1
|
Luo L, Zhang S, Gong J, Zhang J, Xie P, Yin J, Zhang M, Zhang C, Chen H, Liu Y, Ni B, Li C, Tian Z. 3-D Sustained-Release Culture Carrier Alleviates Rat Intervertebral Disc Degeneration by Targeting STING in Transplanted Skeletal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410151. [PMID: 39985222 PMCID: PMC12005824 DOI: 10.1002/advs.202410151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/14/2025] [Indexed: 02/24/2025]
Abstract
The hypoxic and high-pressure microenvironment of the intervertebral discs poses a major challenge to the survival and therapeutic efficiency of exogenous stem cells. Therefore, improving the utilization efficiency and therapeutic effect of exogenous stem cells to delay intervertebral disc degeneration (IVDD) is of great importance. Here, hypoxic induction studies are conducted in vivo and in vitro using rat costal cartilage-derived skeletal stem cells (SSCs) and find that hypoxia activates the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway and increased reactive oxygen species (ROS) accumulation, triggering ferroptosis in SSCs through hypoxia-inducible factor-1 alpha-dependent mitophagy. Progressive hypoxia preconditioning reduce STING expression and ROS accumulation, inducing SSCs differentiation into nucleus pulposus-like cells via the Wnt signaling pathway. Considering this, a 3-D sustained-release culture carrier is generated by mixing SSCs with methacrylated hyaluronic acid and polydopamine nanoparticles coated with the STING inhibitor C-176 and evaluated its inhibitory effect on IVDD. This carrier is demonstrated to inhibit the cGAS/STING pathway and prevent ROS accumulation by continuously releasing C-176-coated polydopamine nanoparticles, thereby reducing ferroptosis, promoting differentiation, and ultimately attenuating IVDD, suggesting its potential as a novel treatment strategy.
Collapse
Affiliation(s)
- Liwen Luo
- Department of OrthopaedicsXinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingP. R. China
- State Key Laboratory of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Shiyu Zhang
- Department of OrthopaedicsXinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Junfeng Gong
- Department of General SurgeryThe Armed Police Corps Hospital of AnhuiHefeiP. R. China
| | - Ji Zhang
- Institute of ImmunologyPLAArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Peng Xie
- Department of Military BiosafetyCollege of Basic MedicineArmy Medical UniversityChongqingP. R. China
| | - Jun Yin
- Department of PathophysiologyCollege of High Altitude Military MedicineArmy Military Medical UniversityChongqingP. R. China
| | - MengJie Zhang
- Department of PathophysiologyCollege of High Altitude Military MedicineArmy Military Medical UniversityChongqingP. R. China
| | - Cong Zhang
- Department of Laboratory Animal ScienceCollege of Basic MedicineArmy Medical UniversityChongqingP. R. China
| | - Hong Chen
- Department of Orthopedics903 Hospital of Joint Logistic Support Force of The People's Liberation ArmyHangzhouP. R. China
| | - Yao Liu
- Department of PharmacyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Bing Ni
- Department of PathophysiologyCollege of High Altitude Military MedicineArmy Military Medical UniversityChongqingP. R. China
| | - Changqing Li
- Department of OrthopaedicsXinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingP. R. China
- State Key Laboratory of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)ChongqingP. R. China
| | - Zhiqiang Tian
- Institute of ImmunologyPLAArmy Medical University (Third Military Medical University)ChongqingP. R. China
| |
Collapse
|
2
|
Zheng W, Ma L, Luo X, Xu R, Cao Z, He Y, Chang Y, You Y, Chen T, Liu H. Ultrasound-triggered functional hydrogel promotes multistage bone regeneration. Biomaterials 2024; 311:122650. [PMID: 38889598 DOI: 10.1016/j.biomaterials.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
The dysfunction of bone mesenchymal stem cells (BMSCs), caused by the physical and chemical properties of the inflammatory and repair phases of bone regeneration, contributes to the failure of bone regeneration. To meet the spatiotemporal needs of BMSCs in different phases, designing biocompatible materials that respond to external stimuli, improve migration in the inflammatory phase, reduce apoptosis in the proliferative phase, and clear the hurdle in the differentiation phase of BMSCs is an effective strategy for multistage repair of bone defects. In this study, we designed a cascade-response functional composite hydrogel (Gel@Eb/HA) to regulate BMSCs dysfunction in vitro and in vivo. Gel@Eb/HA improved the migration of BMSCs by upregulating the expression of chemokine (C-C motif) ligand 5 (CCL5) during the inflammatory phase. Ultrasound (US) triggered the rapid release of Ebselen (Eb), eliminating the accumulation of reactive oxygen species (ROS) in BMSCs, and reversing apoptosis under oxidative stress. Continued US treatment accelerated the degradation of the materials, thereby providing Ca2+ for the osteogenic differentiation of BMSCs. Altogether, our study highlights the prospects of US-controlled intelligent system, that provides a novel strategy for addressing the complexities of multistage bone repair.
Collapse
Affiliation(s)
- Wenyi Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Li Ma
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xueshi Luo
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Renhao Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Zhiying Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Yanzhou Chang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan You
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China; Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Hongmei Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
3
|
Wei D, Liang X, Huang M, Wang C, Ye Z, Zhang T, Zhang J. Targeting histone deacetylase 1 (HDAC1) in the bone marrow stromal cells revers imatinib resistance by modulating IL-6 in Ph + acute lymphoblastic leukemia. Ann Hematol 2024; 103:3015-3027. [PMID: 38847852 DOI: 10.1007/s00277-024-05830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/31/2024] [Indexed: 07/28/2024]
Abstract
Bone marrow stromal cells (BMSCs) can promote the growth of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). Histone deacetylases (HDACs) play essential roles in the proliferation and apoptosis resistance of Ph + ALL cells. In our previous study, inhibiting histone deacetylase 1 (HDAC1) decreases the proliferation of Ph + ALL cells. However, little is known regarding how HDAC1 in BMSCs of Ph + ALL patients affects the imatinib (IM) resistance. Therefore, the present work examined the roles of HDAC1 in BMSCs. Overexpression of HDAC1 was found in BMSCs of Ph + ALL patients with IM resistance. In addition, the Ph + ALL cell line SUP-B15 was co-cultured with BMSCs after lentivirus transfection for regulating HDAC1 expression. Knockdown of HDAC1 within BMSCs elevated the IM-mediated SUP-B15 cell apoptosis, while increasing HDAC1 expression had an opposite effect. IL-6 in BMSCs, which is an important factor for the microenvironment-associated chemoresistance, showed evident up-regulation in HDAC1-upregulated BMSCs and down-regulation in HDAC1-downregulated BMSCs. While recombinant IL-6 (rIL-6) can reversed the sensitivity of SUP-B15 cells to IM induced by downregulating HDAC1 expression in BMSCs. HDAC1 showed positive regulation on IL-6 transcription and secretion. Moreover, IL-6 secretion induced by HDAC1 in BMSCs might enhance IM resistance in Ph + ALL cells. With regard to the underlying molecular mechanism, NF-κB, an important signal responsible for IL-6 transcription in BMSCs, mediated the HDAC1-regulated IL-6 expression. Collectively, this study facilitated to develop HDAC1 inhibitors based not only the corresponding direct anti-Ph + ALL activity but also the regulation of bone marrow microenvironment.
Collapse
Affiliation(s)
- Danna Wei
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Xiaoling Liang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Meiling Huang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Caili Wang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Zhangmin Ye
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Jingrong Zhang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China.
| |
Collapse
|
4
|
Li T, Li RHW, Ng EHY, Yeung WSB, Chiu PCN, Chan RWS. Interleukin 6 at menstruation promotes the proliferation and self-renewal of endometrial mesenchymal stromal/stem cells through the WNT/β-catenin signaling pathway. Front Immunol 2024; 15:1378863. [PMID: 38765018 PMCID: PMC11099287 DOI: 10.3389/fimmu.2024.1378863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Background At menstruation, the functional layer of the human endometrium sheds off due to the trigger of the release of inflammatory factors, including interleukin 6 (IL-6), as a result of a sharp decline in progesterone levels, leading to tissue breakdown and bleeding. The endometrial mesenchymal stem-like cells (CD140b+CD146+ eMSC) located in the basalis are responsible for the cyclical regeneration of the endometrium after menstruation. Endometrial cells from the menstruation phase have been proven to secrete a higher amount of IL-6 and further enhance the self-renewal and clonogenic activity of eMSC. However, the IL-6-responsive mechanism remains unknown. Thus, we hypothesized that IL-6 secreted from niche cells during menstruation regulates the proliferation and self-renewal of eMSC through the WNT/β-catenin signaling pathway. Methods In this study, the content of IL-6 across the menstrual phases was first evaluated. Coexpression of stem cell markers (CD140b and CD146) with interleukin 6 receptor (IL-6R) was confirmed by immunofluorescent staining. In vitro functional assays were conducted to investigate the effect of IL-6 on the cell activities of eMSC, and the therapeutic role of these IL-6- and WNT5A-pretreated eMSC on the repair of injured endometrium was observed using an established mouse model. Results The endometrial cells secrete a high amount of IL-6 under hypoxic conditions, which mimic the physiological microenvironment in the menstruation phase. Also, the expression of IL-6 receptors was confirmed in our eMSC, indicating their capacity to respond to IL-6 in the microenvironment. Exogenous IL-6 can significantly enhance the self-renewal, proliferation, and migrating capacity of eMSC. Activation of the WNT/β-catenin signaling pathway was observed upon IL-6 treatment, while suppression of the WNT/β-catenin signaling impaired the stimulatory role of IL-6 on eMSC activities. IL-6- and WNT5A-pretreated eMSC showed better performance during the regeneration of the injured mouse endometrium. Conclusion We demonstrate that the high level of IL-6 produced by endometrial cells at menstruation can induce the stem cells in the human endometrium to proliferate and migrate through the activation of the WNT/β-catenin pathway. Treatment of eMSC with IL-6 and WNT5A might enhance their therapeutic potential in the regeneration of injured endometrium.
Collapse
Affiliation(s)
- Tianqi Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Raymond H. W. Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Ernest H. Y. Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Rachel W. S. Chan
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Salah RA, El-Derby AM, El-Gammal Z, Wadie B, Ahmed SM, Elshenawy SE, Magdy S, Salah A, Gabr M, Mohamed I, El-Badri N. Hepatocellular carcinoma patients serum modulates the regenerative capacities of adipose mesenchymal stromal cells. Heliyon 2024; 10:e24794. [PMID: 38333871 PMCID: PMC10850426 DOI: 10.1016/j.heliyon.2024.e24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers causing the highest mortality rate worldwide. Treatment options of surgery, radiation, cytotoxic drugs and liver transplantation suffer significant side effects and a high frequency of relapse. Stem cell therapy has been proposed as a new effective therapy, however, controversial reports are emerging on the role of mesenchymal stem cells in cancer. In this work, we aimed to assess the regenerative capacities of adipose mesenchymal stem cells when exposed to serum from HCC patients, by assessing the effect of the sera on modulating the regenerative capacities of h-AMSCs and the cancer properties in HCC cells. This will pave the way for maximizing the efficacy of MSCs in cancer therapy. Our data show that HCC serum-treated hA-MSCs suffered oncogene-induced senescence as shown by their altered morphology and ameliorated proliferation and differentiation. The cells were enlarged with small irregular nuclei, swollen rough endoplasmic reticulum cisternae, and aging lysosomes typified by dark residual bodies. HCC serum-treated Huh-7 cancer cells on the other hand displayed higher tumor aggressiveness as depicted by altered morphology, increased cellular proliferation and migration, and decreased percentage of early and late apoptotic cells. Our findings provide evidence that exposure of hA-MSCs to the serum of HCC patients decreases their regenerative capacities and should be considered when employed as a potential therapy in HCC patients.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza M. El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Bishoy Wadie
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Sara M. Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Shimaa E. Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman Salah
- Department of Hepatogastroenterology, Kasr El-Aini Cairo University, Cairo, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura, 35516, Egypt
| | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| |
Collapse
|
6
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Madrigal M, Fernández PL, Lleonart R, Carreño L, Villalobos Gorday KA, Rodríguez E, de Cupeiro K, Restrepo CM, Rao KSJ, Riordan NH. Comparison of Cost and Potency of Human Mesenchymal Stromal Cell Conditioned Medium Derived from 2- and 3-Dimensional Cultures. Bioengineering (Basel) 2023; 10:930. [PMID: 37627815 PMCID: PMC10451979 DOI: 10.3390/bioengineering10080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cell (MSC)-derived products, such as trophic factors (MTFs), have anti-inflammatory properties that make them attractive for cell-free treatment. Three-dimensional (3D) culture can enhance these properties, and large-scale expansion using a bioreactor can reduce manufacturing costs. Three lots of MTFs were obtained from umbilical cord MSCs produced by either monolayer culture (Monol MTF) or using a 3D microcarrier in a spinner flask dynamic system (Bioreactor MTF). The resulting MTFs were tested and compared using anti-inflammatory potency assays in two different systems: (1) a phytohemagglutinin-activated peripheral blood mononuclear cell (PBMNC) system and (2) a lipopolysaccharide (LPS)-activated macrophage system. Cytokine expression by macrophages was measured via RT-PCR. The production costs of hypothetical units of anti-inflammatory effects were calculated using the percentage of TNF-α inhibition by MTF exposure. Bioreactor MTFs had a higher inhibitory effect on TNF (p < 0.01) than monolayer MTFs (p < 0.05). The anti-inflammatory effect of Bioreactor MTFs on IL-1β, TNF-α, IL-8, IL-6, and MIP-1 was significantly higher than that of monolayer MTFs. The production cost of 1% inhibition of TNF-α was 11-40% higher using monolayer culture compared to bioreactor-derived MTFs. A 3D dynamic culture was, therefore, able to produce high-quality MTFs, with robust anti-inflammatory properties, more efficiently than monolayer static systems.
Collapse
Affiliation(s)
- Marialaura Madrigal
- MediStem Panama Inc., Panama City 7144, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 7144, Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 7144, Panama
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 7144, Panama
| | | | | | | | | | - Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 7144, Panama
| | - K. S. Jagannatha Rao
- Department of Biotechnology, Konenru Lakshmaiah Education Foundation (KLEF) deemed to be University, Vaddeswaram 522302, India
| | | |
Collapse
|
8
|
Hayashi T, Yamamoto N, Kurosawa G, Tajima K, Kondo M, Hiramatsu N, Kato Y, Tanaka M, Yamaguchi H, Kurosawa Y, Yamada H, Fujita N. A Novel High-Throughput Screening Method for a Human Multicentric Osteosarcoma-Specific Antibody and Biomarker Using a Phage Display-Derived Monoclonal Antibody. Cancers (Basel) 2022; 14:cancers14235829. [PMID: 36497311 PMCID: PMC9739802 DOI: 10.3390/cancers14235829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Osteosarcoma is a malignant tumor that produces neoplastic bone or osteoid osteoma. In human multicentric osteosarcoma (HMOS), a unique variant of human osteosarcoma (HOS), multiple bone lesions occur simultaneously or asynchronously before lung metastasis. HMOS is associated with an extremely poor prognosis, and effective treatment options are lacking. Using the proteins in our previously generated HMOS cell lines as antigens, we generated antibodies using a human antibody phage library. We obtained antibody clones recognizing 95 independent antigens and developed a fluorescence probe-based enzyme-linked immunosorbent assay (ELISA) technique capable of evaluating the reactivity of these antibodies by fluorescence intensity, allowing simple, rapid, and high-throughput selection of antibody clones. These results were highly correlated with those using flow cytometry. Subsequently, the HMOS cell lysate was incubated with the antibody, the antigen-antibody complex was recovered with magnetic beads, and the protein bands from electrophoresis were analyzed using liquid chromatography-mass spectrometry (LC/MS). CAVIN1/polymerase I transcript release factor was specifically detected in the HMOS cells. In conclusion, we found via a novel high-throughput screening method that CAVIN1/PTRF is an HMOS-specific cell membrane biomarker and an antigen capable of producing human antibodies. In the future, antibody-drug conjugate targeting of these specific proteins may be promising for clinical applications.
Collapse
Affiliation(s)
- Takuma Hayashi
- Department of Orthopedic Surgery, Fujita Health University, Toyoake 470-1192, Japan
| | - Naoki Yamamoto
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Japan
- International Center for Cell and Gene Therapy, Research Promotion and Support Headquarters, Fujita Health University, Toyoake 470-1192, Japan
- Correspondence: ; Tel.: +81-562-93-2317
| | - Gene Kurosawa
- International Center for Cell and Gene Therapy, Research Promotion and Support Headquarters, Fujita Health University, Toyoake 470-1192, Japan
| | - Kaori Tajima
- Department of Orthopedic Surgery, Fujita Health University, Toyoake 470-1192, Japan
| | | | - Noriko Hiramatsu
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Japan
| | - Yu Kato
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Japan
| | - Miho Tanaka
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, Toyoake 470-1192, Japan
| | - Hisateru Yamaguchi
- Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan
| | - Yoshikazu Kurosawa
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Harumoto Yamada
- Department of Orthopedic Surgery, Fujita Health University, Toyoake 470-1192, Japan
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
9
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
The role of microRNA-30c in targeting interleukin 6, as an inflammatory cytokine, in the mesenchymal stem cell: a therapeutic approach in colorectal cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04123-w. [PMID: 35876950 DOI: 10.1007/s00432-022-04123-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most prevalent cancer and the second significant cause of cancer-associated death worldwide. The microRNA-30 is a substantial member of the miRNA family and plays a vital role in expanding several cancers. This microRNA potentially targets interleukin 6 as an inflammatory cytokine in CRC. MATERIALS AND METHODS MSCs were isolated and identified from mice bone marrow and then transduced with lentiviruses containing miR-30C. Transfected MSCs were collected to evaluate IL-6 levels, CT-26 cells were also co-cultured with MSCs, and the effect of apoptosis and IL-6 on the supernatant was assessed. RESULTS Our result showed the expression of IL-6 mRNA and the level of protein were decreased in the supernatant of miR-30-transduced MSC cells compared to the control group. In addition, the rate of apoptosis was assessed, and the obtained data revealed the induction of apoptosis in CT-26 cells when they are in the vicinity of miR-30c-transduced MSCs. DISCUSSION AND CONCLUSION We demonstrated that downregulation of miR-30c was significantly correlated with CRC progression and survival. So, the present study elucidated the anticancer effects of miR-30c in CRC and presented a novel target for CRC therapy.
Collapse
|
11
|
Yang T, Tang S, Peng S, Ding G. The Effects of Mesenchymal Stem Cells on Oral Cancer and Possible Therapy Regime. Front Genet 2022; 13:949770. [PMID: 35846142 PMCID: PMC9280436 DOI: 10.3389/fgene.2022.949770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are characterized by self-renewal, rapid proliferation, multipotent differentiation, and low immunogenicity. In addition, the tropism of MSCs towards injured tissues and tumor lesions makes them attractive candidates as cell carriers for therapeutic agent delivery and genetic material transfer. The interaction between tumor cells and MSCs in the tumor microenvironment plays an important role in tumor progression. Oral cancer is one of the most common malignant diseases in the head and neck. Although considerable improvements in the treatment of oral cancer were achieved, more effective and safer novel agents and treatments are still needed, and deeper studies on the etiology, pathology, and treatment of the oral cancer are desirable. In the past decades, many studies have reported the beneficial effects of MSCs-based therapies in the treatment of various diseases, including oral cancers. Meanwhile, other studies demonstrated that MSCs may enhance the growth and metastasis of oral cancer. In this paper, we reviewed the research progress of the effects of MSCs on oral cancers, the underlying mechanisms, and their potential applications in the treatment of oral cancers.
Collapse
|
12
|
Frisbie L, Buckanovich RJ, Coffman L. Carcinoma Associated Mesenchymal Stem/Stromal Cells - Architects of the Pro-tumorigenic tumor microenvironment. Stem Cells 2022; 40:705-715. [PMID: 35583414 PMCID: PMC9406606 DOI: 10.1093/stmcls/sxac036] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
The interaction between tumor cells and non-malignant hosts cells within the tumor microenvironment (TME) is critical to the pathophysiology of cancer. These non-malignant host cells, consisting of a variety of stromal, immune and endothelial cells, engage in a complex bidirectional crosstalk with the malignant tumor cells. Mesenchymal stem/stromal cells (MSCs) are one of these host cells, and they play a critical role in directing the formation and function of the entire TME. These MSCs are epigenetically reprogrammed by cancer cells to assume a strongly pro-tumorigenic phenotype and are referred to as carcinoma-associated mesenchymal stem/stromal cells (CA-MSCs). Studies over the last decade demonstrate that CA-MSCs not only directly interact with cancer cells to promote tumor growth and metastasis, but also orchestrate the formation of the TME. CA-MSCs can differentiate into virtually all stromal sub-lineages present in the TME, including pro-tumorigenic cancer associated fibroblasts (CAF), myofibroblasts, and adipocytes. CA-MSCs and the CAFs they produce, secrete much of the extracellular matrix in the TME. Furthermore, CA-MSC secreted factors promote angiogenesis, and recruit immunosuppressive myeloid cells effectively driving tumor immune exclusion. Thus CA-MSCs impact nearly every aspect of the TME. Despite their influence on cancer biology, as CA-MSCs represent a heterogenous population without a single definitive marker, significant confusion remains regarding the origin and proper identification CA-MSCs. This review will focus on the impact of CA-MSCs on cancer progression and metastasis and the ongoing work on CA-MSC identification, nomenclature and mechanism of action.
Collapse
Affiliation(s)
- Len Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ronald J Buckanovich
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
Xiang Z, Hua M, Hao Z, Biao H, Zhu C, Zhai G, Wu J. The Roles of Mesenchymal Stem Cells in Gastrointestinal Cancers. Front Immunol 2022; 13:844001. [PMID: 35281017 PMCID: PMC8907448 DOI: 10.3389/fimmu.2022.844001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were reported to have strong immunomodulatory ability, and inhibit the proliferation of T cells and their immune response through cell-to-cell interactions and the generation of cytokines. With high differentiation potential and self-renewal ability, MSCs are considered to function in alleviating inflammatory responses, promoting tissue regeneration and inhibiting tissue fibrosis formation. As the most common malignancies, gastrointestinal (GI) cancers have high incidence and mortality. The accurate diagnosis, exact prognosis and treatment of GI cancers have always been a hot topic. Therefore, the potential applications of MSCs in terms of GI cancers are receiving more and more attention. Recently, there is increasing evidence that MSCs may serve as a key point in the growth, metastasis, inhibition, treatment and prognosis of GI cancers. In this review, we summarized the roles of MSCs in GI cancers, mainly focusing on esophageal cancer (EC), gastric cancer (GC), liver cancer (LC), colorectal cancer (CRC) and pancreatic cancer. Besides, we proposed MSCs as potential targets and treatment strategies for the effective treatment of GI cancers, which may provide better guidance for the clinical treatment of GI cancers.
Collapse
Affiliation(s)
- Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglu Hua
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Hao
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huang Biao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaojie Zhu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
14
|
Yamagata AS, Freire PP, Jones Villarinho N, Teles RHG, Francisco KJM, Jaeger RG, Freitas VM. Transcriptomic Response to Acidosis Reveals Its Contribution to Bone Metastasis in Breast Cancer Cells. Cells 2022; 11:cells11030544. [PMID: 35159353 PMCID: PMC8834614 DOI: 10.3390/cells11030544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Bone is the most common site of metastasis in breast cancer. Metastasis is promoted by acidosis, which is associated with osteoporosis. To investigate how acidosis could promote bone metastasis, we compared differentially expressed genes (DEGs) in MDA-MB-231 cancer cells in acidosis, bone metastasis, and bone metastatic tumors. The DEGs were identified using Biojupies and GEO2R. The expression profiles were assessed with Morpheus. The overlapping DEGs between acidosis and bone metastasis were compared to the bulk of the DEGs in terms of the most important genes and enriched terms using CytoHubba and STRING. The expression of the genes in this overlap filtered by secreted proteins was assessed in the osteoporosis secretome. The analysis revealed that acidosis-associated transcriptomic changes were more similar to bone metastasis than bone metastatic tumors. Extracellular matrix (ECM) organization would be the main biological process shared between acidosis and bone metastasis. The secretome genes upregulated in acidosis, bone metastasis, and osteoporosis-associated mesenchymal stem cells are enriched for ECM organization and angiogenesis. Therefore, acidosis may be more important in the metastatic niche than in the primary tumor. Acidosis may contribute to bone metastasis by promoting ECM organization. Untreated osteoporosis could favor bone metastasis through the increased secretion of ECM organization proteins.
Collapse
Affiliation(s)
- Ana Sayuri Yamagata
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
- Correspondence:
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Nícolas Jones Villarinho
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Ramon Handerson Gomes Teles
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Kelliton José Mendonça Francisco
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| |
Collapse
|
15
|
Zhang X, Li N, Zhu Y, Wen W. The role of mesenchymal stem cells in the occurrence, development, and therapy of hepatocellular carcinoma. Cancer Med 2022; 11:931-943. [PMID: 34981659 PMCID: PMC8855904 DOI: 10.1002/cam4.4521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignant tumor, with high recurrence and mortality rates. Mesenchymal stem cells (MSCs) are multipotent cells that can be recruited into the tumor microenvironment (TME). What is known, TME plays a vital part in tumor progression. In recent years, accumulating studies have found that MSCs have a dual role of promotion and inhibition in the occurrence and development of HCC. In this review, we analyzed the role of MSCs in TME and summarized the relationship between MSCs and liver cancer stem cells, the molecular signaling pathway mechanisms of MSCs promoting and inhibiting HCC, and the latest research progress of MSCs in the treatment of HCC.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Na Li
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhu
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
16
|
Chinnadurai R, Porter AP, Patel M, Lipat AJ, Forsberg MH, Rajan D, Hematti P, Capitini CM, Bruker C. Hepatocellular Carcinoma Cells Are Protected From Immunolysis by Mesenchymal Stromal Cells Through Indoleamine 2,3 Dioxygenase. Front Cell Dev Biol 2021; 9:715905. [PMID: 34869307 PMCID: PMC8633446 DOI: 10.3389/fcell.2021.715905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
B7 family proteins serve as checkpoint molecules that protect tumors from T cell mediated lysis. Tryptophan degrading enzymes indoleamine 2,3 dioxygenase (IDO) and tryptophan 2,3 dioxygenase (TDO) also induce T cell immune tolerance. However, little is known about the relative contribution of B7 molecules, tryptophan degrading enzymes, as well as the impact of tumor and stromal cell interactions to the development of immunosuppressive tumor microenvironment. To investigate such interactions, we used a tripartite model of human hepatocellular carcinoma cell line (HepG2) and mesenchymal stromal cells (MSCs) co-cultured with peripheral blood mononuclear cells (PBMCs). Co-culture of HepG2 cells and activated PBMCs demonstrate that HepG2 cells undergo PBMC mediated cytolysis, despite constitutive expression of B7-H3 and upregulation of PD-L1 by IFNγ. Knockdown of B7-H3, PD-L1 or IDO does not modulate PBMC mediated lysis of HepG2 cells. However, TNFα preactivation enhances lysis of HepG2 cells, and blocking of TNFα production from PBMCs protects HepG2 cells. On the other hand, MSCs protect HepG2 cells from PBMC mediated lysis, even in the presence of TNFα. Further investigation showed that MSC mediated protection is associated with the unique secretome profile of upregulated and downregulated cytokines and chemokines. IFNγ activated MSCs are superior to TNFα activated or control MSCs in protecting HepG2 cells. Blockade of IFNγ driven IDO activity completely abolishes the ability of MSCs to protect HepG2 cells from cytolysis by PBMCs. These results suggest that inhibition of IFNγ activation of IDO induction in stromal cells, combined with usage of TNFα, could be a novel immunotherapeutic strategy to induce regression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Amanda Paige Porter
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Mihir Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Ariel Joy Lipat
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Mathews H Forsberg
- Department of Pediatrics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Peiman Hematti
- Department of Medicine, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M Capitini
- Department of Pediatrics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Charles Bruker
- Department of Pathology, Memorial Health University Medical Center, Savannah, GA, United States
| |
Collapse
|
17
|
Luo F, Su Y, Zhang Z, Li J. Bone marrow mesenchymal stem cells promote the progression of prostate cancer through the SDF-1/CXCR4 axis in vivo and vitro. Clin Transl Oncol 2021; 24:892-901. [PMID: 34855138 DOI: 10.1007/s12094-021-02740-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to investigate the involvement of the SDF-1/CXCR4 axis in the process of BMMSC homing in prostate cancer (PCa) in vivo and in vitro. METHODS After verification of BMMSCs, we fixed the concentration gradient of SDF-1 for BMMSC cultivation to analyze CXCR4 expression by qRT-PCR and flow cytometric analysis. Furthermore, we developed a non-contact co-culture system and explored the participation of the SDF-1/CXCR4 axis in PCa using qRT-PCR, flow cytometry, and ELISA. In addition, A green fluorescent protein (GFP)-transplanted methylnitrosourea (MNU)-induced PCa mouse model was established to investigate the CXCR4 expression in vivo. RESULTS The CXCR4 expression was up-regulated with the increase in SDF-1 concentrations, and elevated SDF-1 had a significant promoting effect on cell proliferation and migration in BMMSCs. Moreover, the CXCR4 expression of BMMSCs was significantly increased in the non-contact co-culture model with vascular endothelial cells (VECs), and analysis of this model also showed that the proliferation and migration of BMMSCs were promoted in the presence of VECs. The ELISA assay showed that the SDF-1 levels in the co-culture model at 48 h were significantly increased. Twenty of the GFP-transplanted mice were divided into a PCa group and a control group, and four GFP-transplanted mice were observed to have prostate tumorigenesis. It also showed that CXCR4 was obviously increased in the prostate tissue of PCa mice. CONCLUSION Our findings suggest that BMMSCs could home and promote the proliferation and migration of PCa through the SDF-1/CXCR4 axis in vivo and in vitro.
Collapse
Affiliation(s)
- F Luo
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Y Su
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Z Zhang
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - J Li
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| |
Collapse
|
18
|
Sikora B, Skubis-Sikora A, Prusek A, Gola J. Paracrine activity of adipose derived stem cells on limbal epithelial stem cells. Sci Rep 2021; 11:19956. [PMID: 34620960 PMCID: PMC8497478 DOI: 10.1038/s41598-021-99435-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells deficiency (LSCD) is an eye disease caused by the loss of stem cells in the corneal limbus as a succession of an injury due physical, biological, or chemical agents. Current therapies of LSCD are focused on the transplantation of donor corneas or tissue equivalents produced from autologous limbal stem cells. Every year there are waiting millions of patients for the cornea transplantation all over the world and the list is growing due to the relatively low number of cornea donors. On the other hand, the transplantation of tissue or cells into the recipient’s body is associated with the higher risk of possible side effects. The possibility of the application of an indirect treatment using the properties of the paracrine activity of stem cells, would be beneficial for the patients with transplant failures. This study was to evaluate the paracrine effect of mesenchymal stem cells derived from adipose tissue (ADSC) on the viability of limbal epithelial stem cells (LESC). The paracrine effect was assessed by treating LESC with conditioned medium collected from ADSC culture. Cell viability, cytotoxicity, apoptosis and proliferation were evaluated using in vitro assays in standard conditions and induced inflammation. After the exposure to the examined conditions, the expression of genes related to pro- and anti- inflammatory factors was evaluated and compared to the secretion of selected cytokines by ELISA test. Moreover, the changes in LESC phenotype were assessed using of phenotype microarrays. Our findings suggest that paracrine activity of ADSC on LESC promotes its proliferation and has a potential role in mitigation of the adverse impact of inflammation induced by lipopolysaccharide.
Collapse
Affiliation(s)
- Bartosz Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland.
| | - Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland
| | - Agnieszka Prusek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
19
|
Raj AT, Kheur S, Bhonde R, Gupta AA, Patil S. Assessing the effect of human mesenchymal stem cell-derived conditioned media on human cancer cell lines: A systematic review. Tissue Cell 2021; 71:101505. [PMID: 33582384 DOI: 10.1016/j.tice.2021.101505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) exhibit differential effect (augmentation or inhibition) on cancer cells depending on the tissue of origin. Given the increasing demand to use MSCs in regenerative medicine, it is vital to ensure that the MSCs being employed are not pro-carcinogenic. OBJECTIVE To assess the effect of human MSC derived conditioned media (CM) on human cancer cell lines. MATERIALS AND METHODS PubMed, SCOPUS, and Web of Science were searched using the keyword combination 'human mesenchymal stem cell and conditioned media and human cancer cell line and in-vitro'. RESULTS MSC-CM pro-carcinogenic molecules were IL-6, IL-8, FGF10, VEGF, PDGF, TGF-b1, IGF-1, GRO-a, OSP, MMPs, TNFα, IL-4, IL-10, IL-13, IL-17, IL-1 β, G-CSF, MCP‑1, MIP‑1α, MIP‑1β, RANTES, MIG, IP‑10, HGFa, ETX, DKK1; anti-carcinogenic molecules were IFN-β, OST, LIGHT, FRTK3, INF-γ, IP-10, LAP, IL‑1RA, IL‑2, IL-5, IL-7, IL-12, IL-15, IFN-α, IFN‑γ. Effector pathways were STAT 1, JAK2/STAT3, Ras-Raf-MEK-ERK, Wnt/β-catenin, NF-κB, ERK1/2, PI3K/ Akt/mTOR, MAPK/ERK. BMSC, ADMSC, UCMSC, WJMSC DPMSC, AMSC, and UTCMSC had a differential effect on carcinogenesis. GMSC, LMSC, FDMSC were anti-carcinogenic. OMSC was pro-carcinogenic. CONCLUSION Use of MSC-CM with a pro-carcinogenic effect must be restricted in cancer patients irrespective of the nature of the application.
Collapse
Affiliation(s)
- A Thirumal Raj
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.
| | | | - Archana A Gupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Science, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
20
|
Wheeler DS, Misumi K, Walker NM, Vittal R, Combs MP, Aoki Y, Braeuer RR, Lama VN. Interleukin 6 trans-signaling is a critical driver of lung allograft fibrosis. Am J Transplant 2021; 21:2360-2371. [PMID: 33249747 PMCID: PMC8809084 DOI: 10.1111/ajt.16417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
Histopathologic examination of lungs afflicted by chronic lung allograft dysfunction (CLAD) consistently shows both mononuclear cell (MNC) inflammation and mesenchymal cell (MC) fibroproliferation. We hypothesize that interleukin 6 (IL-6) trans-signaling may be a critical mediator of MNC-MC crosstalk and necessary for the pathogenesis of CLAD. Bronchoalveolar lavage (BAL) fluid obtained after the diagnosis of CLAD has approximately twofold higher IL-6 and soluble IL-6 receptor (sIL-6R) levels compared to matched pre-CLAD samples. Human BAL-derived MCs do not respond to treatment with IL-6 alone but have rapid and prolonged JAK2-mediated STAT3 Tyr705 phosphorylation when exposed to the combination of IL-6 and sIL-6R. STAT3 phosphorylation within MCs upregulates numerous genes causing increased invasion and fibrotic differentiation. MNC, a key source of both IL-6 and sIL-6R, produce minimal amounts of these proteins at baseline but significantly upregulate production when cocultured with MCs. Finally, the use of an IL-6 deficient recipient in a murine orthotopic transplant model of CLAD reduces allograft fibrosis by over 50%. Taken together these results support a mechanism where infiltrating MNCs are stimulated by resident MCs to release large quantities of IL-6 and sIL-6R which then feedback onto the MCs to increase invasion and fibrotic differentiation.
Collapse
Affiliation(s)
- David S Wheeler
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Keizo Misumi
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Natalie M Walker
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ragini Vittal
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael P Combs
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yoshiro Aoki
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Russell R Braeuer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vibha N Lama
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Wu J, Xie S, Li H, Zhang Y, Yue J, Yan C, Liu K, Liu Y, Xu R, Zheng G. Antitumor effect of IL-12 gene-modified bone marrow mesenchymal stem cells combined with Fuzheng Yiliu decoction in an in vivo glioma nude mouse model. J Transl Med 2021; 19:143. [PMID: 33827606 PMCID: PMC8028710 DOI: 10.1186/s12967-021-02809-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glioma is a complex cancer with a high morbidity and high mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown promise as an excellent cell/drug delivery vehicle for gene-targeted therapy; however, maintaining genetic stability and biological activity remains difficult. Furthermore, whether BMSCs support or inhibit tumor growth remains debated. This study investigated whether a traditional Chinese medicine fomular, Fuzheng Yiliu decoction (FYD) had a synergistic antitumor effect with IL-12 gene-modified BMSCs in glioma-bearing nude mice METHODS: The lentivirus-mediated IL-12 gene was transfected into primarily cultured BMSCs. A total of 72 BALB/c nude mice were used to establish xenograft models with glioma U251 cells and were divided into groups (n = 12) including blank control group, nude mouse model group (model group), lentiviral transfection of BMSC group with no gene loading (BMSC group), IL-12 lentivirus-transfected BMSC group (IL-12 + BMSC group), FYD treatment group (FYD group), and FYD treatment in IL-12 lentivirus-transfected BMSC group (FYD + IL-12 + BMSC group).. After treatment for 14 days, all mice were sacrificed to collect tumor tissue and serum for more detection, such as distribution of BMSCs, cell apoptosis in xenograft tumors, serum IL-12 and INF-γ levels, mouse weight and tumor volume were measured RESULTS: There were significantly more apoptotic cells in tumor tissue in IL-12 gene transfected group, FYD treatment group and FYD combining with IL-12 gene transfected group than that in the model group (P < 0.05). The FYD + IL-12 + BMSC group showed significantly higher Bax and lower Bcl-2 expression (P < 0.05), and serum IL-12 and INF-γ levels (P < 0.05) were higher than that in all other groups. After the intervention, this group also showed a strong inhibitory effect against tumor growth (P < 0.05) CONCLUSIONS: This study suggested FYD treatment combined with IL-12 gene-modified BMSCs shows synergistic antitumor effect in glioma-bearing nude mice.
Collapse
Affiliation(s)
- Jianjun Wu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, 730000, Gansu, China
- Provincial Key Laboratory of Chinese Medicine Prevention and Control of Chronic Diseases, Lanzhou, 730000, Gansu, China
| | - Shoupin Xie
- Department of Neurology, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Hailong Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
- Provincial Key Laboratory of Chinese Medicine Prevention and Control of Chronic Diseases, Lanzhou, 730000, Gansu, China
| | - Yanxia Zhang
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, 730000, Gansu, China
- Provincial Key Laboratory of Chinese Medicine Prevention and Control of Chronic Diseases, Lanzhou, 730000, Gansu, China
| | - Jia Yue
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
- Provincial Key Laboratory of Chinese Medicine Prevention and Control of Chronic Diseases, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, 730000, Gansu, China
- School of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Kai Liu
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, 730000, Gansu, China
- School of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yongqi Liu
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, 730000, Gansu, China
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Rui Xu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, 730000, Gansu, China
| | - Guisen Zheng
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
- Provincial Key Laboratory of Chinese Medicine Prevention and Control of Chronic Diseases, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
22
|
Lin L, Huang K, Guo W, Zhou C, Wang G, Zhao Q. Conditioned medium of the osteosarcoma cell line U2OS induces hBMSCs to exhibit characteristics of carcinoma-associated fibroblasts via activation of IL-6/STAT3 signalling. J Biochem 2021; 168:265-271. [PMID: 32302384 DOI: 10.1093/jb/mvaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
As a research hotspot in recent years, bone mesenchymal stem cells (BMSCs) play an important role in the process of a variety of human diseases, including cancers. However, in osteosarcoma, the role of BMSCs and their communication with tumour cells are not clear. In this study, we validated the communication of osteosarcoma (OS) cells with BMSCs. The results showed that the conditioned medium of osteosarcoma cell line U2OS (U2OS-CM) induces the carcinoma-associated fibroblasts (CAFs)-like transformation of BMSCs and promotes the proliferation, migration and invasion of BMSCs. Mechanistically, treatment of human bone mesenchymal stem cells (hBMSCs) with U2OS-CM results in a significant increase in the IL-6 expression and phosphorylation of STAT3. Furthermore, blockade of the IL-6/STAT3 signalling in hBMSCs rescues the transformation of CAF phenotype induced by U2OS-CM. And, human IL-6 can directly increase the expression of the CAF marker genes in hMSCs. Meanwhile, IL-6/STAT3 signalling involves in promoting effects of U2OS-CM on the proliferation, migration and invasion of BMSCs. In summary, our results suggest that BMSCs communicate with OS cells through IL-6/STAT3 signalling and play an important role in the progress of osteosarcoma.
Collapse
Affiliation(s)
- Longshuai Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kai Huang
- Department of Orthopedics, Shanghai Jingan Zhaibei Hospital, Shanghai 200070, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chenghao Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
23
|
McGuire JJ, Frieling JS, Lo CH, Li T, Muhammad A, Lawrence HR, Lawrence NJ, Cook LM, Lynch CC. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat Commun 2021; 12:723. [PMID: 33526787 PMCID: PMC7851397 DOI: 10.1038/s41467-021-20962-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/06/2021] [Indexed: 01/12/2023] Open
Abstract
Bone metastatic prostate cancer (PCa) promotes mesenchymal stem cell (MSC) recruitment and their differentiation into osteoblasts. However, the effects of bone-marrow derived MSCs on PCa cells are less explored. Here, we report MSC-derived interleukin-28 (IL-28) triggers prostate cancer cell apoptosis via IL-28 receptor alpha (IL-28Rα)-STAT1 signaling. However, chronic exposure to MSCs drives the selection of prostate cancer cells that are resistant to IL-28-induced apoptosis and therapeutics such as docetaxel. Further, MSC-selected/IL-28-resistant prostate cancer cells grow at accelerated rates in bone. Acquired resistance to apoptosis is PCa cell intrinsic, and is associated with a shift in IL-28Rα signaling via STAT1 to STAT3. Notably, STAT3 ablation or inhibition impairs MSC-selected prostate cancer cell growth and survival. Thus, bone marrow MSCs drive the emergence of therapy-resistant bone metastatic prostate cancer yet this can be disabled by targeting STAT3.
Collapse
Affiliation(s)
- Jeremy J McGuire
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeremy S Frieling
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chen Hao Lo
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tao Li
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ayaz Muhammad
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Harshani R Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nicholas J Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
24
|
Human Mesenchymal Stem Cells: The Present Alternative for High-Incidence Diseases, Even SARS-Cov-2. Stem Cells Int 2020; 2020:8892189. [PMID: 33414832 PMCID: PMC7769649 DOI: 10.1155/2020/8892189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs), defined as plastic adherent cells with multipotent differentiation capacity in vitro, are an emerging and valuable tool to treat a plethora of diseases due to their therapeutic mechanisms such as their paracrine activity, mitochondrial and organelle transfer, and transfer of therapeutic molecules via exosomes. Nowadays, there are more than a thousand registered clinical trials related to MSC application around the world, highlighting MSC role on difficult-to-treat high-incidence diseases such as the current COVID-19, HIV infections, and autoimmune and metabolic diseases. Here, we summarize a general overview of MSCs and their therapeutic mechanisms; also, we discuss some of the novel clinical trial protocols and their results as well as a comparison between the number of registries, countries, and search portals.
Collapse
|
25
|
Rostami N, Nikkhoo A, Khazaei-Poul Y, Farhadi S, Sadat Haeri M, Moghadaszadeh Ardebili S, Aghaei Vanda N, Atyabi F, Namdar A, Baghaei M, Haghnavaz N, Kazemi T, Yousefi M, Ghalamfarsa G, Sabz G, Jadidi-Niaragh F. Coinhibition of S1PR1 and GP130 by siRNA-loaded alginate-conjugated trimethyl chitosan nanoparticles robustly blocks development of cancer cells. J Cell Physiol 2020; 235:9702-9717. [PMID: 32424937 DOI: 10.1002/jcp.29781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
There is an interconnected network between S1P/sphingosine-1-phosphate receptor 1 (S1PR1), IL-6/glycoprotein 130 (GP130), and signal transducer and activator of transcription 3 (STAT3) signaling pathways in the tumor microenvironment, which leads to cancer progression. S1P/S1PR1 and IL-6/GP130 signaling pathways phosphorylate and activate STAT3, and it then induces the expression of S1PR1 and interleukin-6 (IL-6) in a positive feedback loop leading to cancer progression. We hypothesized that blockade of this amplification loop can suppress the growth and development of cancer cells. Therefore, we silenced STAT3 upstream molecules including the S1PR1 and GP130 molecules in cancer cells using small interfering RNA (siRNA)-loaded alginate-conjugated trimethyl chitosan (ATMC) nanoparticles (NPs). The generated NPs had competent properties including the appropriate size, zeta potential, polydispersity index, morphology, high uptake of siRNA, high rate of capacity, high stability, and low toxicity. We evaluated the effects of siRNA loaded ATMC NPs on tumor hallmarks of three murine-derived cancer cell lines, including 4T1 (breast cancer), B16-F10 (melanoma), and CT26 (colon cancer). The results confirmed the tumor-suppressive effects of combinational targeting of S1PR1 and GP130. Moreover, combination therapy could potently suppress tumor growth as assessed by the chick chorioallantoic membrane assay. In this study, we targeted this positive feedback loop for the first time and applied this novel combination therapy, which provides a promising approach for cancer treatment. The development of a potent nanocarrier system with ATMC for this combination was also another aspect of this study, which should be further investigated in cancer animal models in further studies.
Collapse
Affiliation(s)
- Narges Rostami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Nikkhoo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Khazaei-Poul
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Farhadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Melika Sadat Haeri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Oncology, Cross Cancer Institute, The University of Alberta, Edmonton, Alberta, Canada
| | - Masoumeh Baghaei
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navideh Haghnavaz
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamabas Sabz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Hou D, Wang B, You R, Wang X, Liu J, Zhan W, Chen P, Qin T, Zhang X, Huang H. Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1346. [PMID: 33313091 PMCID: PMC7723653 DOI: 10.21037/atm-20-3191] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Bone marrow stromal cells (BMSCs) are known to promote chemoresistance in acute myeloid leukemia (AML) cells. However, the molecular basis for BMSC-associated AML chemoresistance remains largely unexplored. Methods The mitochondrial oxidative phosphorylation (OXPHOS) levels of AML cells were measured by a Seahorse XFe24 cell metabolic analyzer. The activity of total or mitochondrial signal transducer and transcription activator 3 (STAT3) in AML cells was explored by flow cytometry and Western blotting. Real-time quantitative PCR, Western blotting and enzyme-linked immunosorbent assay (ELISA) were used to analyze expression of interleukin 6 (IL-6) in the human BMSC line HS-5, and IL-6 was knocked out in HS-5 cells by CRISPR/Cas9 system. Results In this study, we observed that co-culturing with BMSCs heightened OXPHOS levels in AML cells, thus promoting chemoresistance in these cells. HS-5 cell-induced upregulation of OXPHOS is dependent on the activation of STAT3, especially on that of mitochondrial serine phosphorylated STAT3 (pS-STAT3) in AML cells. The relationship among pS-STAT3, OXPHOS, and chemosensitivity of AML cells induced by BMSCs was demonstrated by the STAT3 activator and inhibitor, which upregulated and downregulated the levels of mitochondrial pS-STAT3 and OXPHOS, respectively. Intriguingly, AML cells remodeled HS-5 cells to secrete more IL-6, which augmented mitochondrial OXPHOS in AML cells and stimulated their chemoresistance. IL-6 knockout in HS-5 cells impaired the ability of these cells to activate STAT3, to increase OXPHOS, or to promote chemoresistance in AML cells. Conclusions BMSCs promoted chemoresistance in AML cells via the activation of the IL-6/STAT3/OXPHOS pathway. These findings exhibit a novel mechanism of chemoresistance in AML cells in the bone marrow microenvironment from a metabolic perspective.
Collapse
Affiliation(s)
- Diyu Hou
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bin Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.,Clinical Laboratory, Fujian Children's Hospital, Fuzhou, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoting Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weiwu Zhan
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tiandi Qin
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuehao Zhang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
27
|
Lee HY, Hong IS. Targeting Liver Cancer Stem Cells: An Alternative Therapeutic Approach for Liver Cancer. Cancers (Basel) 2020; 12:cancers12102746. [PMID: 32987767 PMCID: PMC7598600 DOI: 10.3390/cancers12102746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The first report of cancer stem cell (CSC) from Bruce et al. has demonstrated the relatively rare population of stem-like cells in acute myeloid leukemia (AML). The discovery of leukemic CSCs prompted further identification of CSCs in multiple types of solid tumor. Recently, extensive research has attempted to identity CSCs in multiple types of solid tumors in the brain, colon, head and neck, liver, and lung. Based on these studies, we hypothesize that the initiation and progression of most malignant tumors rely largely on the CSC population. Recent studies indicated that stem cell-related markers or signaling pathways, such as aldehyde dehydrogenase (ALDH), CD133, epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin signaling, and Notch signaling, contribute to the initiation and progression of various liver cancer types. Importantly, CSCs are markedly resistant to conventional therapeutic approaches and current targeted therapeutics. Therefore, it is believed that selectively targeting specific markers and/or signaling pathways of hepatic CSCs is an effective therapeutic strategy for treating chemotherapy-resistant liver cancer. Here, we provide an overview of the current knowledge on the hepatic CSC hypothesis and discuss the specific surface markers and critical signaling pathways involved in the development and maintenance of hepatic CSC subpopulations.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367700, Korea;
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406840, Korea
- Correspondence: ; Tel.: +82-32-899-6315; Fax: +82-32-899-6350
| |
Collapse
|
28
|
Chen HC, Awale S, Wu CP, Lee HH, Wu HT. Co-cultured bone marrow mesenchymal stem cells repair thioacetamide-induced hepatocyte damage. Cell Biol Int 2020; 44:2459-2472. [PMID: 32827326 DOI: 10.1002/cbin.11453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/18/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Adult stem cells, such as bone marrow mesenchymal stem cells (BMSCs), are postdevelopmental cells found in many bone tissues. They are capable of multipotent differentiation and have low immune-rejection characteristics. Hepatocytes may become inflamed and produce a large number of free radicals when affected by drugs, poisoning, or a viral infection. The excessive accumulation of free radicals in the extracellular matrix (ECM) eventually leads to liver fibrosis. This study aims to investigate the restorative effects of mouse bone marrow mesenchymal stem cells (mBMSCs) on thioacetamide (TAA)-induced damage in hepatocytes. An in vitro transwell co-culture system of HepG2 cells were co-cultured with mBMSCs. The effects of damage done to TAA-treated HepG2 cells were reflected in the overall cell survival, the expression of antioxidants (SOD1, GPX1, and CAT), the ECM (COL1A1 and MMP9), antiapoptosis characteristics (BCL2), and inflammation (TNF) genes. The majority of the damage done to HepG2 by TAA was significantly reduced when cells were co-cultured with mBMSCs. The signal transducer and activator of transcription 3 (STAT3) and its phosphorylated STAT3 (p-STAT3), as related to cell growth and survival, were detected in this study. The results show that STAT3 was significantly decreased in the TAA-treated HepG2 cells, but the STAT3 and p-STAT3 of HepG2 cells were significantly activated when the TAA-treated HepG2 co-cultured with mBMSCs. Strong expression of interleukin (Il6) messenger RNA in co-cultured mBMSCs/HepG2 indicated mBMSCs secret the cytokines IL-6, which promotes cell survival through downstream STAT3 activation and aid in the recovery of HepG2 cells damaged by TAA.
Collapse
Affiliation(s)
- Hung-Chiuan Chen
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Suresh Awale
- Department of Translational Research, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan
| | - Hu-Hui Lee
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Hsi-Tien Wu
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
29
|
Ge X, Liu W, Zhao W, Feng S, Duan A, Ji C, Shen K, Liu W, Zhou J, Jiang D, Rong Y, Gong F, Wang J, Xu Z, Li X, Fan J, Wei Y, Bai J, Cai W. Exosomal Transfer of LCP1 Promotes Osteosarcoma Cell Tumorigenesis and Metastasis by Activating the JAK2/STAT3 Signaling Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:900-915. [PMID: 32810692 PMCID: PMC7452114 DOI: 10.1016/j.omtn.2020.07.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/02/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence indicates that lymphocyte cytosolic protein 1 (LCP1) overexpression contributes to tumor progression; however, its role in osteosarcoma (OS) remains unclear. We aimed to investigate the potential effect of LCP1 in OS and the underlying mechanisms. We first demonstrated that LCP1 is upregulated in OS cell lines and tissues. Then, we found that aberrant expression of LCP1 could induce the proliferation and metastasis of OS cells in vitro and in vivo by destabilizing neuregulin receptor degradation protein-1 (Nrdp1) and subsequently activating the JAK2/STAT3 signaling pathway. When coculturing OS cells with bone marrow-derived mesenchymal stem cells (BMSCs) in vitro, we validated that oncogenic LCP1 in OS was transferred from BMSCs via exosomes. Moreover, microRNA (miR)-135a-5p, a tumor suppressor, was found to interact upstream of LCP1 to counteract the pro-tumorigenesis effects of LCP1 in OS. In conclusion, BMSC-derived exosomal LCP1 promotes OS proliferation and metastasis via the JAK2/STAT3 pathway. Targeting the miR-135a-5p/LCP1 axis may have potential in treating OS.
Collapse
Affiliation(s)
- Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wene Zhao
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuang Feng
- Department of Encephalopathy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, China
| | - Ao Duan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wanshun Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiawen Zhou
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongdong Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuluo Rong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fangyi Gong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhiyang Xu
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyan Li
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yongzhong Wei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
30
|
Meng L, Zhao Y, Bu W, Li X, Liu X, Zhou D, Chen Y, Zheng S, Lin Q, Liu Q, Sun H. Bone mesenchymal stem cells are recruited via CXCL8-CXCR2 and promote EMT through TGF-β signal pathways in oral squamous carcinoma. Cell Prolif 2020; 53:e12859. [PMID: 32588946 PMCID: PMC7445409 DOI: 10.1111/cpr.12859] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Bone mesenchymal stem cells (BMSCs) play critical roles in tumour microenvironment. However, molecular mechanisms of how BMSCs to be recruited and effect subsequent tumour progression are poorly understood in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS The distribution of CXCL8 was detected by immunohistochemical staining in OSCC tissues. The chemotaxis of conditioned media from different epithelial cells to BMSCs was examined by trans-well assay. Real-time quantitative PCR (qPCR) and ELISA were used to detect the expression of related cytokines and chemokine receptors. The migration of BMSCs was observed in BALB/c nude mice. The roles of BMSCs in proliferation, migration and invasion of OSCC were detected by CCK-8, flow cytometry and trans-well assay. Epithelial-mesenchymal transition (EMT)-related markers were analysed by qPCR and Western blot in vitro, and growth was evaluated in BALB/c nude mice using subcutaneously implanted OSCC in nude mouse model in vivo. RESULTS Using OSCC, we show CXCL8, secreted by OSCC, binds to exclusively CXCR2 in BMSCs to facilitate migration of BMSCs to OSCC. TGF-β secreted by BMSCs subsequently induces EMT of OSCC to promote their proliferation, migration and infiltration. We also showed that the Ras/Raf/Erk axis plays a critical role in tumour progression. CONCLUSIONS Our results provide the molecular basis for BMSC recruitment into tumours, and how this process leads to tumour progression and leads us to develop a novel OSCC treatment target.
Collapse
Affiliation(s)
- Lin Meng
- Department of Oral Pathology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yueqi Zhao
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, China
| | - Wenhuan Bu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xing Li
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xinchen Liu
- Department of Oral Pathology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Dabo Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yumeng Chen
- Department of Oral Pathology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shize Zheng
- Department of Oral Pathology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, China
| | - Qilin Liu
- Department of Oral Pathology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
31
|
Chulpanova DS, Solovyeva VV, James V, Arkhipova SS, Gomzikova MO, Garanina EE, Akhmetzyanova ER, Tazetdinova LG, Khaiboullina SF, Rizvanov AA. Human Mesenchymal Stem Cells Overexpressing Interleukin 2 Can Suppress Proliferation of Neuroblastoma Cells in Co-Culture and Activate Mononuclear Cells In Vitro. Bioengineering (Basel) 2020; 7:bioengineering7020059. [PMID: 32560387 PMCID: PMC7356660 DOI: 10.3390/bioengineering7020059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
High-dose recombinant interleukin 2 (IL2) therapy has been shown to be successful in renal cell carcinoma and metastatic melanoma. However, systemic administration of high doses of IL2 can be toxic, causing capillary leakage syndrome and stimulating pro-tumor immune response. One of the strategies to reduce the systemic toxicity of IL2 is the use of mesenchymal stem cells (MSCs) as a vehicle for the targeted delivery of IL2. Human adipose tissue-derived MSCs were transduced with lentivirus encoding IL2 (hADSCs-IL2) or blue fluorescent protein (BFP) (hADSCs-BFP). The proliferation, immunophenotype, cytokine profile and ultrastructure of hADSCs-IL2 and hADSCs-BFP were determined. The effect of hADSCs on activation of peripheral blood mononuclear cells (PBMCs) and proliferation and viability of SH-SY5Y neuroblastoma cells after co-culture with native hADSCs, hADSCs-BFP or hADSCs-IL2 on plastic and Matrigel was evaluated. Ultrastructure and cytokine production by hADSCs-IL2 showed modest changes in comparison with hADSCs and hADSCs-BFP. Conditioned medium from hADSC-IL2 affected tumor cell proliferation, increasing the proliferation of SH-SY5Y cells and also increasing the number of late-activated T-cells, natural killer (NK) cells, NKT-cells and activated T-killers. Conversely, hADSC-IL2 co-culture led to a decrease in SH-SY5Y proliferation on plastic and Matrigel. These data show that hADSCs-IL2 can reduce SH-SY5Y proliferation and activate PBMCs in vitro. However, IL2-mediated therapeutic effects of hADSCs could be offset by the increased expression of pro-oncogenes, as well as the natural ability of hADSCs to promote the progression of some tumors.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Svetlana S. Arkhipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
| | - Marina O. Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elvira R. Akhmetzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
| | - Leysan G. Tazetdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (V.V.S.); (S.S.A.); (M.O.G.); (E.E.G.); (E.R.A.); (L.G.T.); (S.F.K.)
- Correspondence: ; Tel.: +7-905-316-7599
| |
Collapse
|
32
|
Stem Cell Therapy for Hepatocellular Carcinoma: Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1237:97-119. [PMID: 31728916 DOI: 10.1007/5584_2019_441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer and results in a high mortality rate worldwide. Unfortunately, most cases of HCC are diagnosed in an advanced stage, resulting in a poor prognosis and ineffective treatment. HCC is often resistant to both radiotherapy and chemotherapy, resulting in a high recurrence rate. Although the use of stem cells is evolving into a potentially effective approach for the treatment of cancer, few studies on stem cell therapy in HCC have been published. The administration of stem cells from bone marrow, adipose tissue, the amnion, and the umbilical cord to experimental animal models of HCC has not yielded consistent responses. However, it is possible to induce the apoptosis of cancer cells, repress angiogenesis, and cause tumor regression by administration of genetically modified stem cells. New alternative approaches to cancer therapy, such as the use of stem cell derivatives, exosomes or stem cell extracts, have been proposed. In this review, we highlight these experimental approaches for the use of stem cells as a vehicle for local drug delivery.
Collapse
|
33
|
Wlodarek L, Cao F, Alibhai FJ, Fekete A, Noyan N, Tobin SW, Marvasti TB, Wu J, Li SH, Weisel RD, Wang LY, Jia Z, Li RK. Rectification of radiotherapy-induced cognitive impairments in aged mice by reconstituted Sca-1 + stem cells from young donors. J Neuroinflammation 2020; 17:51. [PMID: 32028989 PMCID: PMC7006105 DOI: 10.1186/s12974-019-1681-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/17/2019] [Indexed: 01/03/2023] Open
Abstract
Background Radiotherapy is widely used and effective for treating brain tumours, but inevitably impairs cognition as it arrests cellular processes important for learning and memory. This is particularly evident in the aged brain with limited regenerative capacity, where radiation produces irreparable neuronal damage and activation of neighbouring microglia. The latter is responsible for increased neuronal death and contributes to cognitive decline after treatment. To date, there are few effective means to prevent cognitive deficits after radiotherapy. Methods Here we implanted hematopoietic stem cells (HSCs) from young or old (2- or 18-month-old, respectively) donor mice expressing green fluorescent protein (GFP) into old recipients and assessed cognitive abilities 3 months post-reconstitution. Results Regardless of donor age, GFP+ cells homed to the brain of old recipients and expressed the macrophage/microglial marker, Iba1. However, only young cells attenuated deficits in novel object recognition and spatial memory and learning in old mice post-irradiation. Mechanistically, old recipients that received young HSCs, but not old, displayed significantly greater dendritic spine density and long-term potentiation (LTP) in CA1 neurons of the hippocampus. Lastly, we found that GFP+/Iba1+ cells from young and old donors were differentially polarized to an anti- and pro-inflammatory phenotype and produced neuroprotective factors and reactive nitrogen species in vivo, respectively. Conclusion Our results suggest aged peripherally derived microglia-like cells may exacerbate cognitive impairments after radiotherapy, whereas young microglia-like cells are polarized to a reparative phenotype in the irradiated brain, particularly in neural circuits associated with rewards, learning, and memory. These findings present a proof-of-principle for effectively reinstating central cognitive function of irradiated brains with peripheral stem cells from young donor bone marrow. Electronic supplementary material The online version of this article (10.1186/s12974-019-1681-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukasz Wlodarek
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Feng Cao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, SickKids Research Institute, Floor 5, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Adam Fekete
- Program in Neurosciences & Mental Health, SickKids Research Institute, Floor 5, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Nima Noyan
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Stephanie W Tobin
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Tina B Marvasti
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Shu-Hong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Richard D Weisel
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Lu-Yang Wang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Program in Neurosciences & Mental Health, SickKids Research Institute, Floor 5, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | - Zhengping Jia
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Program in Neurosciences & Mental Health, SickKids Research Institute, Floor 5, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Small Extracellular Vesicles Released from Ovarian Cancer Spheroids in Response to Cisplatin Promote the Pro-Tumorigenic Activity of Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20204972. [PMID: 31600881 PMCID: PMC6834150 DOI: 10.3390/ijms20204972] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the different strategies used to treat ovarian cancer, around 70% of women/patients eventually fail to respond to the therapy. Cancer stem cells (CSCs) play a role in the treatment failure due to their chemoresistant properties. This capacity to resist chemotherapy allows CSCs to interact with different components of the tumor microenvironment, such as mesenchymal stem cells (MSCs), and thus contribute to tumorigenic processes. Although the participation of MSCs in tumor progression is well understood, it remains unclear how CSCs induce the pro-tumorigenic activity of MSCs in response to chemotherapy. Small extracellular vesicles, including exosomes, represent one possible way to modulate any type of cell. Therefore, in this study, we evaluate if small extracellular vesicle (sEV) derived from ovarian cancer spheroids (OCS), which are enriched in CSCs, can modify the activity of MSCs to a pro-tumorigenic phenotype. We show that sEV released by OCS in response to cisplatin induce an increase in the migration pattern of bone marrow MSCs (BM-MSCs) and the secretion interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor A (VEGFA). Moreover, the factors secreted by BM-MSCs induce angiogenesis in endothelial cells and the migration of low-invasive ovarian cancer cells. These findings suggest that cisplatin could modulate the cargo of sEV released by CSCs, and these exosomes can further induce the pro-tumorigenic activity of MSCs.
Collapse
|
35
|
Maguire G. The Safe and Efficacious Use of Secretome From Fibroblasts and Adipose-derived (but not Bone Marrow-derived) Mesenchymal Stem Cells for Skin Therapeutics. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:E57-E69. [PMID: 31531174 PMCID: PMC6715117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cell-based products are rapidly emerging in the marketplace as topical skin care and wound care products. Confusion is prevalent among healthcare providers and end-users about these products. Adipose-derived stem cells, fibroblasts, platelets, and bone marrow-derived stem cells are the most common cells used for stem cell therapeutic development, medical procedures, and skin care products. In this review, the significant advantages of adipose-derived stem cells and fibroblasts in terms of safety and efficacy are highlighted and compared to relatively risky platelets and bone marrow stem cells.
Collapse
Affiliation(s)
- Greg Maguire
- Dr. Maguire is with NeoGenesis, Inc. in San Diego, California
| |
Collapse
|
36
|
Wang L, Wang FS. Clinical immunology and immunotherapy for hepatocellular carcinoma: current progress and challenges. Hepatol Int 2019; 13:521-533. [PMID: 31352593 DOI: 10.1007/s12072-019-09967-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
At the time of hepatocellular carcinoma (HCC) diagnosis, patients are most often at an advanced stage; however, the current treatment regimens remain unsatisfactory. Thus, novel and more powerful therapeutic approaches for advanced HCC are urgently required. Exacerbation of immunotolerant signals and/or escaping immunosurveillance leads to the development of HCC, which appears to be a rational reason to use immunotherapy to restore anticancer immunity. Several novel immunotherapeutic methods, including the use of immune checkpoint inhibitors, new types of immune cell adoption [e.g., chimeric antigen receptor T cell (CAR-T), TCR gene-modified T cells and stem cells], and microRNAs have been used in clinical trials for the treatment of HCC. However, some crucial issues remain to be addressed for such novel immunotherapy techniques. Finally, immunotherapy is now standing on the threshold of great advances in the fight against HCC.
Collapse
Affiliation(s)
- Lifeng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, 100 Western 4th Ring Road, Beijing, 100039, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, 100 Western 4th Ring Road, Beijing, 100039, China.
| |
Collapse
|
37
|
Ullah M, Akbar A, Ng NN, Concepcion W, Thakor AS. Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism. Oncotarget 2019; 10:3435-3450. [PMID: 31191817 PMCID: PMC6544397 DOI: 10.18632/oncotarget.26952] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
The development of chemotherapy drug resistance remains a significant barrier for effective therapy in several cancers including breast cancer. Bone marrow-derived mesenchymal stem cells (BMMSCs) have previously been shown to influence tumor progression and the development of chemoresistance. In the present study, we showed that when GFP labelled BMMSCs and RFP labelled HCC1806 cells are injected together in vivo, they create tumors which contain a new hybrid cell that has characteristics of both BMMSCs and HCC1806 cells. By labelling these cells prior to their injection, we were then able to isolate new hybrid cell from harvested tumors using FACS (DP-HCC1806:BMMSCs). Interestingly, when DP-HCC1806:BMMSCs were then injected into the mammary fat pad of NOD/SCID mice, they produced xenograft tumors which were smaller in size, and exhibited resistance to chemotherapy drugs (i.e. doxorubicin and 5-fluorouracil), when compared tumors from HCC1806 cells alone. This chemoresistance was shown to associated with an increased expression of tetraspanins (CD9, CD81) and drug resistance proteins (BCRP, MDR1). Subsequent siRNA-mediated knockdown of BMMSC-CD9 in DP-HCC1806:BMMSCs resulted in an attenuation of doxorubicin and 5-fluorouracil chemoresistance associated with decreased BCRP and serum cytokine expression (CCL5, CCR5, CXCR12). Our findings suggest that within the tumor microenvironment, CD9 is responsible for the crosstalk between BMMSCs and HCC1806 breast cancer cells (via CCL5, CCR5, and CXCR12) which contributes to chemoresistance. Hence, BMMSC-CD9 may serve as an important therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Asma Akbar
- Mid-Florida Research and Education Center, Department of Pathology, University of Florida, Apopka, FL 32703, USA
| | - Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| |
Collapse
|
38
|
Romano B, Elangovan S, Erreni M, Sala E, Petti L, Kunderfranco P, Massimino L, Restelli S, Sinha S, Lucchetti D, Anselmo A, Colombo FS, Stravalaci M, Arena V, D'Alessio S, Ungaro F, Inforzato A, Izzo AA, Sgambato A, Day AJ, Vetrano S. TNF-Stimulated Gene-6 Is a Key Regulator in Switching Stemness and Biological Properties of Mesenchymal Stem Cells. Stem Cells 2019; 37:973-987. [PMID: 30942926 DOI: 10.1002/stem.3010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) are well established to have promising therapeutic properties. TNF-stimulated gene-6 (TSG-6), a potent tissue-protective and anti-inflammatory factor, has been demonstrated to be responsible for a significant part of the tissue-protecting properties mediated by MSCs. Nevertheless, current knowledge about the biological function of TSG-6 in MSCs is limited. Here, we demonstrated that TSG-6 is a crucial factor that influences many functional properties of MSCs. The transcriptomic sequencing analysis of wild-type (WT) and TSG-6-/- -MSCs shows that the loss of TSG-6 expression leads to the perturbation of several transcription factors, cytokines, and other key biological pathways. TSG-6-/- -MSCs appeared morphologically different with dissimilar cytoskeleton organization, significantly reduced size of extracellular vesicles, decreased cell proliferative rate, and loss of differentiation abilities compared with the WT cells. These cellular effects may be due to TSG-6-mediated changes in the extracellular matrix (ECM) environment. The supplementation of ECM with exogenous TSG-6, in fact, rescued cell proliferation and changes in morphology. Importantly, TSG-6-deficient MSCs displayed an increased capacity to release interleukin-6 conferring pro-inflammatory and pro-tumorigenic properties to the MSCs. Overall, our data provide strong evidence that TSG-6 is crucial for the maintenance of stemness and other biological properties of murine MSCs.
Collapse
Affiliation(s)
- Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sudharshan Elangovan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Emanuela Sala
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Luciana Petti
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Restelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Shruti Sinha
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - Donatella Lucchetti
- Institute of General Pathology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Catholic University, Rome, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Matteo Stravalaci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS
| | - Silvia D'Alessio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Catholic University, Rome, Italy
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
39
|
Matsuura K, Takami T, Maeda M, Hisanaga T, Fujisawa K, Saeki I, Matsumoto T, Hidaka I, Yamamoto N, Sakaida I. Evaluation of the Effects of Cultured Bone Marrow Mesenchymal Stem Cell Infusion on Hepatocarcinogenesis in Hepatocarcinogenic Mice With Liver Cirrhosis. Transplant Proc 2019; 51:925-935. [PMID: 30979485 DOI: 10.1016/j.transproceed.2019.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Liver transplantation remains the only curative therapy for decompensated liver cirrhosis. However, it has several limitations, and not all patients can receive liver transplants. Therefore, liver regenerative therapy without liver transplantation is considered necessary. In this study, we attempted minimally invasive liver regenerative therapy by peripheral vein infusion of bone marrow-derived mesenchymal stem cells (BMSCs) cultured from a small amount of autologous bone marrow fluid and evaluated the effects of BMSCs on hepatocarcinogenesis in a mouse model. METHODS C57BL/6 male mice were injected intraperitoneally with N-nitrosodiethylamine once at 2 weeks of age, followed by carbon tetrachloride twice a week from 6 weeks of age onwards, to create a mouse model of highly oncogenic liver cirrhosis. From 10 weeks of age, mouse isogenic green fluorescent protein-positive BMSCs (1.0 × 106/body weight) were infused once every 2 weeks, for a total of 5 times, and the effects of frequent BMSC infusion on hepatocarcinogenesis were evaluated. RESULTS In the histologic evaluation, no significant differences were observed between the controls and BMSC-administered mice in terms of incidence rate, number, or average size of foci and tumors. However, significant suppression of fibrosis and liver injury was confirmed in the group that received BMSC infusions. DISCUSSION Considering that BMSC infusion did not promote carcinogenesis, even in the state of highly oncogenic liver cirrhosis, autologous BMSC infusion might be a safe and effective therapy for human decompensated liver cirrhosis.
Collapse
Affiliation(s)
- K Matsuura
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - T Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.
| | - M Maeda
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - T Hisanaga
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Department of Medical Education, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - K Fujisawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - I Saeki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - T Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - I Hidaka
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Center for Liver Disease, Yamaguchi University Hospital, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - N Yamamoto
- Health Administration Center, Yamaguchi University, Yamaguchi, Japan
| | - I Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Center for Liver Disease, Yamaguchi University Hospital, Yamaguchi University School of Medicine, Yamaguchi, Japan
| |
Collapse
|
40
|
Che Q, Xiao X, Liu M, Lu Y, Dong X, Liu S. IL-6 promotes endometrial cancer cells invasion and migration through signal transducers and activators of transcription 3 signaling pathway. Pathol Res Pract 2019; 215:152392. [PMID: 30922625 DOI: 10.1016/j.prp.2019.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/03/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-6 is the most well-known traditional activator of activating signal transducers and activators of transcription 3 (Stat3). They have been proved to promote cancer progression in several human cancers. However, their exact roles in endometrial cancer have not been elucidated clearly. In this study, we aimed to investigate the role of IL-6/Stat3 signaling pathway in human endometrial cancer cells invasion and migration. We demonstrated that Stat3 is activated in endometrial cancer cell lines. To investigate the role of Stat3 in endometrial cancer invasive capacity, we used Stat3 inhibitor Stattic and found that Stattic significantly inhibited the migration and invasion of endometrial cancer cells elevated by IL-6. Furthermore, we showed that Stat3 inhibitor significantly decreased the expression of MMP2 enhanced by IL-6, indicating that IL-6 promoted endometrial cancer invasion and migration by Stat3-induced MMP2 upregulation. Taken together, our findings indicate that targeting IL-6/Stat3 pathway might be a potentially effective therapeutic strategy for treating endometrial cancer.
Collapse
Affiliation(s)
- Qi Che
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Miao Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yongning Lu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
41
|
Yin Z, Jiang K, Li R, Dong C, Wang L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol Cancer 2018; 17:178. [PMID: 30593276 PMCID: PMC6309092 DOI: 10.1186/s12943-018-0926-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with high morbidity, relapse and mortality rates. Multipotent mesenchymal stromal cells (MSCs) can be recruited to and become integral components of the HCC microenvironment and can influence tumor progression. This review discusses MSC migration to liver fibrosis and the HCC microenvironment, MSC involvement in HCC initiation and progression and the widespread application of MSCs in HCC-targeted therapy, thus clarifying the critical roles of MSCs in HCC.
Collapse
Affiliation(s)
- Zeli Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Keqiu Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Rui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China. .,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China. .,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China. .,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China. .,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| |
Collapse
|
42
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Fu J, Li Y, Li Z, Li N. Clinical utility of decarboxylation prothrombin combined with α-fetoprotein for diagnosing primary hepatocellular carcinoma. Biosci Rep 2018; 38:BSR20180044. [PMID: 29717027 PMCID: PMC6172421 DOI: 10.1042/bsr20180044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
We conducted a comprehensive analysis to evaluate clinical utility of decarboxylation prothrombin combined with α-fetoprotein (AFP) for diagnosing primary hepatocellular carcinoma (HCC). Systematical searches were performed in PubMed, Web of Science, China National Knowledge Internet, and Wangfang databases. The bivariate random-effect model was used to calculate the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood, diagnostic odds ratio (DOR), and summary area under the curve (AUC). Fourteen studies were included in the meta-analysis. For decarboxylation prothrombin, the overall pooled parameters are as follows: sensitivity: 79% (95% confidence interval (CI): 74-84%), specificity: 91% (95%CI: 87-93%), PLR: 8.42 (95%CI: 5.79-12.23), negative likelihood ratio (NLR): 0.23 (95%CI: 0.17-0.30), DOR: 37.09 (95%CI: 21.37-64.36), summary AUC: 0.92 (95%CI: 0.89-0.94); for combined diagnostic, the overall pooled parameters were as follows: sensitivity: 91% (95%CI: 85-95%), specificity: 83% (95%CI: 74-89%), PLR: 5.26 (95%CI: 3.53-7.83), NLR: 0.11 (95%CI: 0.07-0.18), DOR: 47.14 (95%CI: 30.09-73.85), summary AUC: 0.94 (95%CI: 0.91-0.95). The serum decarboxylation prothrombin showed a relatively higher diagnostic specificity for primary HCC and decarboxylation prothrombin combined with AFP exhibited can improve sensitivity for HCC than any of the biomarkers alone.
Collapse
Affiliation(s)
- Jun Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yanyan Li
- Department of Outpatient, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
44
|
Shojaei S, Hashemi SM, Ghanbarian H, Salehi M, Mohammadi-Yeganeh S. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: Tumor progression versus tumor suppression. J Cell Physiol 2018; 234:3394-3409. [PMID: 30362503 DOI: 10.1002/jcp.27326] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME.
Collapse
Affiliation(s)
- Samaneh Shojaei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Farouk S, Sabet S, Abu Zahra FA, El-Ghor AA. Bone marrow derived-mesenchymal stem cells downregulate IL17A dependent IL6/STAT3 signaling pathway in CCl4-induced rat liver fibrosis. PLoS One 2018; 13:e0206130. [PMID: 30346985 PMCID: PMC6197688 DOI: 10.1371/journal.pone.0206130] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Therapeutic potential of bone marrow–derived mesenchymal stem cells (BM-MSCs) has been reported in several animal models of liver fibrosis. Interleukin (IL) 17A, IL6 and Stat3 have been described to play crucial roles in chronic liver injury. However, the modulatory effect of MSCs on these markers was controversial in different diseases. BM-MSCs might activate the IL6/STAT3 signaling pathway and promote cell invasion in hepatocellular carcinoma, but the immunomodulatory role of BM-MSCs on IL17A/IL6/STAT3 was not fully elucidated in liver fibrosis. In the present study, we evaluated the capacity of the BM-MSCs in the modulation of cytokines milieu and signal transducers, based on unique inflammatory genes Il17a and Il17f and their receptors Il17rc and their effect on the IL6/STAT3 pathway in CCl4-induced liver fibrosis in rats. A single dose of BM-MSCs was administered to the group with induced liver fibrosis, and the genes and proteins of interest were evaluated along six weeks after treatment. Our results showed a significant downregulation of Il17a, Il17ra, il17f and Il17rc genes. In accordance, BM-MSCs administration declined IL17, IL2 and IL6 serum proteins and downregulated IL17A and IL17RA proteins in liver tissue. Interestingly, BM-MSCs downregulated both Stat3 mRNA expression and p-STAT3, while Stat5a gene was downregulated and p-STAT5 protein was elevated. Also P-SMAD3 and TGFβR2 proteins were downregulated in response to BM-MSCs treatment. Collectively, we suggest that BM-MSCs might play an immunomodulatory role in the treatment of liver fibrosis through downregulation of IL17A affecting IL6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shimaa Farouk
- Department of Biology and Biotechnologies, Faculty of Science & Technology, AL-Neelain University, Khartoum, Sudan
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
- * E-mail:
| | - Fatma A. Abu Zahra
- Medical Research Center, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Akmal A. El-Ghor
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
46
|
Loncaric D, Labat V, Debeissat C, Brunet de la Grange P, Rodriguez L, Vlaski-Lafarge M, Ivanovic Z. The majority of cells in so-called "mesenchymal stem cell" population are neither stem cells nor progenitors. Transfus Clin Biol 2018; 26:316-323. [PMID: 30391125 DOI: 10.1016/j.tracli.2018.08.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/18/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The first-passage adherent human bone marrow fibroblast-like cell population corresponds, in terms of phenotype and three-lineage differentiation capacity (assayed in bulk culture), to commonly termed "mesenchymal stem cells". Here we determine the proportion of high proliferative capacity multipotent cells present in this population in order to estimate the proportion of cells that can or cannot be considered as stem and progenitor cells. MATERIAL AND METHODS The single-cell cultures were established starting from human bone marrow-derived first-passage fibroblast-like cells and the proliferating clones were either transferred to secondary cultures to evaluate their further clonogenicity, or split into three wells to assess differentiation into each of the three different lineages. RESULTS The analysis of 197 single-cell cultures from three different bone marrow donors shows that only∼40% of so-called "mesenchymal stem cells" exhibit multipotency and are capable of sustained clonogenicity in secondary cultures. CONCLUSION Even in the first ex vivo passage under favorable conditions the majority (∼60%) of so-called "mesenchymal stem cells" are not multipotent and thus do not represent a stem cell entity.
Collapse
Affiliation(s)
- D Loncaric
- Établissement français du sang Nouvelle Aquitaine, scientific department, place Amélie-Raba-Léon, CS21010, 33075 Bordeaux cedex, France; Inserm U1035, université de Bordeaux, 33000 Bordeaux, France
| | - V Labat
- Établissement français du sang Nouvelle Aquitaine, scientific department, place Amélie-Raba-Léon, CS21010, 33075 Bordeaux cedex, France; Inserm U1035, université de Bordeaux, 33000 Bordeaux, France
| | - C Debeissat
- Établissement français du sang Nouvelle Aquitaine, scientific department, place Amélie-Raba-Léon, CS21010, 33075 Bordeaux cedex, France; Inserm U1035, université de Bordeaux, 33000 Bordeaux, France
| | - P Brunet de la Grange
- Établissement français du sang Nouvelle Aquitaine, scientific department, place Amélie-Raba-Léon, CS21010, 33075 Bordeaux cedex, France; Inserm U1035, université de Bordeaux, 33000 Bordeaux, France
| | - L Rodriguez
- Établissement français du sang Nouvelle Aquitaine, scientific department, place Amélie-Raba-Léon, CS21010, 33075 Bordeaux cedex, France; Inserm U1035, université de Bordeaux, 33000 Bordeaux, France
| | - M Vlaski-Lafarge
- Établissement français du sang Nouvelle Aquitaine, scientific department, place Amélie-Raba-Léon, CS21010, 33075 Bordeaux cedex, France; Inserm U1035, université de Bordeaux, 33000 Bordeaux, France
| | - Z Ivanovic
- Établissement français du sang Nouvelle Aquitaine, scientific department, place Amélie-Raba-Léon, CS21010, 33075 Bordeaux cedex, France; Inserm U1035, université de Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
47
|
Du L, Han XG, Tu B, Wang MQ, Qiao H, Zhang SH, Fan QM, Tang TT. CXCR1/Akt signaling activation induced by mesenchymal stem cell-derived IL-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death Dis 2018; 9:714. [PMID: 29915309 PMCID: PMC6006172 DOI: 10.1038/s41419-018-0745-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/23/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The loss of appropriate cell adhesion normally induces apoptosis via a process termed anoikis. The aim of this study was to investigate the effects of mesenchymal stem cells (MSCs) in the cancer microenvironment on the anoikis resistance and pulmonary metastasis of osteosarcoma (OS) cells, and to evaluate the critical role of the interleukin (IL)-8/C-X-C chemokine receptor (CXCR) 1/Akt-signaling pathway in these processes. Metastatic OS subtype cells, which did or did not interact with MSC-conditioned medium (MSC-CM) in vitro, were isolated from the pulmonary site and named Saos2-lung-M. Both MSC-CM and IL-8 treatment increased the anoikis resistance of Saos2 cells in vitro. Moreover, exogenous MSC-CM promoted the survival and metastasis of Saos2 cells in nude mice. Saos2-lung-M cells were more malignant and resistant to anoikis than parental cells. MSCs secreted IL-8, thereby protecting OS cells from anoikis. Blocking the IL-8/CXCR1/Akt pathway via CXCR1 knockdown inhibited the pulmonary metastasis of Saos2-lung-MSCs and prolonged the survival of tumor-bearing mice. In conclusion, MSCs enhanced OS cell resistance to anoikis and pulmonary metastasis via regulation of the IL-8/CXCR1/Akt pathway. These findings suggest that MSCs can “select for” OS cells with high metastatic potential in vivo, and highlight CXCR1 as a key target in the regulation of pulmonary metastasis of OS cells.
Collapse
Affiliation(s)
- Lin Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Guo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Tu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Min-Qi Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Hong Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Ming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Xu QG, Yu J, Guo XG, Hou GJ, Yuan SX, Yang Y, Yang Y, Liu H, Pan ZY, Yang F, Gu FM, Zhou WP. IL-17A promotes the invasion-metastasis cascade via the AKT pathway in hepatocellular carcinoma. Mol Oncol 2018; 12:936-952. [PMID: 29689643 PMCID: PMC5983223 DOI: 10.1002/1878-0261.12306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
We previously demonstrated that interleukin‐17A (IL‐17A) is associated with the progression of hepatocellular carcinoma (HCC). However, its role in the invasion–metastasis cascade of HCC and the efficacy of IL‐17A‐targeting therapeutics in HCC remain largely unknown. In this study, we found that IL‐17A promoted intrahepatic and pulmonary metastasesis of HCC cells in an orthotopic implant model. Moreover, our results showed that IL‐17A induced epithelial–mesenchymal transition (EMT) and promoted HCC cell colonization in vitro and in vivo, and the role of IL‐17A in invasion–metastasis was dependent on activation of the AKT pathway. Remarkably, combined therapy using both secukinumab and sorafenib has better inhibition on tumour growth and metastasis compared to sorafenib monotherapy. Additionally, the combination of intratumoral IL‐17A+ cells and E‐cadherin predicted the outcome of patients with HCC at an early stage after hepatectomy based on tissue microarray and immunohistochemistry. In conclusion, our studies reveal that IL‐17A induces early EMT and promotes late colonization of HCC metastasis by activating AKT signalling. Secukinumab is a promising candidate for clinical development in combination with sorafenib for the management of HCC.
Collapse
Affiliation(s)
- Qing-Guo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian Yu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xing-Gang Guo
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guo-Jun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sheng-Xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), China
| | - Yun Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ze-Ya Pan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Fu Yang
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Fang-Ming Gu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), China
| |
Collapse
|
49
|
Liu C, Feng X, Wang B, Wang X, Wang C, Yu M, Cao G, Wang H. Bone marrow mesenchymal stem cells promote head and neck cancer progression through Periostin-mediated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin. Cancer Sci 2018; 109:688-698. [PMID: 29284199 PMCID: PMC5834805 DOI: 10.1111/cas.13479] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMMSC) have been shown to be recruited to the tumor microenvironment and exert a tumor‐promoting effect in a variety of cancers. However, the molecular mechanisms related to the tumor‐promoting effect of BMMSC on head and neck cancer (HNC) are not clear. In this study, we investigated Periostin (POSTN) and its roles in the tumor‐promoting effect of BMMSC on HNC. In vitro analysis of HNC cells cultured in BMMSC‐conditioned media (MSC‐CM) showed that MSC‐CM significantly promoted cancer progression by enhancing cell proliferation, migration, epithelial‐mesenchymal transformation (EMT), and altering expression of cell cycle regulatory proteins and inhibition of apoptosis. Moreover, MSC‐CM promoted the expression of POSTN and POSTN promoted HNC progression through the activation of the phosphoinositide 3‐kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. In a murine model of HNC, we found that BMMSC promoted tumor growth, invasion, metastasis and enhanced the expression of POSTN and EMT in tumor tissues. Clinical sample analysis further confirmed that the expression of POSTN and N‐cadherin were correlated with pathological grade and lymph node metastasis of HNC. In conclusion, this study indicated that BMMSC promoted proliferation, invasion, survival, tumorigenicity and migration of head and neck cancer through POSTN‐mediated PI3K/Akt/mTOR activation.
Collapse
Affiliation(s)
- Chuanxia Liu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Xiaoxia Feng
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Baixiang Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Xinhua Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Chaowei Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Mengfei Yu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Guifen Cao
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|