1
|
Carrillo-Franco L, González-García M, Morales-Luque C, Dawid-Milner MS, López-González MV. Hypothalamic Regulation of Cardiorespiratory Functions: Insights into the Dorsomedial and Perifornical Pathways. BIOLOGY 2024; 13:933. [PMID: 39596888 PMCID: PMC11592276 DOI: 10.3390/biology13110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The dorsomedial hypothalamus nucleus (DMH) plays a pivotal role in the orchestration of sympathetic nervous system activities. Through its projections to the brainstem and pontomedullary nuclei, it controls heart rate, contractility, blood pressure, and respiratory activity, such as timing and volumes. The DMH integrates inputs from higher brain centers and processes these signals in order to modulate autonomic outflow accordingly. It has been demonstrated to be of particular significance in the context of stress responses, where it orchestrates the physiological adaptations that are necessary for all adaptative responses. The perifornical region (PeF), which is closely associated with the DMH, also makes a contribution to autonomic regulation. The involvement of the PeF region in autonomic control is evidenced by its function in coordinating the autonomic and endocrine responses to stress, frequently in conjunction with the DMH. The DMH and the PeF do not function in an isolated manner; rather, they are components of a comprehensive hypothalamic network that integrates several autonomic responses. This neural network could serve as a target for developing therapeutic strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Carmen Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Manuel Víctor López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| |
Collapse
|
2
|
Fukushi I, Yokota S, Hasebe Y, Pokorski M, Okada Y. Modulation of respiration and hypothalamus. VITAMINS AND HORMONES 2024; 127:125-152. [PMID: 39864940 DOI: 10.1016/bs.vh.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network. Among subregions of the hypothalamus, the paraventricular nucleus, lateral hypothalamic area, perifornical area, dorsomedial and posterior hypothalamus play particularly important roles in respiratory control. Neurons in these regions have extensive and complex interconnectivity with the cerebral cortex, pons, medulla, spinal cord, and other brain areas. These hypothalamic regions are involved in the maintenance of basal ventilation, respiratory responses to hypoxic and hypercapnic conditions, respiratory augmentation during dynamic exercise, and respiratory modulation in awake and sleep states. Disorders affecting the hypothalamus such as narcolepsy, ROHHAD syndrome, and Prader-Willi syndrome could lead to respiratory abnormalities. However, the role of the hypothalamus in respiratory control, especially its interplay with other local respiratory networks has not yet been fully elucidated. Further clarification of these issues would contribute to a better understanding of the hypothalamus-mediated respiratory control and the pathophysiology of respiratory disorders underlain by hypothalamic dysfunction, as well as to the development of new targeted therapies.
Collapse
Affiliation(s)
- Isato Fukushi
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, Izumo, Japan
| | - Yohei Hasebe
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan; Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | | | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
3
|
Wu M, Jiang H, Li Q, Liu Y, Zhang H, Li X, Shao Z. OGT-1 regulates synaptic assembly through the insulin signaling pathway. J Cell Biochem 2023; 124:1919-1930. [PMID: 37991448 DOI: 10.1002/jcb.30497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The formation and maintenance of synapses are precisely regulated, and the misregulation often leads to neurodevelopmental or neurodegenerative disorders. Besides intrinsic genetically encoded signaling pathways, synaptic structure and function are also regulated by extrinsic factors, such as nutrients. O-GlcNAc transferase (OGT), a nutrient sensor, is abundant in the nervous system and required for synaptic plasticity, learning, and memory. However, whether OGT is involved in synaptic development and the mechanism underlying the process are largely unknown. In this study, we found that OGT-1, the OGT homolog in C. elegans, regulates the presynaptic assembly in AIY interneurons. The insulin receptor DAF-2 acts upstream of OGT-1 to promote the presynaptic assembly by positively regulating the expression of ogt-1. This insulin-OGT-1 axis functions most likely by regulating neuronal activity. In this study, we elucidated a novel mechanism for synaptic development, and provided a potential link between synaptic development and insulin-related neurological disorders.
Collapse
Affiliation(s)
- Mengting Wu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huihui Jiang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunhe Liu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongjun Zhang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuekun Li
- School of Medicine, The Children's Hospital, Zhejiang University, Hangzhou, China
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Rancelis T, Domarkiene I, Ambrozaityte L, Utkus A. Implementing Core Genes and an Omnigenic Model for Behaviour Traits Prediction in Genomics. Genes (Basel) 2023; 14:1630. [PMID: 37628681 PMCID: PMC10454355 DOI: 10.3390/genes14081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
A high number of genome variants are associated with complex traits, mainly due to genome-wide association studies (GWAS). Using polygenic risk scores (PRSs) is a widely accepted method for calculating an individual's complex trait prognosis using such data. Unlike monogenic traits, the practical implementation of complex traits by applying this method still falls behind. Calculating PRSs from all GWAS data has limited practical usability in behaviour traits due to statistical noise and the small effect size from a high number of genome variants involved. From a behaviour traits perspective, complex traits are explored using the concept of core genes from an omnigenic model, aiming to employ a simplified calculation version. Simplification may reduce the accuracy compared to a complete PRS encompassing all trait-associated variants. Integrating genome data with datasets from various disciplines, such as IT and psychology, could lead to better complex trait prediction. This review elucidates the significance of clear biological pathways in understanding behaviour traits. Specifically, it highlights the essential role of genes related to hormones, enzymes, and neurotransmitters as robust core genes in shaping these traits. Significant variations in core genes are prominently observed in behaviour traits such as stress response, impulsivity, and substance use.
Collapse
Affiliation(s)
- Tautvydas Rancelis
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, LT-08661 Vilnius, Lithuania; (I.D.); (L.A.); (A.U.)
| | | | | | | |
Collapse
|
5
|
Schottelkotte KM, Crone SA. Forebrain control of breathing: Anatomy and potential functions. Front Neurol 2022; 13:1041887. [PMID: 36388186 PMCID: PMC9663927 DOI: 10.3389/fneur.2022.1041887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
The forebrain plays important roles in many critical functions, including the control of breathing. We propose that the forebrain is important for ensuring that breathing matches current and anticipated behavioral, emotional, and physiological needs. This review will summarize anatomical and functional evidence implicating forebrain regions in the control of breathing. These regions include the cerebral cortex, extended amygdala, hippocampus, hypothalamus, and thalamus. We will also point out areas where additional research is needed to better understand the specific roles of forebrain regions in the control of breathing.
Collapse
Affiliation(s)
- Karl M. Schottelkotte
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steven A. Crone
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
6
|
Singh I, Wang L, Xia B, Liu J, Tahiri A, El Ouaamari A, Wheeler MB, Pang ZP. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake. Cell Biosci 2022; 12:178. [PMID: 36309763 PMCID: PMC9618215 DOI: 10.1186/s13578-022-00914-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) control of metabolism plays a pivotal role in maintaining energy balance. In the brain, Glucagon-like peptide 1 (GLP-1), encoded by the proglucagon 'Gcg' gene, produced in a distinct population of neurons in the nucleus tractus solitarius (NTS), has been shown to regulate feeding behavior leading to the suppression of appetite. However, neuronal networks that mediate endogenous GLP-1 action in the CNS on feeding and energy balance are not well understood. RESULTS We analyzed the distribution of GLP-1R-expressing neurons and axonal projections of NTS GLP-1-producing neurons in the mouse brain. GLP-1R neurons were found to be broadly distributed in the brain and specific forebrain regions, particularly the hypothalamus, including the arcuate nucleus of the hypothalamus (ARC), a brain region known to regulate energy homeostasis and feeding behavior, that receives dense NTSGcg neuronal projections. The impact of GLP-1 signaling in the ARC GLP-1R-expressing neurons and the impact of activation of ARC GLP-1R on food intake was examined. Application of GLP-1R specific agonist Exendin-4 (Exn-4) enhanced a proportion of the ARC GLP-1R-expressing neurons and pro-opiomelanocortin (POMC) neuronal action potential firing rates. Chemogenetic activation of the ARC GLP-1R neurons by using Cre-dependent hM3Dq AAV in the GLP-1R-ires-Cre mice, established that acute activation of the ARC GLP-1R neurons significantly suppressed food intake but did not have a strong impact on glucose homeostasis. CONCLUSIONS These results highlight the importance of central GLP-1 signaling in the ARC that express GLP-1R that upon activation, regulate feeding behavior.
Collapse
Affiliation(s)
- Ishnoor Singh
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Baijuan Xia
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025 China
| | - Ji Liu
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.59053.3a0000000121679639National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Azeddine Tahiri
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Abdelfattah El Ouaamari
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Michael B. Wheeler
- grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada ,Metabolism Research Group, Division of Advanced Diagnostics, Toronto, ON Canada
| | - Zhiping P. Pang
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| |
Collapse
|
7
|
Szczurowska E, Szánti-Pintér E, Randáková A, Jakubík J, Kudova E. Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids. Int J Mol Sci 2022; 23:13075. [PMID: 36361865 PMCID: PMC9656441 DOI: 10.3390/ijms232113075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2023] Open
Abstract
Muscarinic acetylcholine receptors are membrane receptors involved in many physiological processes. Malfunction of muscarinic signaling is a cause of various internal diseases, as well as psychiatric and neurologic conditions. Cholesterol, neurosteroids, neuroactive steroids, and steroid hormones are molecules of steroid origin that, besides having well-known genomic effects, also modulate membrane proteins including muscarinic acetylcholine receptors. Here, we review current knowledge on the allosteric modulation of muscarinic receptors by these steroids. We give a perspective on the research on the non-genomic effects of steroidal compounds on muscarinic receptors and drug development, with an aim to ultimately exploit such knowledge.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| |
Collapse
|
8
|
The Role of Ventromedial Hypothalamus Receptors in the Central Regulation of Food Intake. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10120-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Silva AR, Grosso C, Delerue-Matos C, Rocha JM. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur J Med Chem 2019; 174:87-115. [PMID: 31029947 DOI: 10.1016/j.ejmech.2019.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Given their therapeutic activity, natural products have been used in traditional medicines throughout the centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently in marine products, has resulted in a significant number of research efforts towards understanding their effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians. Actually, such compounds may act on the brain receptors either by agonism, antagonism, allosteric modulation or other type of activity aimed at enhancing a certain effect. The current manuscript comprehensively reviews the state of the art on the interactions between natural compounds and brain receptors. This information is of foremost importance when it is intended to investigate and develop cutting-edge drugs, more effective and with alternative mechanisms of action to the conventional drugs presently used for the treatment of neurodegenerative diseases. Thus, we reviewed the effect of 173 natural products on neurotransmitter receptors, diabetes related receptors, neurotrophic factor related receptors, immune system related receptors, oxidative stress related receptors, transcription factors regulating gene expression related receptors and blood-brain barrier receptors.
Collapse
Affiliation(s)
- Ana R Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal
| | - João M Rocha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal; REQUIMTE/LAQV, Grupo de investigação de Química Orgânica Aplicada (QUINOA), Laboratório de polifenóis alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal
| |
Collapse
|
10
|
Napolitano T, Silvano S, Vieira A, Balaji S, Garrido-Utrilla A, Friano ME, Atlija J, Collombat P. Role of ghrelin in pancreatic development and function. Diabetes Obes Metab 2018; 20 Suppl 2:3-10. [PMID: 30230184 DOI: 10.1111/dom.13385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Abstract
Ghrelin is a gastric peptide with anabolic functions. It acutely stimulates growth hormone (GH) secretion from the anterior pituitary glands and modulates hypothalamic circuits that control food intake and energy expenditure. Besides its central activity, ghrelin is also involved in the regulation of pancreatic development and physiology. Particularly, several studies highlighted the ability of ghrelin to sustain β-cell viability and proliferation. Furthermore, ghrelin seems to exert inhibitory effects on pancreatic acinar and endocrine secretory functions. Due to its pleiotropic activity on energy metabolism, ghrelin has become a topic of great interest for experimental research focused on type II diabetes and obesity. The aim of this review is to illustrate the complex and not fully understood interplay between ghrelin, pancreas and glucose homeostasis.
Collapse
Affiliation(s)
- Tiziana Napolitano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Serena Silvano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Andhira Vieira
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Shruti Balaji
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Anna Garrido-Utrilla
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Marika E Friano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Josipa Atlija
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Patrick Collombat
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| |
Collapse
|
11
|
Fukushi I, Yokota S, Okada Y. The role of the hypothalamus in modulation of respiration. Respir Physiol Neurobiol 2018; 265:172-179. [PMID: 30009993 DOI: 10.1016/j.resp.2018.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
The hypothalamus is a higher center of the autonomic nervous system and maintains essential body homeostasis including respiration. The paraventricular nucleus, perifornical area, dorsomedial hypothalamus, and lateral and posterior hypothalamus are the primary nuclei of the hypothalamus critically involved in respiratory control. These hypothalamic nuclei are interconnected with respiratory nuclei located in the midbrain, pons, medulla and spinal cord. We provide an extensive review of the role of the above hypothalamic nuclei in the maintenance of basal ventilation, and modulation of respiration in hypoxic and hypercapnic conditions, during dynamic exercise, in awake and sleep states, and under stress. Dysfunction of the hypothalamus causes abnormal breathing and hypoventilation. However, the cellular and molecular mechanisms how the hypothalamus integrates and modulates autonomic and respiratory functions remain to be elucidated.
Collapse
Affiliation(s)
- Isato Fukushi
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
12
|
Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State. J Neurosci 2017; 37:11854-11866. [PMID: 29089444 DOI: 10.1523/jneurosci.1942-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states.SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food deprivation and excessive storage of energy by high-fat diet feeding dampen the suppressive effect of leptin on synaptic transmission. Together, these data show that leptin regulates synaptic transmission and might be important for maintaining energy homeostasis.
Collapse
|
13
|
Shaban H, O’Connor R, Ovsepian SV, Dinan TG, Cryan JF, Schellekens H. Electrophysiological approaches to unravel the neurobiological basis of appetite and satiety: use of the multielectrode array as a screening strategy. Drug Discov Today 2017; 22:31-42. [DOI: 10.1016/j.drudis.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 01/10/2023]
|
14
|
Novel bitter melon extracts highly yielded from supercritical extraction reduce the adiposity through the enhanced lipid metabolism in mice fed a high fat diet. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Chen N, Sugihara H, Kim J, Fu Z, Barak B, Sur M, Feng G, Han W. Direct modulation of GFAP-expressing glia in the arcuate nucleus bi-directionally regulates feeding. eLife 2016; 5. [PMID: 27751234 PMCID: PMC5068968 DOI: 10.7554/elife.18716] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/17/2016] [Indexed: 12/18/2022] Open
Abstract
Multiple hypothalamic neuronal populations that regulate energy balance have been identified. Although hypothalamic glia exist in abundance and form intimate structural connections with neurons, their roles in energy homeostasis are less known. Here we show that selective Ca2+ activation of glia in the mouse arcuate nucleus (ARC) reversibly induces increased food intake while disruption of Ca2+ signaling pathway in ARC glia reduces food intake. The specific activation of ARC glia enhances the activity of agouti-related protein/neuropeptide Y (AgRP/NPY)-expressing neurons but induces no net response in pro-opiomelanocortin (POMC)-expressing neurons. ARC glial activation non-specifically depolarizes both AgRP/NPY and POMC neurons but a strong inhibitory input to POMC neurons balances the excitation. When AgRP/NPY neurons are inactivated, ARC glial activation fails to evoke any significant changes in food intake. Collectively, these results reveal an important role of ARC glia in the regulation of energy homeostasis through its interaction with distinct neuronal subtype-specific pathways.
Collapse
Affiliation(s)
- Naiyan Chen
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Hiroki Sugihara
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Jinah Kim
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Zhanyan Fu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Boaz Barak
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| |
Collapse
|
16
|
Blasi C. The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes. Obes Surg 2016; 26:3045-3057. [DOI: 10.1007/s11695-016-2419-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Torres F, Barbosa M, Maciel P. Recurrent copy number variations as risk factors for neurodevelopmental disorders: critical overview and analysis of clinical implications. J Med Genet 2015; 53:73-90. [DOI: 10.1136/jmedgenet-2015-103366] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022]
|
18
|
Elattar S, Satyanarayana A. Can Brown Fat Win the Battle Against White Fat? J Cell Physiol 2015; 230:2311-7. [PMID: 25760392 DOI: 10.1002/jcp.24986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/31/2022]
Abstract
A rapid growth in the overweight and obese population in the last few decades suggest that the current diet, exercise, awareness or drug strategies are still not effectively restraining the obesity epidemic. Obesity results from increased energy intake, and the body's energy balance shifts towards energy abundance. Therefore, current research is focused on developing new strategies aimed at increasing energy expenditure. As a result, brown adipose tissue (BAT) is receiving tremendous attention since the major function of BAT is to dissipate energy as heat. For example, mouse models that have increased BAT activity or increased numbers of brown-like adipocytes within the white adipose tissue (WAT) are lean and protected from obesity. Alternatively, mouse models that lack BAT activity are more susceptible to age and diet-induced obesity. However, a significant loss of BAT mass during the natural growth process in humans has created enormous challenges in effectively utilizing this tissue to increase energy expenditure. New strategies are primarily focused on expanding the BAT mass and/or activating the existing BAT. In this regard, recent finding that expression of early B cell factor-2 (Ebf2) reprograms the white pre-adipocytes into brown adipocytes is a significant break-through in developing BAT-mediated strategies to treat obesity. Here we review the major biological functions of WAT and BAT, which play critical but opposing roles in the energy spectrum, energy storage versus energy expenditure, and we evaluate whether activation and/or expansion of BAT is practically achievable to treat obesity in humans.
Collapse
Affiliation(s)
- Sawsan Elattar
- Department of Biochemistry and Molecular Biology, Molecular Oncology & Biomarkers Program, Georgia Regents University Cancer Center, Georgia Regents University, Room-CN3150, 1410 Laney Walker Blvd., Augusta, Georgia
| | - Ande Satyanarayana
- Department of Biochemistry and Molecular Biology, Molecular Oncology & Biomarkers Program, Georgia Regents University Cancer Center, Georgia Regents University, Room-CN3150, 1410 Laney Walker Blvd., Augusta, Georgia
| |
Collapse
|
19
|
Glutamatergic Receptor Activation in the Commisural Nucleus Tractus Solitarii (cNTS) Mediates Brain Glucose Retention (BGR) Response to Anoxic Carotid Chemoreceptor (CChr) Stimulation in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26303494 DOI: 10.1007/978-3-319-18440-1_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Glutamate, released from central terminals of glossopharyngeal nerve, is a major excitatory neurotransmitter of commissural nucleus tractus solitarii (cNTS) afferent terminals, and brain derived neurotrophic factor (BDNF) has been shown to attenuate glutamatergic AMPA currents in NTS neurons. To test the hypothesis that AMPA contributes to glucose regulation in vivo modulating the hyperglycemic reflex with brain glucose retention (BGR), we microinjected AMPA and NBQX (AMPA antagonist) into the cNTS before carotid chemoreceptor stimulation in anesthetized normal Wistar rats, while hyperglycemic reflex an brain glucose retention (BGR) were analyzed. To investigate the underlying mechanisms, GluR2/3 receptor and c-Fos protein expressions in cNTS neurons were determined. We showed that AMPA in the cNTS before CChr stimulation inhibited BGR observed in aCSF group. In contrast, NBQX in similar conditions, did not modify the effects on glucose variables observed in aCSF control group. These experiments suggest that glutamatergic pathways, via AMPA receptors, in the cNTS may play a role in glucose homeostasis.
Collapse
|
20
|
Crosstalk of Signaling and Metabolism Mediated by the NAD(+)/NADH Redox State in Brain Cells. Neurochem Res 2015; 40:2394-401. [PMID: 25876186 DOI: 10.1007/s11064-015-1526-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 12/26/2022]
Abstract
The energy metabolism of the brain has to be precisely adjusted to activity to cope with the organ's energy demand, implying that signaling regulates metabolism and metabolic states feedback to signaling. The NAD(+)/NADH redox state constitutes a metabolic node well suited for integration of metabolic and signaling events. It is affected by flux through metabolic pathways within a cell, but also by the metabolic state of neighboring cells, for example by lactate transferred between cells. Furthermore, signaling events both in neurons and astrocytes have been reported to change the NAD(+)/NADH redox state. Vice versa, a number of signaling events like astroglial Ca(2+) signals, neuronal NMDA-receptors as well as the activity of transcription factors are modulated by the NAD(+)/NADH redox state. In this short review, this bidirectional interdependence of signaling and metabolism involving the NAD(+)/NADH redox state as well as its potential relevance for the physiology of the brain and the whole organism in respect to blood glucose regulation and body weight control are discussed.
Collapse
|
21
|
Lau J, Herzog H. CART in the regulation of appetite and energy homeostasis. Front Neurosci 2014; 8:313. [PMID: 25352770 PMCID: PMC4195273 DOI: 10.3389/fnins.2014.00313] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022] Open
Abstract
The cocaine- and amphetamine-regulated transcript (CART) has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s). However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions (Rogge et al., 2008; Subhedar et al., 2014). In this review, we focus on knowledge gained on CART's role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans.
Collapse
Affiliation(s)
- Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| |
Collapse
|
22
|
Abstract
Insulin stimulates leptin secretion through the PI3K/Akt, but not the MAPK, pathway. Although Ca2+ alone does not trigger leptin secretion, it is required for robust Akt phosphorylation and leptin secretion.
Collapse
|