsible for their turnover.
Collapse
Affiliation(s)
- Roger M Mason
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | |
Collapse
|
15
|
Palfi A, Kortvely E, Fekete E, Kovacs B, Varszegi S, Gulya K. Differential calmodulin gene expression in the rodent brain. Life Sci 2002; 70:2829-55. [PMID: 12269397 DOI: 10.1016/s0024-3205(02)01544-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apparently redundant members of the calmodulin (CaM) gene family encode for the same amino acid sequence. CaM, a ubiquitous cytoplasmic calcium ion receptor, regulates the function of a variety of target molecules even in a single cell. Maintenance of the fidelity of the active CaM-target interactions in different compartments of the cell requires a rather complex control of the total cellular CaM pool comprising multiple levels of regulatory circuits. Among these mechanisms, it has long been proposed that a multigene family maximizes the regulatory potentials at the level of the gene expression. CaM genes are expressed at a particularly profound level in the mammalian central nervous system (CNS), especially in the highly polarized neurons. Thus, in the search for clear evidence of the suggested differential expression of the CaM genes, much of the research has been focused on the elements of the CNS. This review aims to give a comprehensive survey on the current understanding of this field at the level of the regulation of CaM mRNA transcription and distribution in the rodent brain. The results indicate that the CaM genes are indeed expressed in a gene-specific manner in the developing and adult brain under physiological conditions. To establish local CaM pools in distant intracellular compartments (dendrites and glial processes), local protein synthesis from differentially targeted mRNAs is also employed. Moreover, the CaM genes are controlled in a unique, gene-specific fashion when responding to certain external stimuli. Additionally, putative regulatory elements have been identified on the CaM genes and mRNAs.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Zoology and Cell Biology, University of Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Lazarov ME, Martin MM, Willardson BM, Elton TS. Human phosducin-like protein (hPhLP) messenger RNA stability is regulated by cis-acting instability elements present in the 3'-untranslated region. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:253-64. [PMID: 10524200 DOI: 10.1016/s0167-4781(99)00098-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Phosducin (Pd) and phosducin-like protein (PhLP) have been shown to regulate G-protein signaling by binding G beta gamma subunits. To better define the function and regulation of PhLP, and to begin to investigate its potential role in human pathophysiological states, we have cloned the human PhLP (hPhLP) cDNA. The hPhLP shows 92% identity with the rat PhLP (rPhLP). However, unlike the rPhLP, no evidence of hPhLP isoforms were detected in the human tissues investigated. Additionally, unlike the rPhLP, alternative polyadenylation sites were detected in hPhLP cDNA clones which corresponded with two distinct mRNA transcripts, 1.2 kb and 3.1 kb, respectively. Interestingly, the predominantly expressed long transcript contains multiple AU-rich elements (AREs) in its 3'-untranslated region (3'-UTR) which have been shown to correlate with rapid mRNA turnover and translational control. This study shows that the hPhLP AREs are functional both in vitro and in vivo, with the long transcript exhibiting a much shorter mRNA half-life. We also demonstrate that subcloning of either the full-length 3'-UTR or the ARE-rich region of the long transcript immediately following the stop codon of luciferase reporter gene confers instability to the luciferase mRNA and results in a ninefold reduction of luciferase activity in the cell types investigated. Taken together, these findings suggest that the AREs present in the long hPhLP mRNA may play a critical role in the regulation of hPhLP gene expression.
Collapse
Affiliation(s)
- M E Lazarov
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | |
Collapse
|