1
|
Luo J, Liang Z, Zhao X, Huang S, Gu Y, Deng Z, Ye J, Cai X, Han Y, Guo B. Piezoelectric dual-network tough hydrogel with on-demand thermal contraction and sonopiezoelectric effect for promoting infected-joint-skin-wound healing via FAK and AKT signaling pathways. Natl Sci Rev 2025; 12:nwaf118. [PMID: 40309345 PMCID: PMC12042750 DOI: 10.1093/nsr/nwaf118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/08/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The dynamic and whole stage management of infected wound healing throughout the entire repair process, including intelligent on-demand wound closure and the regulation of the transition from bactericidal to reparative phases, remains a major challenge. This study develops sonopiezoelectric-effect-mediated on-demand reactive-oxygen-species release by incorporating piezoelectric barium titanate modified with gold nanoparticles and a thermally responsive dual-network tough hydrogel dressing with a physical network structure based on ureidopyrimidinone-modified gelatin crosslinked by multiple hydrogen bonds, and with a chemical network structure based on N-isopropylacrylamide and methacryloyl gelatin formed via radical polymerization. This hydrogel exhibits temperature-sensitive softening, on-demand thermal contraction performance, high mechanical strength, good tissue adhesion, outstanding piezoelectricity, tunable sonopiezoelectric behavior, regulatable photothermal properties and desirable biocompatibility. The tunable sonopiezoelectric effect enables the hydrogel to eliminate wound bacteria in the short term, and effectively promote human fibroblast proliferation and migration over the long term. The hydrogel dressing actively contracts to close wound edges and further promotes the healing of MRSA-infected skin defects in the neck of mice by promoting fibroblast migration, enhancing collagen deposition and facilitating angiogenesis via up-regulating the FAK and AKT signaling pathways, providing a novel design strategy for developing dressings targeting chronic joint-skin wounds.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Liang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanan Gu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jing Ye
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingmei Cai
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
2
|
Kananivand M, Nouri F, Yousefi MH, Pajouhi A, Ghorbani H, Afkhami H, Razavi ZS. Mesenchymal stem cells and their exosomes: a novel approach to skin regeneration via signaling pathways activation. J Mol Histol 2025; 56:132. [PMID: 40208456 DOI: 10.1007/s10735-025-10394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Accelerating wound healing is a crucial objective in surgical and regenerative medicine. The wound healing process involves three key stages: inflammation, cell proliferation, and tissue repair. Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in promoting tissue regeneration, particularly by enhancing epidermal cell migration and proliferation. However, the precise molecular mechanisms underlying MSC-mediated wound healing remain unclear. This review highlights the pivotal role of MSCs and their exosomes in wound repair, with a specific focus on critical signaling pathways, including PI3K/Akt, WNT/β-catenin, Notch, and MAPK. These pathways regulate essential cellular processes such as proliferation, differentiation, and angiogenesis. Moreover, in vitro and in vivo studies reveal that MSCs accelerate wound closure, enhance collagen deposition, and modulate immune responses, contributing to improved tissue regeneration. Understanding these mechanisms provides valuable insights into MSC-based therapeutic strategies for enhancing wound healing.
Collapse
Affiliation(s)
- Maryam Kananivand
- Medical Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Ali Pajouhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hakimeah Ghorbani
- Department of Sciences, Faculty of Biological Sciences, Tabriz University of Sciences, Tabriz, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran.
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Lu ZJ, Ye JG, Li JN, Liang JB, Zhou M, Hu QL, Zhang QK, Lin YH, Zheng YF. Single-Cell Multiomics Analysis of Early Wound Response Programs in the Mouse Corneal Epithelium. Invest Ophthalmol Vis Sci 2025; 66:9. [PMID: 40042873 DOI: 10.1167/iovs.66.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
Purpose Wound healing is crucial for restoring homeostasis in living organisms. Although wound response mechanisms have been studied extensively, the gene regulatory programs involved remain to be elucidated. Here, we used single-cell RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) analysis to profile the regulatory landscape of mouse corneal epithelium in early wound response. Methods We used our previously published single-cell data sets of homeostatic adult mouse corneal epithelium as the unwounded group. The wounded group data sets were obtained by sequencing the epithelium after an annular epithelial wound. Following the integration of the relevant data sets, the Seurat and ArchR packages were employed for single-cell RNA-seq and single-cell ATAC-seq data processing and downstream analysis, respectively. The Monocle 2 was used for pseudo-time analysis, CellChat for intercellular communication analysis, and pySCENIC for analyzing transcription factors. The expression of key genes was validated via immunofluorescence staining and quantitative real-time PCR. Results Our data show that the number of cell type-specific genes decreases and the number of common transcriptional responses increases in early wound response. Concurrently, we find that the chromatin accessibility landscape undergoes significant changes across all epithelial cell types and that the wound-induced open regions are similarly distributed across the genome. Motif enrichment analysis shows that Fosl1/AP-1 binding site is highly enriched among the opened regions. However, by assessing the correlation between changes in chromatin accessibility and gene expression, we observe that only a small subset of wound-induced genes shows a high correlation with the accessibility of nearby chromatin. Conclusions Our study provides a detailed single-cell landscape for transcriptomic and epigenetic changes in mouse corneal epithelium during early wound response, which improved our understanding of the mechanisms of wound healing.
Collapse
Affiliation(s)
- Zhao-Jing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Guo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing-Ni Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiang-Bo Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qiu-Ling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qi-Kai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu-Heng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying-Feng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Li L, Feng A, Lu J, Liu H, Xue W, Cui H. Evaluating the therapeutic efficacy of ozone liquid dressing in healing wounds associated with bullous pemphigoid. Sci Rep 2025; 15:7205. [PMID: 40021673 PMCID: PMC11871336 DOI: 10.1038/s41598-025-90563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
Bullous pemphigoid (BP) is a chronic autoimmune condition characterized by painful blistering wounds. While effective, conventional treatments often have significant side effects. This study evaluates the therapeutic efficacy of Ozone Liquid Dressing (OLD), an innovative adjunct treatment, in enhancing wound healing, reducing infection rates, and alleviating pain associated with BP. A total of 120 BP patients were assigned to either an observation group (standard care + OLD) or a control group (standard care alone). The dressing was applied daily until wound healing, or the two-week observation period concluded. Efficacy was measured by healing rates, infection reduction (assessed by positive bacterial cultures in wound exudates), and pain levels (assessed by the Numeric Rating Scale, NRS). Statistical analyses were performed using SPSS software, employing t-tests and Chi-square tests as appropriate. The observation group showed significantly higher complete healing rates (61.70% vs. 38.33%, p < 0.05) compared to the control group. In terms of overall efficacy, the observation group achieved 91.70%, compared to the control group's 80.00% (p = 0.116). A marked reduction in positive bacterial cultures was observed in the observation group, beginning on day 3 (p < 0.01), and pain scores decreased significantly by day 10 (p < 0.001). OLD significantly enhances wound healing and reduces pain in BP patients, demonstrating clinical potential. Further studies are necessary to confirm the long-term benefits and clinical applicability of OLD in managing BP wounds.
Collapse
Affiliation(s)
- Li Li
- Department of Nursing, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - A'chong Feng
- Nursing College, Shanxi Medical University, Taiyuan, 030607, Shanxi Province, China
| | - Jianyun Lu
- Department of Dermatological, The Central South University Xiangya III hospital, Changsha, 410013, Hunan Province, China
| | - Hongye Liu
- Department of Dermatological, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, China
| | - Wenli Xue
- Department of Dermatological, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, China
| | - Hongzhou Cui
- Department of Dermatological, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
5
|
Tu Y, Pan C, Huang Y, Ye Y, Zheng Y, Cao D, Lv Y. Red and blue LED light increases the survival rate of random skin flaps in rats after MRSA infection. Lasers Med Sci 2025; 40:34. [PMID: 39847197 DOI: 10.1007/s10103-025-04294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats. Forty male SD rats were divided into control and light-emitting diode-red and blue light-treated (LED-RBL) groups at a ratio of 1:1 and a McFarland flap procedure was performed, which was subsequently infected with MRSA strains. After 7 days, the appearance and survival of the flaps were evaluated. The microvascular density was determined by hematoxylin and eosin (HE) staining. The expression levels of vascular endothelial growth factor (VEGF), hypoxia inducible factor 1α (HIF-1α), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (normally expressed as AKT) were detected by immunohistochemistry. The flap survival rate and microvascular density in the LED-RBL group were significantly higher than those in the control group (P < 0.05). In addition, the VEGF, HIF1-α, PI3K, and AKT levels were significantly higher in the LED-RBL group compared to the control group (P < 0.05). Red and blue light increased the survival area of the infected flap in rats by promoting angiogenesis, relieving oxidative stress, and reducing bacterial loads, indicating that PBM therapy is a convenient, simple, analgesic, and safe treatment intervention in promoting the survival rate of transplanted flaps after wound repair surgery.
Collapse
Affiliation(s)
- Yiqian Tu
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Chenyu Pan
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Ye Huang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Yujie Ye
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Yunfeng Zheng
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Dongsheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
| | - Yang Lv
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
| |
Collapse
|
6
|
Hashim NT, Babiker R, Dasnadi SP, Islam MS, Chaitanya NCSK, Mohammed R, Farghal NS, Gobara B, Rahman MM. The Impact of Ozone on Periodontal Cell Line Viability and Function. Curr Issues Mol Biol 2025; 47:72. [PMID: 39996793 PMCID: PMC11854817 DOI: 10.3390/cimb47020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Periodontal diseases, including gingivitis and periodontitis, are chronic inflammatory conditions of the teeth' supporting structures that can lead to progressive tissue destruction and loss if left untreated. Basic treatments like scaling and root planing, alone or combined with antimicrobial agents, are the standard of care. However, with the increasing prevalence of antibiotic resistance and the need for new ideas in therapy, adjunctive treatments like ozone therapy have gained attention. Ozone (O3), a triatomic oxygen molecule, is used because of its strong antimicrobial, anti-inflammatory, and regenerative activity and, hence, as a potential tool in periodontal therapy. This review of the use of ozone therapy in periodontal disease breaks down the multifaceted mechanism of ozone therapy, which includes the selective antimicrobial action against biofilm-associated pathogens, immunomodulatory effects on host cells, and stimulation of tissue repair. O3 therapy disrupts microbial biofilms, enhances immune cell function, and promotes healing by activating Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways that regulate oxidative stress, inflammation, and apoptosis. Additional findings include its ability to upregulate growth factors and extracellular matrix proteins, which is significant for periodontal tissue regeneration. This review also discusses the application of O3 therapy in periodontal cell lines, emphasizing its impact on cell viability, proliferation, and differentiation. Advances in periodontal regenerative techniques, combined with the antimicrobial and healing properties of O3, have demonstrated significant clinical benefits. Challenges, including the need for standardized dosages, effective delivery systems, and long-term studies, are also addressed to ensure safe and effective clinical integration. O3 therapy, with its dual antimicrobial and regenerative capabilities, offers an innovative adjunctive approach to periodontal treatment. Future research focusing on optimized protocols and evidence-based guidelines is essential to fully realize its potential in enhancing periodontal health and improving patient outcomes.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Shahistha Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Md Sofiqul Islam
- Department Operative Dentistry, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Nallan CSK Chaitanya
- Department of Oral Medicine & Radiology, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Riham Mohammed
- Department of Oral Surgery, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Nancy Soliman Farghal
- Department of Endodontics, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Bakri Gobara
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| | - Muhammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| |
Collapse
|
7
|
Carmo RAD, Cörner ACO, Martins EF, Ouverney G, Thurler Júnior JC, Robbs BK, Pascoal VDB, Esposito E, Capelo LP, Camargo GADCG. Effect of ozone oil and non-surgical periodontal treatment in patients with type 2 diabetes. In-vivo and in-vitro studies with fibroblasts and Candida albicans. J Appl Oral Sci 2025; 33:e20240080. [PMID: 39841769 PMCID: PMC11805463 DOI: 10.1590/1678-7757-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/24/2025] Open
Abstract
AIM To evaluate the clinical effectiveness of ozonated sunflower oil (Oz) as an adjunctive of non-surgical periodontal therapy in patients with type 2 diabetes mellitus (DM2), on fibroblast cell viability and migration and the effectiveness of Oz on a Candida albicans (C. albicans) culture. METHODOLOGY In total, 32 sites in 16 DM2 with moderate to advanced periodontal disease with periodontal pocket depths ≥5mm were selected. The treatments were divided into two groups: control, saline solution (SS) as an adjunctive of scaling and root planing (SRP+SS), and test, Oz as an adjunctive of SRP (SRP+Oz). Hematological [fasting glucose level (FGL) and hemoglobin A1c (HbA1c)] and microbiological samples were collected from the participants at baseline and three months after periodontal treatment and the microbiological samples were analyzed by PCR. C. albicans was previously tested by the agar diffusion test. The effect of Oz was tested on cell viability and fibroblast migration. RESULTS The groups showed no statistically significant differences (paired t-test-p>0.05) regarding hematological parameters, FGL (median - baseline 171.41, 3 months 164mg/dL), and HbA1c (baseline 8%, 3 months 7.5%) (Kruskal-Wallis One-Way Nonparametric-p>0.05) after periodontal therapy. The groups showed statistical differences for periodontal parameters between baseline and three months (paired t-test-p<0.05). PCR analysis showed a reduction in the percentage of C. albicans in the SRP+Oz group after three months (McNemar's test-p=0.002). Cell viability was lower in the high glucose Dulbecco's modified Eagle's medium (4500 mg/L) than in low glucose (1000 mg/L) (RM-ANOVA-p<0.0001). The wound healing test showed reduced fibroblast migration (one-way ANOVA with Dunnett's post-test-p<0.01). Oz showed high C. albicans antifungal inhibition (Kruskal-Wallis test-p=0.0001). CONCLUSIONS SRP+Oz effectively reduced C. albicans in-vitro and in-vivo but showed no clinical improvements compared to the control. Cell viability and wound healing of fibroblasts showed no improvements.
Collapse
Affiliation(s)
- Raquel Alves do Carmo
- Universidade Federal Fluminense, Instituto de Saúde de Nova Friburgo, Departamento de Clínica Odontológica, Nova Friburgo, Rio de Janeiro, Brasil
| | - Ana Carolina Organista Cörner
- Universidade Federal Fluminense, Instituto de Saúde de Nova Friburgo, Departamento de Clínica Odontológica, Nova Friburgo, Rio de Janeiro, Brasil
| | - Eduardo Ferreira Martins
- Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia da São José dos Campos, São Paulo, Brasil
| | - Gabriel Ouverney
- Universidade Federal Fluminense, Programa de Ciências Aplicadas e Produtos para Saúde, Niterói, Rio de Janeiro, Brasil
| | | | - Bruno Kaufmann Robbs
- Universidade Federal Fluminense, Instituto de Saúde de Nova Friburgo, Departamento de Ciências Básicas, Nova Friburgo, Rio de Janeiro, Brasil
| | - Vinicius D'Avila Bitencourt Pascoal
- Universidade Federal Fluminense, Instituto de Saúde de Nova Friburgo, Departamento de Ciências Básicas, Nova Friburgo, Rio de Janeiro, Brasil
| | - Elisa Esposito
- Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia da São José dos Campos, São Paulo, Brasil
| | - Luciane Portas Capelo
- Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia da São José dos Campos, São Paulo, Brasil
| | | |
Collapse
|
8
|
Zhong C, Shi K, Li P, Qiu X, Wu X, Chen S, Liu Y, Li F, Zhao Z, Zhou J, Liang G, Xu D. Single-cell sequencing analysis and bulk-seq identify IGFBP6 and TNFAIP6 as novel differential diagnosis markers for postburn pathological scarring. Burns 2024; 50:107255. [PMID: 39317554 DOI: 10.1016/j.burns.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND If not accurately diagnosed and treated, postburn pathological scars, such as keloids and hypertrophic scars, can lead to negative clinical outcomes. However, differential diagnosis at the molecular level for postburn pathological scars remains limited. Using single-cell sequencing analysis, we investigated the genetic nuances of pathological scars at the cellular level. This study aimed to identify molecular diagnostic biomarkers to distinguish between postburn keloids and hypertrophic scars. METHODS Single-cell sequencing, differential expression, and weighted co-expression network analyses were performed to identify potential key genes for discriminating between keloids and hypertrophic scars. Postburn clinical samples were collected from our centre to validate the expression levels of the identified key genes. RESULTS Single-cell sequencing analysis unveiled 29 and 30 cell clusters in keloids and hypertrophic scars, respectively, predominantly composed of fibroblasts. Bulk differential gene analysis showed 96 highly expressed genes and 69 lowly expressed genes in keloids compared to hypertrophic scars. By incorporating previous research, Gene Set Enrichment Analysis was conducted to select fibroblasts as the focus of research. According to the single-cell data, 301 genes were stably expressed in fibroblasts from both types of pathological scars. Consistently, Weighted Gene Co-expression Network Analysis revealed that the blue module genes were mostly hub genes associated with fibroblasts. After intersecting fibroblast-related genes in single-cell data, Weighted Gene Co-expression Network Analysis-hub module genes, and bulk differential expression genes, insulin-like growth factor binding protein 6 and tumour necrosis factor alpha-induced protein 6 were identified as key genes to distinguish keloids from hypertrophic scars, resulting in diagnostic accuracies of 1.0 and 0.75, respectively. Immunohistochemical Staining and Quantitative Reverse Transcription PCR revealed that the expression levels of tumour necrosis factor alpha induced protein 6 and insulin-like growth factor binding protein 6 were significantly lower in postburn keloids than in hypertrophic scars- CONCLUSIONS: Tumour necrosis factor alpha induced protein 6 and insulin-like growth factor binding protein 6, exhibiting high diagnostic accuracy, provide valuable guidance for the differential diagnosis and treatment of postburn pathological scars.
Collapse
Affiliation(s)
- Chi Zhong
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| | - Ke Shi
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Peiting Li
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Xiaohui Qiu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Xianrui Wu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Shuyue Chen
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Yang Liu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Fuying Li
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Zitong Zhao
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Jianda Zhou
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Geao Liang
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| | - Dan Xu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| |
Collapse
|
9
|
Malatesta M, Tabaracci G, Pellicciari C. Low-Dose Ozone as a Eustress Inducer: Experimental Evidence of the Molecular Mechanisms Accounting for Its Therapeutic Action. Int J Mol Sci 2024; 25:12657. [PMID: 39684369 DOI: 10.3390/ijms252312657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Ozone (O3) is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of 20th century and is currently based on the application of low doses, inducing moderate oxidative stress that stimulates the antioxidant cellular defences without causing cell damage. In recent decades, experimental investigations allowed the establishment of some basic mechanisms accounting for the therapeutic effects of eustress-inducing low-dose O3. In this review, special attention was given to the impact of O3 administration on the cell oxidant-antioxidant status, O3 anti-inflammatory and analgesic properties, efficacy in improving tissue regeneration, and potential anticancer action. Low O3 concentrations proved to drive the cell antioxidant response mainly by activating nuclear factor erythroid 2-related factor 2. The anti-inflammatory effect relies on the downregulation of pro-inflammatory factors and the modulation of cytokine secretion. The painkilling action is related to anti-inflammatory processes, inhibition of apoptosis and autophagy, and modulation of pain receptors. The regenerative potential depends on antioxidant, anti-inflammatory, anti-apoptotic, and pro-proliferative capabilities, as well as fibroblast activation. Finally, the anticancer potential is based on oxidant and anti-inflammatory properties, as well as the inhibition of cell proliferation, invasion, and migration and the induction of apoptosis.
Collapse
Affiliation(s)
- Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | | | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Fan X, Ye J, Zhong W, Shen H, Li H, Liu Z, Bai J, Du S. The Promoting Effect of Animal Bioactive Proteins and Peptide Components on Wound Healing: A Review. Int J Mol Sci 2024; 25:12561. [PMID: 39684273 DOI: 10.3390/ijms252312561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the first line of defense to protect the host from external environmental damage. When the skin is damaged, the wound provides convenience for the invasion of external substances. The prolonged nonhealing of wounds can also lead to numerous subsequent complications, seriously affecting the quality of life of patients. To solve this problem, proteins and peptide components that promote wound healing have been discovered in animals, which can act on key pathways involved in wound healing, such as the PI3K/AKT, TGF-β, NF-κ B, and JAK/STAT pathways. So far, some formulations for topical drug delivery have been developed, including hydrogels, microneedles, and electrospinning nanofibers. In addition, some high-performance dressings have been utilized, which also have great potential in wound healing. Here, research progress on the promotion of wound healing by animal-derived proteins and peptide components is summarized, and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaoyu Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Zhong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijuan Shen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhuyuan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shouying Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
11
|
Silva MC, Delamura IF, de Sá Simon ME, Barbosa S, Ting DT, Bechara K, Shibli JA, Mourão CF, Bassi APF, Ervolino E, Faverani LP. Is There an Ideal Concentration of Ozonized Oil for the Prevention and Modulation of Zoledronate-Induced Mandibular Osteonecrosis? A Study on Senescent Rats. J Funct Biomater 2024; 15:353. [PMID: 39728153 PMCID: PMC11727895 DOI: 10.3390/jfb15120353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to identify whether there is an ideal concentration for applying ozonized oil (OZ) in the post-exodontic alveoli of senescent rats treated with zoledronate (ZOL). Thirty-five female rats, aged 18 months, were divided into five groups: ZOL; ZOL+OZ500; ZOL+OZ600; ZOL+OZ700; and SAL. The groups treated with ZOL, and other concentrations of OZ received applications at a dose of 100 μg/kg, while the SAL group received saline. After three weeks of ZOL application, the animals underwent extraction of the lower first molar. Subsequently, local therapies were initiated: group ZOL+OZ500 at 500 mEq/kg; ZOL+Z600 at 600 mEq/kg; and ZOL+OZ700 at 700 mEq/kg at baseline, and on days 2 and 4 post-operation. Euthanasia was performed on day 28. The microtomographic parameter of bone volume and histometric data on the area of neoformed bone (NFBT) showed the highest values for the ZOL+OZ600 group (p < 0.05). All OZ groups had smaller areas of non-vital bone than the ZOL group (p < 0.05). The clinical appearance of the operated region showed the alveoli covered with soft tissue, particularly in the OZ groups. All the tested concentrations of OZ were able to prevent and modulate MRONJ. As it presents a greater amount of NFBT, the concentration of 600 mEq/kg seems to be ideal.
Collapse
Affiliation(s)
- Mirela Caroline Silva
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil; (M.C.S.); (I.F.D.); (M.E.d.S.S.); (S.B.); (A.P.F.B.)
| | - Izabela Fornazari Delamura
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil; (M.C.S.); (I.F.D.); (M.E.d.S.S.); (S.B.); (A.P.F.B.)
| | - Maria Eloise de Sá Simon
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil; (M.C.S.); (I.F.D.); (M.E.d.S.S.); (S.B.); (A.P.F.B.)
| | - Stefany Barbosa
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil; (M.C.S.); (I.F.D.); (M.E.d.S.S.); (S.B.); (A.P.F.B.)
| | - David Tawei Ting
- Dental Research Division, Department of Periodontology and Oral Implantology, Federal Fluminense Univesity, Niteroi 21941-617, Rio de Janeiro, Brazil;
| | - Karen Bechara
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos (UnG), Guarulhos 07115-230, Sao Paulo, Brazil; (K.B.); (J.A.S.)
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos (UnG), Guarulhos 07115-230, Sao Paulo, Brazil; (K.B.); (J.A.S.)
| | - Carlos Fernando Mourão
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Ana Paula Farnezi Bassi
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil; (M.C.S.); (I.F.D.); (M.E.d.S.S.); (S.B.); (A.P.F.B.)
| | - Edilson Ervolino
- Department of Basic Sciences, Araçatuba School of Dentistry, Sao Paulo State University (UNESP), Araçatuba 16015-050, Sao Paulo, Brazil;
| | - Leonardo Perez Faverani
- Department of Oral Diagnosis, Division of Oral and Maxillofacial Surgery, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Sao Paulo, Brazil
- OMFS, School of Dentistry, São Paulo State University, Araçatuba 16015-050, Sao Paulo, Brazil
| |
Collapse
|
12
|
Gupta P, Mallick B. miR-128-3p suppresses tumor growth and enhances chemosensitivity in tongue squamous cell carcinoma through MAP2K7 targeting. Mol Biol Rep 2024; 51:1107. [PMID: 39476205 DOI: 10.1007/s11033-024-10040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs), which are key players in cancer cell resistance to chemotherapy, notably target genes associated with drug resistance. While miRNA-128-3p is recognized for its involvement in various cancers, its specific role in tumorigenesis and cisplatin (CIS) resistance in tongue cancer remains unclear. Therefore, in the present study, we endeavoured to elucidate the significance of miR-128-3p in tongue squamous cell carcinoma (TSCC), shedding light on its intricate functions and underlying mechanisms. METHODS AND RESULTS We quantified the expression of miR-128-3p and its target genes using qRT-PCR, followed by a series of functional assays in vitro, such as proliferation and migration assays, flow cytometry analysis, and western blotting to unravel the mechanisms underlying the functions of miR-128-3p. Additionally, we validated the ability of miR-128-3p to target MAP2K7 genes through luciferase reporter assays. We observed that increased expression of miR-128-3p significantly inhibited TSCC cell migration, proliferation, and epithelial-mesenchymal transition (EMT), possibly by regulating MAP2K7 in the JNK/MAP kinase pathway through miRNA target binding. Furthermore, we showed that increased miR-128-3p levels enhanced the sensitivity of TSCC cells to CIS through the JNK/c-Jun cascade. We observed that miR-128-3p reduces the expression of c-Jun and ABC transporter genes by targeting MAP2K7, affecting JNK1/2. This inhibition possibly decreases drug efflux and thus enhances the TSCC sensitivity to CIS treatment. CONCLUSIONS Our findings demonstrate oncosuppressive behaviour of miR-128-3p, which also potentially enhances the sensitivity of TSCC cells to CIS by suppressing MAP2K7 and JNK1/2, leading to evasion of apoptosis.
Collapse
Affiliation(s)
- Pooja Gupta
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
13
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Sblendorio E, Dentamaro V, Lo Cascio A, Germini F, Piredda M, Cicolini G. Integrating human expertise & automated methods for a dynamic and multi-parametric evaluation of large language models' feasibility in clinical decision-making. Int J Med Inform 2024; 188:105501. [PMID: 38810498 DOI: 10.1016/j.ijmedinf.2024.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Recent enhancements in Large Language Models (LLMs) such as ChatGPT have exponentially increased user adoption. These models are accessible on mobile devices and support multimodal interactions, including conversations, code generation, and patient image uploads, broadening their utility in providing healthcare professionals with real-time support for clinical decision-making. Nevertheless, many authors have highlighted serious risks that may arise from the adoption of LLMs, principally related to safety and alignment with ethical guidelines. OBJECTIVE To address these challenges, we introduce a novel methodological approach designed to assess the specific feasibility of adopting LLMs within a healthcare area, with a focus on clinical nursing, evaluating their performance and thereby directing their choice. Emphasizing LLMs' adherence to scientific advancements, this approach prioritizes safety and care personalization, according to the "Organization for Economic Co-operation and Development" frameworks for responsible AI. Moreover, its dynamic nature is designed to adapt to future evolutions of LLMs. METHOD Through integrating advanced multidisciplinary knowledge, including Nursing Informatics, and aided by a prospective literature review, seven key domains and specific evaluation items were identified as follows:A Peer Review by experts in Nursing and AI was performed, ensuring scientific rigor and breadth of insights for an essential, reproducible, and coherent methodological approach. By means of a 7-point Likert scale, thresholds are defined in order to classify LLMs as "unusable", "usable with high caution", and "recommended" categories. Nine state of the art LLMs were evaluated using this methodology in clinical oncology nursing decision-making, producing preliminary results. Gemini Advanced, Anthropic Claude 3 and ChatGPT 4 achieved the minimum score of the State of the Art Alignment & Safety domain for classification as "recommended", being also endorsed across all domains. LLAMA 3 70B and ChatGPT 3.5 were classified as "usable with high caution." Others were classified as unusable in this domain. CONCLUSION The identification of a recommended LLM for a specific healthcare area, combined with its critical, prudent, and integrative use, can support healthcare professionals in decision-making processes.
Collapse
Affiliation(s)
- Elena Sblendorio
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy; Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | - Vincenzo Dentamaro
- Department of Computer Science, University of Bari "Aldo Moro", Bari, Italy. https://twitter.com/vincenzoden
| | - Alessio Lo Cascio
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy; La Maddalena Cancer Center, Via San Lorenzo 312, 90146 Palermo, Italy
| | - Francesco Germini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy; Direttore di Distretto Sociosanitario, ASL Bari, Bari, Italy
| | - Michela Piredda
- Department of Medicine and Surgery, Research Unit Nursing Science, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Giancarlo Cicolini
- Department of Innovative Technologies in Medicine & Dentistry, "G.d'Annunzio" University of Chieti - Pescara, Italy
| |
Collapse
|
15
|
Jeyaraman M, Jeyaraman N, Ramasubramanian S, Balaji S, Nallakumarasamy A, Patro BP, Migliorini F. Ozone therapy in musculoskeletal medicine: a comprehensive review. Eur J Med Res 2024; 29:398. [PMID: 39085932 PMCID: PMC11290204 DOI: 10.1186/s40001-024-01976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Musculoskeletal disorders encompass a wide range of conditions that impact the bones, joints, muscles, and connective tissues within the body. Despite the ongoing debate on toxicity and administration, ozone demonstrated promise in managing several musculoskeletal disorders, modulating pain and inflammation. A literature search was conducted. The research design, methods, findings, and conclusions of the studies were then examined to evaluate the physiological effects, clinical application, controversies, and safety of the application of ozone in musculoskeletal medicine. Ozone application demonstrates considerable therapeutic applications in the management of musculoskeletal disorders, including fractures, osteoarthritis, and chronic pain syndromes. Despite these advantages, studies have raised concerns regarding its potential toxicity and emphasized the importance of adhering to stringent administration protocols to ensure safety. Additionally, heterogeneities in patient reactions and hazards from oxidizing agents were observed. Given its anti-inflammatory and analgesic qualities, ozone therapy holds potential in the management of several musculoskeletal disorders. Additional high-quality research with long follow-up is required to refine indications, efficacy and safety profile. Finally, for wider clinical acceptability and utilization, the development of international recommendations is essential.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, 600077, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, 600077, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu, 600002, India
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu, 600002, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)-Karaikal, Puducherry, 605006, India
| | - Bishnu Prasad Patro
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Centre, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
| |
Collapse
|
16
|
Qiao W, Niu L, Jiang W, Lu L, Liu J. Berberine ameliorates endothelial progenitor cell function and wound healing in vitro and in vivo via the miR-21-3p/RRAGB axis for venous leg ulcers. Regen Ther 2024; 26:458-468. [PMID: 39100534 PMCID: PMC11296065 DOI: 10.1016/j.reth.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Venous leg ulcers (VLUs) are prevalent chronic wounds with limited treatment options. This study aimed to investigate the potential of berberine to enhance endothelial progenitor cell (EPC) function in VLU healing. Methods Histopathological changes and inflammatory cytokine levels in a deep venous thrombosis (DVT) mouse model were assessed using HE staining and ELISA assays. A luciferase reporter assay was employed to identify the miR-21-3p and RRAGB targeting relationship. EPC proliferation, migration, and tube formation were evaluated through CCK-8, Transwell, and tubule formation assays, while the mTOR pathway and autophagy-related proteins were analyzed by immunofluorescence staining and western blotting. Results Berberine significantly improved EPC functions, such as proliferation, migration, and tube formation in vitro, and enhanced in vivo EPC-mediated wound healing in a DVT mouse model. Furthermore, miR-21-3p was downregulated in EPCs from VLU patients, and its overexpression improved model EPC functions. Mechanistically, RRAGB, which regulates the mTOR pathway, was identified as a potential miR-21-3p target in EPCs. Overexpression of RRAGB inhibited autophagic activity and impaired EPC function. Conclusion Berberine shows promise in ameliorating EPC function and promoting wound healing in VLUs. The regulation of the miR-21-3p/RRAGB axis by berberine could offer a promising therapeutic approach for managing VLUs.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lingying Niu
- Department of Immunology, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Weihua Jiang
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Lu
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiali Liu
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Phuah ET, Lee YY, Tang TK, Akoh C, Cheong LZ, Tan CP, Wang Y, Lai OM. Nonconventional Technologies in Lipid Modifications. Annu Rev Food Sci Technol 2024; 15:409-430. [PMID: 38134384 DOI: 10.1146/annurev-food-072023-034440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Lipid modifications play a crucial role in various fields, including food science, pharmaceuticals, and biofuel production. Traditional methods for lipid modifications involve physical and chemical approaches or enzymatic reactions, which often have limitations in terms of specificity, efficiency, and environmental impact. In recent years, nonconventional technologies have emerged as promising alternatives for lipid modifications. This review provides a comprehensive overview of nonconventional technologies for lipid modifications, including high-pressure processing, pulsed electric fields, ultrasound, ozonation, and cold plasma technology. The principles,mechanisms, and advantages of these technologies are discussed, along with their applications in lipid modification processes. Additionally, the challenges and future perspectives of nonconventional technologies in lipid modifications are addressed, highlighting the potential and challenges for further advancements in this field. The integration of nonconventional technologies with traditional methods has the potential to revolutionize lipid modifications, enabling the development of novel lipid-based products with enhanced functional properties and improved sustainability profiles.
Collapse
Affiliation(s)
- Eng-Tong Phuah
- Food Science and Technology, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei, Darussalam
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Monash-Industry Plant Oils Research Laboratory, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Teck-Kim Tang
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Casimir Akoh
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia;
- International Joint Laboratory on Plant Oils Processing and Safety, JNU-UPM, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Ge H, Yang Q, Lyu S, Du Z, Liu X, Shang X, Xu M, Liu J, Zhang T. Egg White Peptides Accelerating the Wound Healing Process Through Modulating the PI3K-AKT Pathway: A Joint Analysis of Transcriptomic and Proteomic. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4100-4115. [PMID: 38373195 DOI: 10.1021/acs.jafc.3c08466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Wound healing is a multiphase process with a complex repair mechanism; trauma-repairing products with safety and high efficiency have a great market demand. Egg white peptides (EWP) have various physiological regulatory functions and have been proven efficient in ameliorating skin damage. However, their underlying regulation mechanism has not been revealed. This study further evaluated the EWP ameliorating mechanism by conducting a full-thickness skin wound model. Results demonstrated that EWP administration significantly inhibited the expression of pro-inflammatory and shortened the inflammatory phase. Besides, EWP can accelerate the secretion of growth factors (PDGF, VEGF, and TGF-β1) in skin tissue, significantly increasing the regeneration of granulation tissue and endothelium in the proliferation phase, thereby promoting wound healing. After 400 mg/kg EWP interventions for 13 days postoperation, the wound healing rate reached 90%. The combination of transcriptomic and proteomic analyses demonstrated the ameliorating efficiency effects of EWP on wound healing. EWP mainly participates in the functional network with the PI3K-AKT signaling pathway as the core to accelerate wound healing. These findings suggest a promising EWP-based strategy for accelerating wound healing.
Collapse
Affiliation(s)
- Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
19
|
Li J, Zhao Q, Gao X, Dai T, Bai Z, Sheng J, Tian Y, Bai Z. Dendrobium officinale Kinura et Migo glycoprotein promotes skin wound healing by regulating extracellular matrix secretion and fibroblast proliferation on the proliferation phase. Wound Repair Regen 2024; 32:55-66. [PMID: 38113346 DOI: 10.1111/wrr.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 12/21/2023]
Abstract
Dendrobium officinale Kinura et Migo (DOKM) has a variety of medicinal applications; however, its ability to promote wound healing has not been previously reported. The purpose of this study is to investigate the proliferative phase of the wound-healing effect of DOKM glycoprotein (DOKMG) in rats and to elucidate its mechanism of action in vitro. In the present study, the ointment mixture containing DOKMG was applied to the dorsal skin wounds of the full-thickness skin excision rat model, and the results showed that the wound healing speed was faster in the proliferative phase than vaseline. Histological analysis demonstrates that DOKMG promoted the re-epithelialization of wound skin. Immunofluorescence staining and quantitative polymerase chain reaction assays revealed that DOKMG promotes the secretion of Fibronectin and inhibits the secretion of Collagen IV during the granulation tissue formation period, indicating that DOKMG could accelerate the formation of granulation tissue by precisely regulating extracellular matrix (ECM) secretion. In addition, we demonstrated that DOKMG enhanced the migration and proliferation of fibroblast (3T6 cell) in two-dimensional trauma by regulating the secretion of ECM, via a mechanism that may implicate the AKT and JAK/STAT pathways under the control of epidermal growth factor receptor (EGFR) signalling. In summary, we have demonstrated that DOKMG promotes wound healing during the proliferative phase. Therefore, we suggest that DOKMG may have a potential therapeutic application for the treatment and management of cutaneous wounds.
Collapse
Affiliation(s)
- Jia Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Qian Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaoyu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zilin Bai
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zhongbin Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
20
|
Engel A, Ludwig N, Grandke F, Wagner V, Kern F, Fehlmann T, Schmartz GP, Aparicio-Puerta E, Henn D, Walch-Rückheim B, Hannig M, Rupf S, Meese E, Laschke MW, Keller A. Skin treatment with non-thermal plasma modulates the immune system through miR-223-3p and its target genes. RNA Biol 2024; 21:31-44. [PMID: 38828710 PMCID: PMC11152102 DOI: 10.1080/15476286.2024.2361571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.
Collapse
Affiliation(s)
- Annika Engel
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
- Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Friederike Grandke
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Viktoria Wagner
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics (CLIB), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Georges P. Schmartz
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Dominic Henn
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Barbara Walch-Rückheim
- Center of Human und Molecular Biology (ZHMB), Virology & Immunology, Saarland University, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics (CLIB), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| |
Collapse
|
21
|
Bonnici L, Suleiman S, Schembri-Wismayer P, Cassar A. Targeting Signalling Pathways in Chronic Wound Healing. Int J Mol Sci 2023; 25:50. [PMID: 38203220 PMCID: PMC10779022 DOI: 10.3390/ijms25010050] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wounds fail to achieve complete closure and are an economic burden to healthcare systems due to the limited treatment options and constant medical attention. Chronic wounds are characterised by dysregulated signalling pathways. Research has focused on naturally derived compounds, stem-cell-based therapy, small molecule drugs, oligonucleotide delivery nanoparticles, exosomes and peptide-based platforms. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wingless-related integration (Wnt)/β-catenin, transforming growth factor-β (TGF-β), nuclear factor erythroid 2-related factor 2 (Nrf2), Notch and hypoxia-inducible factor 1 (HIF-1) signalling pathways have critical roles in wound healing by modulating the inflammatory, proliferative and remodelling phases. Moreover, several regulators of the signalling pathways were demonstrated to be potential treatment targets. In this review, the current research on targeting signalling pathways under chronic wound conditions will be discussed together with implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Analisse Cassar
- Department of Anatomy, University of Malta, MSD 2080 Msida, Malta; (L.B.); (S.S.); (P.S.-W.)
| |
Collapse
|
22
|
Chirumbolo S, Valdenassi L, Tirelli U, Ricevuti G, Pandolfi S, Vaiano F, Galoforo A, Loprete F, Simonetti V, Chierchia M, Bellardi D, Richelmi T, Franzini M. The Oxygen-Ozone Adjunct Medical Treatment According to the Protocols from the Italian Scientific Society of Oxygen-Ozone Therapy: How Ozone Applications in the Blood Can Influence Clinical Therapy Success via the Modulation of Cell Biology and Immunity. BIOLOGY 2023; 12:1512. [PMID: 38132338 PMCID: PMC10740843 DOI: 10.3390/biology12121512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Ozone is an allotrope of oxygen whose use in medicine has rapidly grown in recent years. Ozonated blood allows for the use of ozone in a safe modality, as plasma and blood cells are endowed with an antioxidant system able to quench ozone's pro-oxidant property and to elicit the Nrf2/Kwap1/ARE pathway. METHODS We present two clinical studies, a case-series (six patients) observational study adopting ozone as a major autohemotherapy and topical ozone to address infected post-surgical wounds with multi-drug resistant bacteria and an observational study (250 patients) using ozonated blood for treating knee osteoarthritis. RESULTS Ozonated blood via major autohemotherapy reduced the extent of infections in wounds, reduced the inflammatory biomarkers by more than 75% and improved patients' QoL, whereas ozonated blood via minor autohemotherapy improved significantly (p < 0.001) WOMAC and Lequesne's parameters in knee osteoarthritis. CONCLUSIONS The models described, i.e., ozone autohemotherapy in wound antimicrobial treatment and ozonated blood in knee osteoarthrosis, following our protocols, share the outstanding ability of ozone to modulate the innate immune response and address bacterial clearance as well as inflammation and pain.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Luigi Valdenassi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | | | - Giovanni Ricevuti
- Department of Drug Science, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Pandolfi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Francesco Vaiano
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Antonio Galoforo
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Fortunato Loprete
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Vincenzo Simonetti
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Marianna Chierchia
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | | | - Tommaso Richelmi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Marianno Franzini
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| |
Collapse
|
23
|
Lee S, Lee SM, Lee SH, Choi WK, Park SJ, Kim DY, Oh SW, Oh J, Cho JY, Lee J, Chien PN, Nam SY, Heo CY, Lee YS, Kwak EA, Chung WJ. In situ photo-crosslinkable hyaluronic acid-based hydrogel embedded with GHK peptide nanofibers for bioactive wound healing. Acta Biomater 2023; 172:159-174. [PMID: 37832839 DOI: 10.1016/j.actbio.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
A versatile hydrogel was developed for enhancing bioactive wound healing by introducing the amphiphilic GHK peptide (GHK-C16) into a photo-crosslinkable tyramine-modified hyaluronic acid (HA-Ty). GHK-C16 self-assembled into GHK nanofibers (GHK NF) in HA-Ty solution, which underwent in situ gelation after the wound area was filled with precursor solution. Blue light irradiation (460-490 nm), with riboflavin phosphate as a photoinitiator, was used to trigger crosslinking, which enhanced the stability of the highly degradable hyaluronic acid and enabled sustained release of the nanostructured GHK derivatives. The hydrogels provided a microenvironment that promoted the proliferation of dermal fibroblasts and the activation of cytokines, leading to reduced inflammation and increased collagen expression during wound healing. The complexation of Cu2+ into GHK nanofibers resulted in superior wound healing capabilities compared with non-lipidated GHK peptide with a comparable level of growth factor (EGF). Additionally, nanostructured Cu-GHK improved angiogenesis through vascular endothelial growth factor (VEGF) activation, which exerted a synergistic therapeutic effect. Furthermore, in vivo wound healing experiments revealed that the Cu-GHK NF/HA-Ty hydrogel accelerated wound healing through densely packed remodeled collagen in the dermis and promoting the growth of denser fibroblasts. HA-Ty hydrogels incorporating GHK NF also possessed improved mechanical properties and a faster wound healing rate, making them suitable for advanced bioactive wound healing applications. STATEMENT OF SIGNIFICANCE: By combining photo-crosslinkable tyramine-modified hyaluronic acid with self-assembled Cu-GHK-C16 peptide nanofibers (Cu-GHK NF), the Cu-GHK NF/HA-Ty hydrogel offers remarkable advantages over conventional non-structured Cu-GHK for wound healing. It enhances cell proliferation, migration, and collagen remodeling-critical factors in tissue regeneration. The incorporation of GHK nanofibers complexed with copper ions imparts potent anti-inflammatory effects, promoting cytokine activation and angiogenesis during wound healing. The Cu-GHK NF/hydrogel's unique properties, including in situ photo-crosslinking, ensure high customization and potency in tissue regeneration, providing a cost-effective alternative to growth factors. In vivo experiments further validate its efficacy, demonstrating significant wound closure, collagen remodeling, and increased fibroblast density. Overall, the Cu-GHK NF/HA-Ty hydrogel represents an advanced therapeutic option for wound healing applications.
Collapse
Affiliation(s)
- Seohui Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang Min Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang Hyun Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woong-Ku Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Jun Park
- School of Chemical and Biological Engineering, Seoul National University, 151-744, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sae Woong Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, 151-744, Seoul, Republic of Korea
| | - Eun-A Kwak
- Research Institute of Biomolecule Control, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Research Institute of Biomolecule Control, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
24
|
Peng H, Sun F, Jiang Y, Guo Z, Liu X, Zuo A, Lu D. Semaphorin 7a aggravates TGF-β1-induced airway EMT through the FAK/ERK1/2 signaling pathway in asthma. Front Immunol 2023; 14:1167605. [PMID: 38022556 PMCID: PMC10646317 DOI: 10.3389/fimmu.2023.1167605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background TGF-β1 can induce epithelial-mesenchymal transition (EMT) in primary airway epithelial cells (AECs). Semaphorin7A (Sema7a) plays a crucial role in regulating immune responses and initiating and maintaining transforming growth factor β1 TGF-β1-induced fibrosis. Objective To determine the expression of Sema7a, in serum isolated from asthmatics and non-asthmatics, the role of Sema7a in TGF-β1 induced proliferation, migration and airway EMT in human bronchial epithelial cells (HBECs) in vitro. Methods The concentrations of Sema7a in serum of asthmatic patients was detected by enzyme-linked immunosorbent assay (ELISA). The expressions of Sema7a and integrin-β1 were examined using conventional western blotting and real-time quantitative PCR (RT-PCR). Interaction between the Sema7a and Integrin-β1 was detected using the Integrin-β1 blocking antibody (GLPG0187). The changes in EMT indicators were performed by western blotting and immunofluorescence, as well as the expression levels of phosphorylated Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) were analyzed by western blot and their mRNA expression was determined by RT-PCR. Results We described the first differentially expressed protein of sema7a, in patients with diagnosed bronchial asthma were significantly higher than those of healthy persons (P<0.05). Western blotting and RT-PCR showed that Sema7a and Integrin-β1 expression were significantly increased in lung tissue from the ovalbumin (OVA)-induced asthma model. GLPG0187 inhibited TGF-β1-mediated HBECs EMT, proliferation and migration, which was associated with Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) phosphorylation. Conclusion Sema7a may play an important role in asthma airway remodeling by inducing EMT. Therefore, new therapeutic approaches for the treatment of chronic asthma, could be aided by the development of agents that target the Sema7a.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Degan Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| |
Collapse
|
25
|
Zhang H, Chen S, Yan X, Zhang M, Jiang Y, Zhou Y. Egg white-derived peptide KPHAEVVLR promotes wound healing in rat palatal mucosa via PI3K/AKT/mTOR pathway. Peptides 2023; 168:171074. [PMID: 37541433 DOI: 10.1016/j.peptides.2023.171074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
KPHAEVVLR (KR-9) is a peptide derived from egg white hydrolyzed, which has been found to accelerate skin wound healing in mice. However, the effect of KR-9 on wound healing on palatal mucosa in rats remains unknown, and the mechanism through which KR-9 promotes wound healing should be further explored. Herein, we aimed to investigate the effect and mechanism of KR-9 peptide on palatal mucosa wound healing. Our results showed that KR-9 reduced the wound area of palatal mucosa in rats and promoted human gingival fibroblasts(HGFs) migration and proliferation.The peptide can enter into cytoplasm. It also increased the phosphorylation of PI3K, AKT, and mTOR protein. The effect of KR-9 on HGFs migration and proliferation could be reversed by PI3K inhibitor. These results demonstrated that KR-9 peptide facilitated wound healing of palatal mucosa in rats by promoting HGFs migration and proliferation, which was mediated by PI3K/AKT/mTOR signaling pathway. This data proves that KR-9 might be used as a potential agent for wound healing treatment.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Siyu Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xinrui Yan
- School of life Sciences, Jilin University, Changchun 130021, China
| | - Mingrui Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yiqun Jiang
- School of life Sciences, Jilin University, Changchun 130021, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Malekzadeh H, Tirmizi Z, Arellano JA, Egro FM, Ejaz A. Application of Adipose-Tissue Derived Products for Burn Wound Healing. Pharmaceuticals (Basel) 2023; 16:1302. [PMID: 37765109 PMCID: PMC10534650 DOI: 10.3390/ph16091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Burn injuries are a significant global health concern, leading to high morbidity and mortality. Deep burn injuries often result in delayed healing and scar formation, necessitating effective treatment options. Regenerative medicine, particularly cell therapy using adipose-derived stem cells (ASCs), has emerged as a promising approach to improving burn wound healing and reducing scarring. Both in vitro and preclinical studies have demonstrated the efficacy of ASCs and the stromal vascular fraction (SVF) in addressing burn wounds. The application of ASCs for burn healing has been studied in various forms, including autologous or allogeneic cells delivered in suspension or within scaffolds in animal burn models. Additionally, ASC-derived non-cellular components, such as conditioned media or exosomes have shown promise. Injection of ASCs and SVF at burn sites have been demonstrated to enhance wound healing by reducing inflammation and promoting angiogenesis, epithelialization, and granulation tissue formation through their paracrine secretome. This review discusses the applications of adipose tissue derivatives in burn injury treatment, encompassing ASC transplantation, as well as the utilization of non-cellular components utilization for therapeutic benefits. The application of ASCs in burn healing in the future will require addressing donor variability, safety, and efficacy for successful clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
27
|
Yang W, Xu M, Xu S, Guan Q, Geng S, Wang J, Wei W, Xu H, Liu Y, Meng Y, Gao MQ. Single-cell RNA reveals a tumorigenic microenvironment in the interface zone of human breast tumors. Breast Cancer Res 2023; 25:100. [PMID: 37644609 PMCID: PMC10463980 DOI: 10.1186/s13058-023-01703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The interface zone, area around invasive carcinoma, can be thought of as the actual tissue of the tumor microenvironment with precedent alterations for tumor invasion. However, the heterogeneity and characteristics of the microenvironment in the interface area have not yet been thoroughly explored. METHODS For in vitro studies, single-cell RNA sequencing (scRNA-seq) was used to characterize the cells from the tumor zone, the normal zone and the interface zone with 5-mm-wide belts between the tumor invasion front and the normal zone. Through scRNA-seq data analysis, we compared the cell types and their transcriptional characteristics in the different zones. Pseudotime, cell-cell communication and pathway analysis were performed to characterize the zone-specific microenvironment. Cell proliferation, wound healing and clone formation experiments explored the function of differentially expressed gene BMPR1B, which were confirmed by tumor models in vivo. RESULTS After screening, 88,548 high-quality cells were obtained and identified. Regulatory T cells, M2 macrophages, angiogenesis-related mast cells, stem cells with weak DNA repair ability, endothelial cells with angiogenic activity, fibroblasts with collagen synthesis and epithelial cells with proliferative activity form a unique tumorigenic microenvironment in the interface zone. Cell-cell communication analysis revealed that there are special ligand-receptor pairs between different cell types in the interface zone, which protects endothelial cell apoptosis and promotes epithelial cell proliferation and migration, compared to the normal zone. Compared with the normal zone, the highly expressed BMPR1B gene promotes the tumorigenic ability of cancer cells in the interface zone. CONCLUSIONS Our work identified a unique tumorigenic microenvironment of the interface zone and allowed for deeper insights into the tumor microenvironment of breast cancer that will serve as a helpful resource for advancing breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Yang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Meiyu Xu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Shuoqi Xu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Qingxian Guan
- College of Life Sciences, Northwest University, Xi'an, China
| | - Shuaiming Geng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Juanhong Wang
- Department of Pathology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Wei Wei
- Department of Pathology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Hongwei Xu
- Basic Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- Basic Medical College, Qingdao University, Qingdao, China
| | - Yong Meng
- School of Medicine, Northwest University, Xi'an, China
| | - Ming-Qing Gao
- School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
28
|
Cho KH, Kim JE, Bahuguna A, Kang DJ. Ozonated Sunflower Oil Exerted Potent Anti-Inflammatory Activities with Enhanced Wound Healing and Tissue Regeneration Abilities against Acute Toxicity of Carboxymethyllysine in Zebrafish with Improved Blood Lipid Profile. Antioxidants (Basel) 2023; 12:1625. [PMID: 37627620 PMCID: PMC10451717 DOI: 10.3390/antiox12081625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Ozonated sunflower oil (OSO) is an established therapeutic agent and nutraceutical harboring various therapeutic values, including antiallergic, derma-protective, and broad-spectrum antimicrobial activity. Conversely, the medicinal aspects of OSO for wound healing, tissue regeneration, and treatment of inflammation in dyslipidemia have yet to be fully elucidated. Herein, a comparative effect of OSO and sunflower oil (SO) was investigated to heal cutaneous wound and tissue regeneration of zebrafish impediment by carboxymethyllysine (CML) toxicity, following impact on hepatic inflammation and blood lipid profile. After OSO (final 2%, 1 μL) and SO's (final 2%, 1 μL) treatment, substantial healing was elicited by OSO in the cutaneous wound of zebrafish impaired by CML (final 25 μg). As an important event of wound healing, OSO scavenges the reactive oxygen species (ROS), rescues the wound from oxidative injury, and triggers the essential molecular events for the wound closer. Furthermore, the intraperitoneal injection of OSO was noted to counter the CML-induced adversity and prompt tissue regeneration in the amputated tail fin of zebrafish. Additionally, OSO counters the CML-induced neurotoxicity and rescues the zebrafish from acute mortality and paralysis, along with meticulous recovery of hepatic inflammation, fatty liver changes, and diminished ROS and proinflammatory interleukin (IL)-6 production. Moreover, OSO efficiently ameliorated CML-induced dyslipidemia by alleviating the total blood cholesterol (TC), triglyceride (TG), and increasing high-density lipoproteins cholesterol (HDL-C). The outcome of multivariate assessment employing principal component analysis and hierarchical cluster analysis supports a superior therapeutic potential of OSO over SO against the clinical manifestation of CML. Conclusively, OSO owing to its antioxidant and anti-inflammatory potential, counters CML-induced toxicity and promotes wound healing, tissue regeneration, hepatoprotection, improved blood lipid profile, and survivability of zebrafish.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea; (J.-E.K.); (A.B.); (D.-J.K.)
| | | | | | | |
Collapse
|
29
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
30
|
Gao T, Zhao Y, Zhao Y, He Y, Huang Q, Yang J, Zhang L, Chen J. Curative Effect and Mechanisms of Radix Arnebiae Oil on Burn Wound Healing in Rats. PLANTA MEDICA 2023. [PMID: 36513369 DOI: 10.1055/a-1997-5566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Radix arnebiae oil (RAO) is a clinically useful traditional Chinese medical formula with outstanding curative effects on burns. However, the mechanism of the effect of RAO on wound healing remains unclear. The present study investigates the molecular mechanisms of the potential curative effect of RAO on wound healing. The concentrations of the main constituents, shikonin, imperatorin, and ferulic acid in RAO detected by HPLC were 24.57, 3.15, and 0.13 mg/mL, respectively. A rat burn model was established, and macroscopic and histopathological studies were performed. RAO significantly accelerated wound closure and repair scarring, increased superoxide dismutase activities, and reduced malondialdehyde. RAO also downregulated interleukin (IL)-6, IL-1β and tumor necrosis factor-α in wound tissues and increased secretion of vascular endothelial growth factor, epidermal growth factor, and transforming growth factor (TGF)-β1. RAO increased the gene expression of TGF-β1, type I and III collagen, and increased the protein expression of TGF-β1 and phosphorylation of PI3K and Akt. In conclusion, RAO likely promotes wound healing via antioxidant and anti-inflammatory activities and increases re-epithelization. Activation of the TGF-β1/PI3K/Akt pathway may play an important role in the healing efficacy of RAO. These findings suggest that RAO could be a promising alternative local treatment for burn wound healing.
Collapse
Affiliation(s)
- Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yu Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuna Zhao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yanping He
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qi Huang
- Department of Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Liming Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jing Chen
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
31
|
Romary DJ, Landsberger SA, Bradner KN, Ramirez M, Leon BR. Liquid ozone therapies for the treatment of epithelial wounds: A systematic review and meta-analysis. Int Wound J 2023; 20:1235-1252. [PMID: 36056800 PMCID: PMC10031250 DOI: 10.1111/iwj.13941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ozonated water and ozonated oils are emerging as potential therapies for wound care, but their efficacy has not been appropriately evaluated. The aim of this systematic review and meta-analysis was to evaluate the therapeutic potential of topical ozone in the treatment of mammalian wounds. A structured search of five scientific databases returned a total of 390 unique studies. Of these, 22 studies were included in this review. Four studies provided enough data to be included in a meta-analysis evaluating the time to complete wound healing. All studies were randomised controlled trials of humans or other mammalian animals that reported clinical signs of wound healing. Each study was critically analysed by a six-point assessment of the risk of bias. Wounds treated with topical ozone had a greater reduction in wound size than similar wounds treated with controls or standard of care in all studies. Those treated with ozonated liquids also had a shorter time to wound healing by approximately one week. In conclusion, topical ozone contributed to enhanced wound healing in all studies. While additional human experiments would be helpful to quantify ozone's specific effects on wound healing compared to standard treatment, topical ozone should be considered as part of an overall wound management strategy.
Collapse
Affiliation(s)
| | | | - K. Nicole Bradner
- Academic Health Center PharmacyIndiana University HealthIndianapolisIndianaUSA
| | - Mirian Ramirez
- School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Brian R. Leon
- School of MedicineIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
32
|
Qu KS, Ru Y, Yang D, Kuai L, Luo Y, Zhang PA, Xing M, Que HF. Fu-Huang ointment ameliorates impaired wound healing associated with diabetes through PI3K-AKT signalling pathway activation. Comput Biol Med 2023; 155:106660. [PMID: 36809697 DOI: 10.1016/j.compbiomed.2023.106660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
A diabetic ulcer (DU) is a dreaded and resistant complication of diabetes mellitus with high morbidity. Fu-Huang ointment (FH ointment) is a proven recipe for treating chronic refractory wounds; however, its molecular mechanisms of action are unclear. In this study, we identified 154 bioactive ingredients and their 1127 target genes in FH ointment through the public database. The intersection of these target genes with 151 disease-related targets in DUs resulted in 64 overlapping genes. Overlapping genes were identified in the PPI network and enrichment analyses. The PPI network identified 12 core target genes, whereas Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that upregulation of the PI3K/Akt signalling pathway was involved in the role of FH ointment in treating diabetic wounds. Molecular docking showed that 22 active compounds in FH ointment could enter the active pocket of PIK3CA. Molecular dynamics was used to prove the binding stability of the active ingredients and protein targets. We found that PIK3CA/Isobutyryl shikonin and PIK3CA/Isovaleryl shikonin combinations had strong binding energies. An in vivo experiment was conducted on PIK3CA, which was the most significant gene.This study comprehensively elucidated the active compounds, potential targets, and molecular mechanism of FH ointment application in treating DUs, and believed that PIK3CA is a promising target for accelerated healing.
Collapse
Affiliation(s)
- Ke-Shen Qu
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Department of Dermatology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712099, China.
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Ping-An Zhang
- Department of Dermatology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712099, China.
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, 710003, China.
| | - Hua-Fa Que
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
33
|
Donato GG, Appino S, Bertero A, Poletto ML, Nebbia P, Robino P, Varello K, Bozzetta E, Vincenti L, Nervo T. Safety and Effects of a Commercial Ozone Foam Preparation on Endometrial Environment and Fertility of Mares. J Equine Vet Sci 2023; 121:104222. [PMID: 36623580 DOI: 10.1016/j.jevs.2023.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
Mares' subfertility represents a complex diagnostic and therapeutic challenge and both clinical and subclinical endometritis are considered major causes of impaired fertility. Thanks to its properties, ozone has a big potential as a treatment for equine endometritis. Therefore, the aim of this study is to describe the safety and the effects on endometrium and reproductive parameters of mares of a commercial ozone foam preparation (Riger Spray®). Twenty-four mares were treated during estrus: ozone group with an intrauterine instillation of ozone foam preparation (OG, n=16) and control group with 20 ml of lactated Ringer's solution (CG, n=8). Samples for endometrial cytology were collected before the ozone treatment (T0), after 24 h (T1), after one week (T2), two weeks (T3), and when the subsequent estrous phase was detected (T4). Furthermore, samples for histological examination and uterine swab for bacteriological examination were collected at T0 and T4. At T1, a statistically significant increase of endometrial inflammation in the OG mares compared to T0 (P<.05) and to CG at same time point (P<.05) was observed, but it was already resolved at T2. No differences in endometrial inflammation in CG, biopsy grade before and after the treatment in the two groups, number of mares pregnant at the end of the season and number of mares pregnant at the first cycle were observed. However, the number of inseminations required for pregnancy tended to be lower (P=.0711) in the OG (1.69±0.06) than in CG mares (2.60±0.89).
Collapse
Affiliation(s)
- Gian Guido Donato
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Italy.
| | - Simonetta Appino
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Alessia Bertero
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Italy
| | | | - Patrizia Nebbia
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Italy
| | - Patrizia Robino
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Leila Vincenti
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Italy
| | - Tiziana Nervo
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Italy
| |
Collapse
|
34
|
Chirumbolo S, Tirelli U, Franzini M, Pandolfi S, Ricevuti G, Vaiano F, Valdenassi L. Ozone in the adjunct medical treatment. The round personality of a molecule with hormetic properties. Hum Exp Toxicol 2023; 42:9603271231218926. [PMID: 38073286 DOI: 10.1177/09603271231218926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Ozone, an allotrope of oxygen, is enjoying an increasing interest in the setting and management of the medical adjunct treatment, which is called, maybe too simplistically, "ozone therapy". Ozone is not a medicine, so the word therapy does not properly fit this gaseous molecule. Like many natural compounds, for example plant flavonoids, even ozone interacts with aryl hydrocarbon receptors (AhRs) and, at low doses, it works according to the paradoxical mechanism of hormesis, involving mitochondria (mitohormesis). Ozone, in the hormetic range, exerts cell protective functions via the Nrf2-mediated activation of the anti-oxidant system, then leading to anti-inflammatory effects, also via the triggering of low doses of 4-HNE. Moreover, its interaction with plasma and lipids forms reactive oxygen species (ROS) and lipoperoxides (LPOs), generally called ozonides, which are enabled to rule the major molecular actions of ozone in the cell. Ozone behaves as a bioregulator, by activating a wide population of reactive intermediates, which usually target mitochondria and their turnover/biogenesis, often leading to a pleiotropic spectrum of actions and behaving as a tuner of the fundamental mechanisms of survival in the cell. In this sense, ozone can be considered a novelty in the medical sciences and in the clinical approach to pharmacology and medical therapy, due to its ability to target complex regulatory systems and not simple receptors.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | | | - Marianno Franzini
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Sergio Pandolfi
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | | | - Francesco Vaiano
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Luigi Valdenassi
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
Zhou L, Yan K, Xing S, Cheng J. Tectorigenin alleviates the apoptosis and inflammation in spinal cord injury cell model through inhibiting insulin-like growth factor-binding protein 6. Open Med (Wars) 2023; 18:20230680. [PMID: 37069938 PMCID: PMC10105551 DOI: 10.1515/med-2023-0680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 04/19/2023] Open
Abstract
Since tectorigenin has been reported to possess anti-inflammation, redox balance restoration, and anti-apoptosis properties, we determine to unravel whether tectorigenin has potential in alleviating spinal cord injury (SCI). Herein, PC12 cells were induced by lipopolysaccharide (LPS) to establish in vitro SCI models. The cell viability and apoptosis were detected through cell counting kit-8 and flow cytometry assays. The caspase-3/8/9 content was measured by colorimetric method. Western blot was conducted to quantify the expressions of cleaved caspse-3/8/9, IGFBP6, TLR4, IκBα, p-IκBα, RELA proto-oncogene, p65, and p-p65. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction were carried out to quantitate expressions of IGFBP6, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). SwissTargetPrediction and GSE21497 database were utilized to predict the potential therapeutic targets of tectorigenin. Comparison of IGFBP6 expression in SCI tissues and normal tissues was analyzed by GEO2R. Our study found that LPS induced the declined cell viability, elevated cell apoptosis, upregulation of caspase-3/8/9, cleaved caspase-3/8/9, IL-1β, IL-6, TNF-α, IGFBP6, and TLR4, and the activation of IκBα and p65 in PC12 cells. Tectorigenin reversed the above effects of LPS. IGFBP6 was predicted to be the potential therapeutic target of tectorigenin and was overexpressed in SCI tissues. Notably, IGFBP6 overexpression offset the effects of tectorigenin on PC12 cells. In conclusion, tectorigenin could alleviate the LPS-induced apoptosis, inflammation, and activation of NF-κB signaling in SCI cell models via inhibiting IGFBP6.
Collapse
Affiliation(s)
- Liqiang Zhou
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, 611130, China
| | - Kui Yan
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, 611130, China
| | - Shuxing Xing
- Department of Orthopedics, Chengdu Fifth People’s Hospital, No. 33 Mashi Street, Wenjiang
District, Chengdu, Sichuan Province, 611130, China
| | - Jun Cheng
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, 611130, China
| |
Collapse
|
36
|
de Sousa GF, Lund RG, da Silva Pinto L. The Role of Plant Lectins in the Cellular and Molecular Processes of Skin Wound Repair: An Overview. Curr Pharm Des 2023; 29:2618-2625. [PMID: 37933218 DOI: 10.2174/0113816128264103231030093124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
There is increasing pressure for innovative methods to treat compromised and difficult-to-heal wounds. Consequently, new strategies are needed for faster healing, reducing infection, hydrating the wound, stimulating healing mechanisms, accelerating wound closure, and reducing scar formation. In this scenario, lectins present as good candidates for healing agents. Lectins are a structurally heterogeneous group of glycosylated or non-glycosylated proteins of non-immune origin, which can recognize at least one specific monosaccharide or oligosaccharide specific for the reversible binding site. Cell surfaces are rich in glycoproteins (glycosidic receptors) that potentially interact with lectins through the number of carbohydrates reached. This lectin-cell interaction is the molecular basis for triggering various changes in biological organisms, including healing mechanisms. In this context, this review aimed to (i) provide a comprehensive overview of relevant research on the potential of vegetable lectins for wound healing and tissue regeneration processes and (ii) discuss future perspectives.
Collapse
Affiliation(s)
- Guilherme Feijó de Sousa
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Rafael Guerra Lund
- School of Dentistry, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Luciano da Silva Pinto
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| |
Collapse
|
37
|
Liu L, Zeng L, Gao L, Zeng J, Lu J. Ozone therapy for skin diseases: Cellular and molecular mechanisms. Int Wound J 2022. [DOI: 10.1111/iwj.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Liyao Liu
- Department of Dermatology, Third Xiangya Hospital Central South University Changsha Hunan People's Republic of China
- Medical Ozone Research Center of Central South University Changsha Hunan People's Republic of China
| | - Liyue Zeng
- Department of Dermatology, Third Xiangya Hospital Central South University Changsha Hunan People's Republic of China
- Medical Ozone Research Center of Central South University Changsha Hunan People's Republic of China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital Central South University Changsha Hunan People's Republic of China
- Medical Ozone Research Center of Central South University Changsha Hunan People's Republic of China
| | - Jinrong Zeng
- Department of Dermatology, Third Xiangya Hospital Central South University Changsha Hunan People's Republic of China
- Medical Ozone Research Center of Central South University Changsha Hunan People's Republic of China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital Central South University Changsha Hunan People's Republic of China
- Medical Ozone Research Center of Central South University Changsha Hunan People's Republic of China
| |
Collapse
|
38
|
Zhu S, Yang Z, Kong L, Kong L, Zhang Y. Arbutin Inhibited Heat Stress-Induced Apoptosis and Promoted Proliferation and Migration of Heat-Injured Dermal Fibroblasts and Keratinocytes by Activating PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8798861. [PMID: 36159569 PMCID: PMC9499752 DOI: 10.1155/2022/8798861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
Objective Studies have shown that arbutin has antioxidant and anti-inflammatory activities, which makes it suitable for treating skin wounds. We designed this study to investigate the effect of arbutin on heat-induced apoptosis, proliferation, and migration of dermal fibroblasts and keratinocytes and to explore the molecular mechanism. Methods In vitro, HaCAT and dermal fibroblast (DFL) cells were cultured and used to establish a heat stress-injured skin cell model. We investigated the effects of arbutin on apoptosis, proliferation, and migration of HaCAT and DFL cells after heat stress injury. We then used immunoblotting to detect the expression of p-PI3K, PI3K, p-AKT, and AKT proteins for studying the underlying mechanisms and used a PI3K/AKT inhibitor (LY294002) to verify the efficacy of arbutin in HaCAT and DFL cells with heat stress injury. Results Arbutin strongly inhibited heat stress-induced apoptosis, proliferation inhibition, and migration inhibition of HaCAT and DFL cells in vitro. Our results also showed that arbutin strongly decreased the ratio of Bax/Bcl2 protein expression and PCNA protein expression in HaCAT and DFL cells after treatment with heat stress. Furthermore, we also found that arbutin significantly increased the ratio of p-PI3K/PI3K and p-AKT/AKT protein expression, and LY294002 markedly reversed the effect of arbutin on heat stress-induced apoptosis, proliferation inhibition, and migration inhibition of HaCAT and DFL cells. Conclusion Our finding indicated that arbutin inhibited heat stress-induced apoptosis and promoted proliferation and migration of heat-injured dermal fibroblasts and epidermal cells by activating the PI3K/AKT signaling pathway, suggesting that arbutin may provide an alternative therapeutic approach for the treatment of skin injury.
Collapse
Affiliation(s)
- Shugang Zhu
- Department of Burn and Plastic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Lili Kong
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China
| | - Lijun Kong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yuezhi Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
39
|
Beiter RM, Rivet-Noor C, Merchak AR, Bai R, Johanson DM, Slogar E, Sol-Church K, Overall CC, Gaultier A. Evidence for oligodendrocyte progenitor cell heterogeneity in the adult mouse brain. Sci Rep 2022; 12:12921. [PMID: 35902669 PMCID: PMC9334628 DOI: 10.1038/s41598-022-17081-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) account for approximately 5% of the adult brain and have been historically studied for their role in myelination. In the adult brain, OPCs maintain their proliferative capacity and ability to differentiate into oligodendrocytes throughout adulthood, even though relatively few mature oligodendrocytes are produced post-developmental myelination. Recent work has begun to demonstrate that OPCs likely perform multiple functions in both homeostasis and disease and can significantly impact behavioral phenotypes such as food intake and depressive symptoms. However, the exact mechanisms through which OPCs might influence brain function remain unclear. The first step in further exploration of OPC function is to profile the transcriptional repertoire and assess the heterogeneity of adult OPCs. In this work, we demonstrate that adult OPCs are transcriptionally diverse and separate into two distinct populations in the homeostatic brain. These two groups show distinct transcriptional signatures and enrichment of biological processes unique to individual OPC populations. We have validated these OPC populations using multiple methods, including multiplex RNA in situ hybridization and RNA flow cytometry. This study provides an important resource that profiles the transcriptome of adult OPCs and will provide a toolbox for further investigation into novel OPC functions.
Collapse
Affiliation(s)
- Rebecca M Beiter
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Courtney Rivet-Noor
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Andrea R Merchak
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Robin Bai
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David M Johanson
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Erica Slogar
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Katia Sol-Church
- Genome Analysis and Technology Core, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Christopher C Overall
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alban Gaultier
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
40
|
Yao Z, Lin M, Lin T, Gong X, Qin P, Li H, Kang T, Ye J, Zhu Y, Hong Q, Liu Y, Li Y, Wang J, Fang F. The expression of IGFBP-5 in the reproductive axis and effect on the onset of puberty in female rats. Reprod Biol Endocrinol 2022; 20:100. [PMID: 35821045 PMCID: PMC9277959 DOI: 10.1186/s12958-022-00966-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/18/2022] [Indexed: 11/21/2022] Open
Abstract
Insulin-like growth factor-binding protein-5 (IGFBP-5) has recently been shown to alter the reproductive capacity by regulating insulin-like growth factor (IGF) bioavailability or IGF-independent effects. The present study aimed to investigate the effect and mechanism of IGFBP-5 on the onset of puberty in female rats. Immunofluorescence and real-time quantitative PCR were used to determine the expression and location of IGFBP-5 mRNA and protein distribution in the infant's hypothalamus-pituitary-ovary (HPO) axis prepuberty, peripuberty, puberty and adult female rats. Prepubertal rats with IGFBP-5 intracerebroventricular (ICV) were injected to determine the puberty-related genes expression and the concentrations of reproductive hormones. Primary hypothalamic cells were treated with IGFBP-5 to determine the expression of puberty-related genes and the Akt and mTOR proteins. Results showed that Igfbp-5 mRNA and protein were present on the HPO axis. The addition of IGFBP-5 to primary hypothalamic cells inhibited the expression of Gnrh and Igf-1 mRNAs (P < 0.05) and increased the expression of AKT and mTOR protein (P < 0.01). IGFBP-5 ICV-injection delayed the onset of puberty, reduced Gnrh, Igf-1, and Fshβ mRNAs, and decreased the concentrations of E2, P4, FSH,serum LH levels and the ovaries weight (P < 0.05). More corpus luteum and fewer primary follicles were found after IGFBP-5 injection (P < 0.05).
Collapse
Affiliation(s)
- Zhiqiu Yao
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Maosen Lin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tao Lin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xinbao Gong
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Pin Qin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Hailing Li
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tiezhu Kang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jing Ye
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yanyun Zhu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Qiwen Hong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yunsheng Li
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Juhua Wang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
41
|
The Antisenescence Effect of Exosomes from Human Adipose-Derived Stem Cells on Skin Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1034316. [PMID: 35813225 PMCID: PMC9259368 DOI: 10.1155/2022/1034316] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Human adipose-derived stem cells (ADSCs) have become a promising therapeutic approach against skin aging. Recent studies confirm that exosomes partially mediate the therapeutic effect of stem cells. This study successfully isolated exosomes from the ADSC culture medium and discovered that ADSC-derived exosomes (ADSC-Exos) could alleviate human dermal fibroblast (HDF) senescence and stimulate HDF migration. Moreover, ADSC-Exos increased the type I collagen expression level and reduced the reactive oxygen species (ROS) and senescence-associated β-galactosidase (SA-β-Gal) activity in HDFs. In addition, we demonstrated that ADSC-Exos significantly inhibited senescence-related protein expression levels of p53, p21, and p16. In conclusion, our results have revealed the antisenescence effects of ADSC-Exos on HDFs and ADSC-Exos may be a novel cell-free therapeutic tool for antiaging.
Collapse
|
42
|
Teplyakova O, Vinnik Y, Drobushevskaya A, Malinovskaya N, Kirichenko A, Ponedelnik D. Ozone improved the wound healing in type 2 diabetics via down-regulation of IL- 8, 10 and induction of FGFR expression. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022060. [PMID: 35546010 PMCID: PMC9171882 DOI: 10.23750/abm.v93i2.12291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023]
Abstract
Background and aim: We aimed to investigate the effect of ozonated autohaemotherapy (OA) on the wound healing, serum values of interleukin (IL) - 6, 8, 10, tumor necrosis factor-alpha (TNF-α), basic fibroblast growth factor (bFGF) and local expression of fibroblast growth factor receptors (FGFR) in type 2 diabetics with the acute soft-tissue infections. Methods: Patients in the first cohort (n-30) received a basic comprehensive treatment (BCT-group), and the second (n=28) also received OA (OA-group). Blood samples for ELISA and tissue specimens for the immunohistochemical examinations were collected at admission (day 0) and at the 9th day of inpatient treatment. Results: The additional using of OA has accelerated the timing of a single and the complete wound granulation and the timing to marginal epithelization, compared with the results of the standard treatment. The use of OA has significantly reduced the production of IL-8, 10 at 9th day. OA-group patients were characterized by consistently high levels of bFGF production in contrast to the BCT-group, where the decreasing in the serum bFGF level was observed. The maximum number of bFGFR - immunopositive labels was observed in OA-group out to 9th day (319,45 (249,90-348,43) versus baseline 192,65 (171,93-207,72), versus BCT-group 123,30 (105,23- 141,10), p<0,001). Conclusions: Application of OA in the complex treatment of the acute soft-tissue infections in diabetics makes it possible to achieve the significant reductions in the duration of the wound inflammation and regeneration phases by eliminating of overproduction of IL- 8, 10 and induction of expression of bFGF and its receptors. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Olga Teplyakova
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Yurii Vinnik
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Anna Drobushevskaya
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Center for collective use «Molecular & cell technologies», Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation .
| | - Natalia Malinovskaya
- Department of Biological Chemistry with the Course of Medical, Pharmaceutical and Toxicological Chemistry, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Research Institute of Molecular Medicine and Pathobiochemistry, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Center for collective use «Molecular & cell technologies», Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Andrey Kirichenko
- Department of Pathological Anatomy named after Professor P. G. Podzolkov, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Department of Pathological Anatomy, Clinical hospital «RZD-Medicine» city Krasnoyarsk, Krasnoyarsk, Russian Federation.
| | - Darya Ponedelnik
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| |
Collapse
|
43
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
44
|
Liu C, Wang C, Yang F, Lu Y, Du P, Hu K, Yin X, Zhao P, Lu G. The conditioned medium from mesenchymal stromal cells pretreated with proinflammatory cytokines promote fibroblasts migration and activation. PLoS One 2022; 17:e0265049. [PMID: 35404961 PMCID: PMC9000110 DOI: 10.1371/journal.pone.0265049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Human dermal fibroblasts (HDFs) play important roles in all stages of wound healing. However, in nonhealing wounds, fibroblasts are prone to aging, resulting in insufficient migration, proliferation and secretion functions. Recent studies have suggested that mesenchymal stromal cells (MSCs) are conducive to wound healing and cell growth through paracrine cytokine signaling. In our studies, we found that conditioned medium of MSCs pretreated with IFN-γ and TNF-α (IT MSC-CM) has abundant growth factors associated with wound repair. Our in vitro results showed that the effects of IT MSC-CM on promoting cell migration, proliferation and activation in HDFs were better than those of conditioned medium from mesenchymal stromal cells (MSC-CM). Moreover, we embedded a scaffold material containing IT MSC-CM and reconfirmed that cell migration and activation were superior to that in the presence of MSC-CM in vivo. Generally, PDGF-BB is perceived as a promoter of the migration and proliferation of HDFs. Moreover, a high level of PDGF-BB in IT MSC-CM was detected, according to which we guess that the effect on HDFs may be mediated by the upregulation of PDGF-BB. These studies all showed the potential of IT MSC-CM to promote rapid and effective wound healing.
Collapse
Affiliation(s)
- Chenyang Liu
- Nanjng University of Traditional Chinese Medcine, Nanjng, Jiangsu, China
| | - Chengchun Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Yichi Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Pan Du
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Hu
- Nanjng University of Traditional Chinese Medcine, Nanjng, Jiangsu, China
| | - Xinyao Yin
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Zhao
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Jiangsu, China
- * E-mail: (GL); (PZ)
| | - Guozhong Lu
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Jiangsu, China
- * E-mail: (GL); (PZ)
| |
Collapse
|
45
|
Yi Y, Wu M, Zhou X, Xiong M, Tan Y, Yu H, Liu Z, Wu Y, Zhang Q. Ascorbic acid 2-glucoside preconditioning enhances the ability of bone marrow mesenchymal stem cells in promoting wound healing. Stem Cell Res Ther 2022; 13:119. [PMID: 35313962 PMCID: PMC8935805 DOI: 10.1186/s13287-022-02797-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Background Nowadays, wound is associated with a complicated repairing process and still represents a significant biomedical burden worldwide. Bone marrow mesenchymal stem cells (BMSCs) possess multidirectional differentiation potential and secretory function, emerging as potential cellular candidates in treating wounds. Ascorbic acid 2-glucoside (AA2G) is a well-known antioxidant and its function in BMSC-promoting wound healing is worth exploring. Methods The in vitro cell proliferation, migration, and angiogenesis of BMSCs and AA2G-treated BMSCs were detected by flow cytometry, EDU staining, scratch assay, transwell assay, and immunofluorescence (IF). Besides, the collagen formation effect of AA2G-treated BMSCs conditioned medium (CM) on NIH-3T3 cells was evaluated by hydroxyproline, qRT-PCR and IF staining detection. Next, in the wound healing mouse model, the histological evaluation of wound tissue in PBS, BMSCs, and AA2G-treated BMSCs group were further investigated. Lastly, western blot and ELISA were used to detect the expression levels of 5-hmc, TET2 and VEGF protein, and PI3K/AKT pathway activation in BMSCs treated with or without AA2G. Results The in vitro results indicated that AA2G-treated BMSCs exhibited stronger proliferation and improved the angiogenesis ability of vascular endothelial cells. In addition, the AA2G-treated BMSCs CM enhanced migration and collagen formation of NIH-3T3 cells. In vivo, the AA2G-treated BMSCs group had a faster wound healing rate and a higher degree of vascularization in the new wound, compared with the PBS and BMSCs group. Moreover, AA2G preconditioning might enhance the demethylation process of BMSCs by regulating TET2 and up-regulating VEGF expression by activating the PI3K/AKT pathway. Conclusions AA2G-treated BMSCs promoted wound healing by promoting angiogenesis and collagen deposition, thereby providing a feasible strategy to reinforce the biofunctionability of BMSCs in treating wounds. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02797-0.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaomei Zhou
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Honghao Yu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
46
|
Bovine collagen oligopeptides accelerate wound healing by promoting fibroblast migration via PI3K/Akt/mTOR signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
47
|
Zhang J, Wang C, An Q, Quan Q, Li M, Zhao D. Gene Expression Profile Analyses of the Skin Response of Balb/c-Nu Mice Model Injected by Staphylococcus aureus. Clin Cosmet Investig Dermatol 2022; 15:217-235. [PMID: 35210800 PMCID: PMC8857954 DOI: 10.2147/ccid.s348961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
Abstract
Background Pathogenesis and persistence of many skin diseases are related to Staphylococcus aureus (S. aureus) colonization. S. aureus infection can cause varying degrees of changes in cell gene expression, resulting in complex changes in cell phenotype and finally changes in cell life activities. Materials and Methods The transcriptomes of healthy and Staphylococcus aureus (S. aureus)-infected murine skin tissues were analyzed. We identified 638 differentially expressed genes (DEGs) in the infected tissues compared to the control samples, of which 324 were upregulated and 314 were downregulated, following the criteria of P < 0.01 and |log2FC| > 3. The DEGs were functionally annotated by Gene Ontology (GO), KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and the protein–protein interaction (PPI) network analyses. Results The upregulated DEGs were mainly enriched in GO terms, such as response to stimulus, immune system process and signal transduction, as well as in the complement and coagulation cascade pathway. Thus, S. aureus infection likely activates these pathways to limit the influx of neutrophils and prevent skin damage. Four clusters were identified in the PPI network, and the major hubs were mainly related to cell cycle and proliferation, and mostly downregulated. The expression levels of Nox4, Mmrn1, Mcm5, Msx1 and Fgf5 mRNAs were validated by qRT-PCR and found to be consistent with the RNA-Seq data, confirming a strong correlation between the two approaches. Conclusion The identified genes and pathways are potential drug targets for treating skin inflammation caused by S. aureus and should be investigated further.
Collapse
Affiliation(s)
- Jiachan Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Changtao Wang
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Qianghua Quan
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Meng Li
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Dan Zhao
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| |
Collapse
|
48
|
He L, Wang GP, Guo JY, Chen ZR, Liu K, Gong SS. Epithelial-Mesenchymal Transition Participates in the Formation of Vestibular Flat Epithelium. Front Mol Neurosci 2022; 14:809878. [PMID: 34975404 PMCID: PMC8719593 DOI: 10.3389/fnmol.2021.809878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
The vestibular sensory epithelium of humans and mice may degenerate into a layer of flat cells, known as flat epithelium (FE), after a severe lesion. However, the pathogenesis of vestibular FE remains unclear. To determine whether the epithelial–mesenchymal transition (EMT) participates in the formation of vestibular FE, we used a well-established mouse model in which FE was induced in the utricle by an injection of streptomycin into the inner ear. The mesenchymal and epithelial cell markers and cell proliferation were examined using immunofluorescence staining and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The function of the EMT was assessed through transcriptome microarray analysis. The results demonstrated that mesenchymal cell markers (α-SMA, S100A4, vimentin, and Fn1) were upregulated in vestibular FE compared with the normal utricle. Robust cell proliferation, which was absent in the normal status, was observed in the formation of FE. Microarray analysis identified 1,227 upregulated and 962 downregulated genes in vestibular FE. Gene Ontology (GO) analysis revealed that differentially expressed genes (DEGs) were highly associated with several EMT-related GO terms, such as cell adhesion, cell migration, and extracellular matrix. Pathway enrichment analysis revealed that DEGs were enriched in the EMT-related signaling pathways, including extracellular matrix (ECM)-receptor interaction, focal adhesion, PI3K/Akt signaling pathway and cell adhesion molecule. Protein–protein interaction networks screened 20 hub genes, which were Akt, Casp3, Col1a1, Col1a2, Fn1, Hgf, Igf1,Il1b, Irs1, Itga2, Itga5, Jun, Mapk1, Myc, Nras, Pdgfrb, Tgfb1, Thbs1, Trp53, and Col2a1. Most of these genes are reportedly involved in the EMT process in various tissues. The mRNA expression level of hub genes was validated using qRT-PCR. In conclusion, the present study indicates that EMT plays a significant role in the formation of vestibular FE and provides an overview of transcriptome characteristics in vestibular FE.
Collapse
Affiliation(s)
- Lu He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-Rui Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Sabancı AU, Erkan Alkan P, Mujde C, Polat HU, Ornek Erguzeloglu C, Bisgin A, Ozakin C, Temel SG. Nanobubble Ozone Stored in Hyaluronic Acid Decorated Liposomes: Antibacterial, Anti-SARS-CoV-2 Effect and Biocompatibility Tests. Int J Nanomedicine 2022; 17:351-379. [PMID: 35115773 PMCID: PMC8801396 DOI: 10.2147/ijn.s328090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Ahmet Umit Sabancı
- Bursa Çekirge State Hospital, Orthopedics and Traumatology Clinic, Bursa, Turkey
| | - Perihan Erkan Alkan
- Bursa Uludağ University, Vocational School of Health Services, Medical Laboratory Technician Department, Bursa, Turkey
| | - Cem Mujde
- Çukurova University AGENTEM (Adana Genetic Diseases and Treatment Center), Adana, Turkey
| | - Hivda Ulbeği Polat
- TUBITAK, Marmara Research Center, Genetic Engineering and Biotechnology Institute, Gebze, Kocaeli, Turkey
| | - Cemre Ornek Erguzeloglu
- Bursa Uludag University, Institute of Health Sciences, Department of Translational Medicine, Bursa, Turkey
| | - Atil Bisgin
- Çukurova University AGENTEM (Adana Genetic Diseases and Treatment Center), Adana, Turkey
- Çukurova University, Faculty of Medicine, Department of Medical Genetics, Adana, Turkey
| | - Cuneyt Ozakin
- Bursa Uludağ University, Faculty of Medicine, Department of Infectious Diseases and Microbiology, Bursa, Turkey
- Correspondence: Cuneyt Ozakin Bursa Uludağ University, Faculty of Medicine, Department of Infectious Diseases and Microbiology, Bursa, Turkey Email
| | - Sehime G Temel
- Bursa Uludag University, Institute of Health Sciences, Department of Translational Medicine, Bursa, Turkey
- Bursa Uludağ University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey
- Bursa Uludag University, Health Sciences Institute, Department of Translational Medicine, Bursa, Turkey
- Sehime G Temel Bursa Uludağ University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey Email
| |
Collapse
|
50
|
Effect of Ozonated Water on Oral Mucositis and Pain Induced by Head and Neck Radiotherapy: A Cross-sectional Study. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.118914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Oral mucositis and local pain are the negative effects of the treatment of head and neck cancer with radiotherapy. Objectives: The study aimed to investigate the effect of ozonated water on the severity of mucositis and pain in (1) patients who were treated with ozonated water and (2) patients who were not treated with ozonated water. Methods: We randomly divided 93 patients with head and neck malignancy (aged 18 to 80) into three groups. Ozone-treated group 1 rinsed their mouth with 15 mL of ozonated water with a concentration of 20 - 50 ppm from the first session of radiotherapy for one minute before and after each session. Ozone-treated group 2 rinsed their mouth with 15 mL of ozonated water with a concentration of 20 - 50 ppm for three minutes and then swallowed it before and after each session. Ozone-treated groups 1 and 2 and the non-ozone-treated group received standard treatment if mucositis symptoms appeared in each patient. The minimum number of radiotherapy sessions was 30, and the minimum planned dose for each patient was 50 Gray. Anamnesis and the following clinical parameters were taken: the degree of mucositis, the use of corticosteroids, radiotherapy method, radiation dose, and Pain Visual Analog Scale. Multi-level and subgroup analyses were performed on the ozone-treated and non-ozone-treated levels. Results: The mean degrees of oral mucositis and pain were lower in the ozone-treated group 2 than in the ozone-treated group 1 and non-ozone-treated group (P < 0.05). The non-ozone-treated group had the highest degrees of oral mucositis and pain severity (P < 0.05). The Kruskal-Wallis H test showed that there was a statistically significant difference in the Visual Analog Scale of sessions 5, 10, 15, 20, 25, and 30 between different groups. However, there was no statistically significant difference in the Visual Analog Scale of session 1 (χ2 (2) = 1.022, P = 0.6). This study revealed that ozonated water can be used for preemptive pain control and mucositis. This finding aligned with previous studies. Also, former research proved the safety and efficacy of ozonated water in dentistry and medical uses. Conclusions: The use of ozonated water in patients with head and neck malignancy can reduce the pain severity and oral mucositis induced by radiotherapy. It seems that ozonated water can be used as a preemptive agent in patients who receive head and neck radiotherapy.
Collapse
|