1
|
Liu D, Li X, Wang L, Pei Q, Zhao J, Sun D, Ren Q, Han B, Jiang H, Zhang W, Li R, Bao G, Wang S, Tian F, Liu S, Zhao K, Tian D. Transcriptomic and proteomic studies of body size and carcass traits and the longest dorsal muscle in Tibetan sheep. BMC Genomics 2025; 26:543. [PMID: 40442591 PMCID: PMC12121134 DOI: 10.1186/s12864-025-11738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Tibetan sheep represent valuable genetic resources on the Tibetan Plateau, and their body size and carcass traits serve as crucial foundations for breeding program development and breeding effects evaluation. The study of body size and carcass characteristics of Tibetan sheep helps to understand their process of genetic regulation. RESULT The body size traits, carcass traits, and muscle fiber structure of plateau-type Tibetan and Zhashijia sheep were compared. Zhashijia ewes displayed considerably higher carcass weight and body size than plateau-type ewes. Additionally, it was observed that Zhashijia rams exhibited significantly greater eye muscle area, chest width, and muscle fiber perimeter in comparison to plateau-type rams. And Glycogen staining results showed that the glycogen content of the plateau-type Tibetan sheep was significantly higher than that of the Zhashijia sheep. Through transcriptomic and proteomic analyses, we identified 366 genes that showed differential expression in the ram group and 248 proteins with differential expression. In the ewe group, we found 623 differentially expressed genes (DEGs) and 624 differentially expressed proteins (DEPs). Among these, eleven genes and fourteen proteins were associated with body size and carcass quality. These genes and proteins showed significant enrichment in the PPAR signaling pathway and protein digestion and absorption. Furthermore, employing weighted gene co-expression network analysis (WGCNA) allowed us to identify twelve genes that are pivotal in regulating body size and carcass. Finally, RT-qPCR validation confirmed the reliability of our RNA-Seq results. CONCLUSION The findings of this study contribute to a deeper comprehension of the morphological characteristics and carcass traits of Tibetan sheep, thereby establishing a robust scientific basis for the selective breeding of novel sheep breeds with enhanced growth performance and superior meat production capacity.
Collapse
Affiliation(s)
- Dehui Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Jincai Zhao
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - De Sun
- Animal Husbandry and Veterinary Station of Huzhu County of Qinghai Province, Huzhu, 810500, Qinghai, China
| | - Qianben Ren
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Hanjing Jiang
- Qinghai Livestock and Poultry Genetic Resources Protection and Utilization Center, Xining, 810000, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Rong Li
- Minhe County Zongbao Township Animal Husbandry and Veterinary Station, Minhe, Qinghai, 810800, China
| | - Guoxiang Bao
- Minhe County Machangyuan Township Animal Husbandry and Veterinary Station, Minhe, Qinghai, 810800, China
| | - Song Wang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China.
| |
Collapse
|
2
|
Ahamba IS, Mary-Cynthia Ikele C, Kimpe L, Goswami N, Wang H, Li Z, Ren Z, Dong X. Unraveling the genetic and epigenetic landscape governing intramuscular fat deposition in rabbits: Insights and implications. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100222. [PMID: 39290671 PMCID: PMC11406001 DOI: 10.1016/j.fochms.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Intramuscular fat (IMF) content is a predominant factor recognized to affect rabbit meat quality, directly impacting flavor, juiciness, and consumer preference. Despite its significance, the major interplay of genetic and epigenetic factors regulating IMF in rabbits remains largely unexplored. This review sheds light on this critical knowledge gap, offering valuable insights and future directions. We delve into the potential role of established candidate genes from other livestock (e.g. PPARγ, FABP4, and SCD) in rabbits, while exploring the identified novel genes of IMF in rabbits. Furthermore, we explored the quantitative trait loci studies in rabbit IMF and genomic selection approaches for improving IMF content in rabbits. Beyond genetics, this review unveils the exciting realm of epigenetic mechanisms modulating IMF deposition. We explored the potential of DNA methylation patterns, histone modifications, and non-coding RNA-mediation as fingerprints for selecting rabbits with desirable IMF levels. Additionally, we explored the possibility of manipulating the epigenetic landscape through nutraceuticals interventions to promote favorable IMF depositions. By comprehensively deciphering the genomic and epigenetic terrain of rabbit intramuscular fat regulation, this study aims to assess the existing knowledge regarding the genetic and epigenetic factors that control the deposition of intramuscular fat in rabbits. By doing so, we identified gaps in the current research, and suggested potential areas for further investigation that would enhance the quality of rabbit meat. This can enable breeders to develop targeted breeding strategies, optimize nutrition, and create innovative interventions to enhance the quality of rabbit meat, meet consumer demands and increase market competitiveness.
Collapse
Affiliation(s)
- Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | | | - Lionel Kimpe
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Naqash Goswami
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Hui Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhen Li
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| |
Collapse
|
3
|
Kappari L, Applegate TJ, Glenn AE, Bakre A, Shanmugasundaram R. Early Biomarkers for Detecting Subclinical Exposure to Fumonisin B1, Deoxynivalenol, and Zearalenone in Broiler Chickens. Toxins (Basel) 2024; 17:1. [PMID: 39852954 PMCID: PMC11769279 DOI: 10.3390/toxins17010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
Identifying biomarkers of mycotoxin effects in chickens will provide an opportunity for early intervention to reduce the impact of mycotoxicosis. This study aimed to identify whether serum enzyme concentrations, gut integrity, and liver miRNAs can be potential biomarkers for fumonisin B1 (FB1), deoxynivalenol (DON), and zearalenone (ZEA) toxicity in broiler birds as early as 14 days after exposure. A total of 720 male broiler chicks were distributed to six treatment groups: T1: control group (basal diet), T2 (2 FB1 + 2.5 DON + 0.9 ZEA), T3 (5 FB1 + 0.4 DON + 0.1 ZEA), T4 (9 FB1 + 3.5 DON + 0.7 ZEA), T5 (17 FB1 + 1.0 DON + 0.2 ZEA), and T6 (21 FB1 + 3.0 DON + 1.0 ZEA), all in mg/kg diet. On d14, there were no significant differences in the body weight gain (BWG) of mycotoxin treatment groups when compared to the control (p > 0.05), whereas on d21, T6 birds showed significantly reduced BWG compared to the control (p < 0.05). On d14, birds in T6 showed significant upregulation of liver miRNAs, gga-let-7a-5p (14.17-fold), gga-miR-9-5p (7.05-fold), gga-miR-217-5p (16.87-fold), gga-miR-133a-3p (7.41-fold), and gga-miR-215-5p (6.93-fold) (p < 0.05) and elevated serum fluorescein isothiocyanate-dextran (FITC-d) concentrations, aspartate aminotransferase (AST), and creatine kinase (CK) levels compared to the control (p < 0.05). On d21, T2 to T6 birds exhibited reduced serum phosphorus, glucose, and potassium, while total protein, FITC-d, AST, and CK levels increased compared to control (p < 0.05). These findings suggest that serum FITC-d, AST, CK, and liver miRNAs could serve as biomarkers for detecting mycotoxin exposure in broiler chickens.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Anthony E. Glenn
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, USA
| | - Abhijeet Bakre
- Exotic and Emerging Avian Viral Diseases Research, USDA-ARS, Athens, GA 30605, USA
| | | |
Collapse
|
4
|
Pang Y, Liang J, Huang J, Lan G, Chen F, Ji H, Zhao Y. miR-423-5p Regulates Skeletal Muscle Growth and Development by Negatively Inhibiting Target Gene SRF. Genes (Basel) 2024; 15:606. [PMID: 38790235 PMCID: PMC11121690 DOI: 10.3390/genes15050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
The process of muscle growth directly affects the yield and quality of pork food products. Muscle fibers are created during the embryonic stage, grow following birth, and regenerate during adulthood; these are all considered to be phases of muscle development. A multilevel network of transcriptional, post-transcriptional, and pathway levels controls this process. An integrated toolbox of genetics and genomics as well as the use of genomics techniques has been used in the past to attempt to understand the molecular processes behind skeletal muscle growth and development in pigs under divergent selection processes. A class of endogenous noncoding RNAs have a major regulatory function in myogenesis. But the precise function of miRNA-423-5p in muscle development and the related molecular pathways remain largely unknown. Using target prediction software, initially, the potential target genes of miR-423-5p in the Guangxi Bama miniature pig line were identified using various selection criteria for skeletal muscle growth and development. The serum response factor (SRF) was found to be one of the potential target genes, and the two are negatively correlated, suggesting that there may be targeted interactions. In addition to being strongly expressed in swine skeletal muscle, miR-423-5p was also up-regulated during C2C12 cell development. Furthermore, real-time PCR analysis showed that the overexpression of miR-423-5p significantly reduced the expression of myogenin and the myogenic differentiation antigen (p < 0.05). Moreover, the results of the enzyme-linked immunosorbent assay (ELISA) demonstrated that the overexpression of miR-423-5p led to a significant reduction in SRF expression (p < 0.05). Furthermore, miR-423-5p down-regulated the luciferase activities of report vectors carrying the 3' UTR of porcine SRF, confirming that SRF is a target gene of miR-423-5p. Taken together, miR-423-5p's involvement in skeletal muscle differentiation may be through the regulation of SRF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunxiang Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.P.); (J.L.); (J.H.); (G.L.); (F.C.); (H.J.)
| |
Collapse
|
5
|
Guo D, Wei Y, Li X, Bai Y, Liu Z, Li J, Chen Z, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Comprehensive Analysis of miRNA and mRNA Expression Profiles during Muscle Development of the Longissimus Dorsi Muscle in Gannan Yaks and Jeryaks. Genes (Basel) 2023; 14:2220. [PMID: 38137042 PMCID: PMC10742600 DOI: 10.3390/genes14122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
A hybrid offspring of Gannan yak and Jersey cattle, the Jeryak exhibits apparent hybrid advantages over the Gannan yak in terms of production performance and other factors. The small non-coding RNAs known as miRNAs post-transcriptionally exert a significant regulatory influence on gene expression. However, the regulatory mechanism of miRNA associated with muscle development in Jeryak remains elusive. To elucidate the regulatory role of miRNAs in orchestrating skeletal muscle development in Jeryak, we selected longissimus dorsi muscle tissues from Gannan yak and Jeryak for transcriptome sequencing analysis. A total of 230 (DE) miRNAs were identified in the longissimus dorsi muscle of Gannan yak and Jeryak. The functional enrichment analysis revealed a significant enrichment of target genes from differentially expressed (DE)miRNAs in signaling pathways associated with muscle growth, such as the Ras signaling pathway and the MAPK signaling pathway. The network of interactions between miRNA and mRNA suggest that some (DE)miRNAs, including miR-2478-z, miR-339-x, novel-m0036-3p, and novel-m0037-3p, played a pivotal role in facilitating muscle development. These findings help us to deepen our understanding of the hybrid dominance of Jeryaks and provide a theoretical basis for further research on the regulatory mechanisms of miRNAs associated with Jeryak muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Ling X, Wang Q, Zhang J, Zhang G. Genome-Wide Analysis of the KLF Gene Family in Chicken: Characterization and Expression Profile. Animals (Basel) 2023; 13:ani13091429. [PMID: 37174466 PMCID: PMC10177326 DOI: 10.3390/ani13091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The kruppel-like factor (KLF) gene family is a group of transcription factors containing highly conserved zinc-finger motifs, which play a crucial role in cell proliferation and differentiation. Chicken has been widely used as a model animal for analyzing gene function, however, little is known about the function of the KLF gene family in chickens. In this study, we performed genome-wide studies of chicken KLF genes and analyzed their biological and expression characteristics. We identified 13 KLF genes from chickens. Our phylogenetic, motif, and conserved domain analyses indicate that the KLF gene family has remained conserved through evolution. Synteny analysis showed the collinear relationship among KLFs, which indicated that they had related biomolecular functions. Interaction network analysis revealed that KLFs worked with 20 genes in biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that KLF2 was involved in Apelin and Forkhead Box O (FOXO) signaling pathways. Moreover, qPCR showed that 13 KLF genes were expressed in the nine selected tissues and displayed various gene expression patterns in chickens. RNA-seq showed that KLF3 and KLF10 genes were differentially expressed in the normal and high-fat diet fed groups, and KLF4, KLF5, KLF6, KLF7, KLF9, KLF12, and KLF13 genes were differentially expressed between undifferentiated and differentiated chicken preadipocytes. Besides, RNA-seq also showed that KLF genes displayed different expression patterns in muscle at 11 and 16 embryonic days old, and in 1-day-old chickens. These results indicated that the KLF genes were involved in the development of muscle and fat in chickens. Our findings provide some valuable reference points for the subsequent study of the function of KLF genes.
Collapse
Affiliation(s)
- Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Qifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
7
|
Yuan P, Zhao Y, Li H, Li S, Fan S, Zhai B, Li Y, Han R, Liu X, Tian Y, Kang X, Zhang Y, Li G. CircRNAs Related to Breast Muscle Development and Their Interaction Regulatory Network in Gushi Chicken. Genes (Basel) 2022; 13:1974. [PMID: 36360215 PMCID: PMC9689937 DOI: 10.3390/genes13111974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
Circular RNAs (circRNAs) play a significant regulatory role during skeletal muscle development. To identify circRNAs during postnatal skeletal muscle development in chickens, we constructed 12 cDNA libraries from breast muscle tissues of Chinese Gushi chickens at 6, 14, 22, and 30 weeks and performed RNA sequencing. In total, 2112 circRNAs were identified, and among them 79.92% were derived from exons. CircRNAs are distributed on all chromosomes of chickens, especially chromosomes 1-9 and Z. Bioinformatics analysis showed that each circRNA had an average of 38 miRNA binding sites, 61.32% of which have internal ribosomal entry site (IRES) elements. Furthermore, in total 543 differentially expressed circRNAs (DE-circRNAs) were identified. Functional enrichment analysis revealed that DE-circRNAs source genes are engaged in biological processes and muscle development-related pathways; for example, cell differentiation, sarcomere, and myofibril formation, mTOR signaling pathway, and TGF-β signaling pathway, etc. We also established a competitive endogenous RNA (ceRNA) regulatory network associated with skeletal muscle development. The results in this report indicate that circRNAs can mediate the development of chicken skeletal muscle by means of a complex ceRNA network among circRNAs, miRNAs, genes, and pathways. The findings of this study might help increase the number of known circRNAs in skeletal muscle tissue and offer a worthwhile resource to further investigate the function of circRNAs in chicken skeletal muscle development.
Collapse
Affiliation(s)
- Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, Zhengzhou 450001, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, Zhengzhou 450001, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, Zhengzhou 450001, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, Zhengzhou 450001, China
| | - Yanhua Zhang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, Zhengzhou 450001, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Zhang C, Zhao J, Guo Y, Xu Q, Liu M, Cheng M, Chao X, Schinckel AP, Zhou B. Genome-Wide Detection of Copy Number Variations and Evaluation of Candidate Copy Number Polymorphism Genes Associated With Complex Traits of Pigs. Front Vet Sci 2022; 9:909039. [PMID: 35847642 PMCID: PMC9280686 DOI: 10.3389/fvets.2022.909039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Copy number variation (CNV) has been considered to be an important source of genetic variation for important phenotypic traits of livestock. In this study, we performed whole-genome CNV detection on Suhuai (SH) (n = 23), Chinese Min Zhu (MZ) (n = 11), and Large White (LW) (n = 12) pigs based on next-generation sequencing data. The copy number variation regions (CNVRs) were annotated and analyzed, and 10,885, 10,836, and 10,917 CNVRs were detected in LW, MZ, and SH pigs, respectively. Some CNVRs have been randomly selected for verification of the variation type by real-time PCR. We found that SH and LW pigs are closely related, while MZ pigs are distantly related to the SH and LW pigs by CNVR-based genetic structure, PCA, VST, and QTL analyses. A total of 14 known genes annotated in CNVRs were unique for LW pigs. Among them, the cyclin T2 (CCNT2) is involved in cell proliferation and the cell cycle. The FA Complementation Group M (FANCM) is involved in defective DNA repair and reproductive cell development. Ten known genes annotated in 47 CNVRs were unique for MZ pigs. The genes included glycerol-3-phosphate acyltransferase 3 (GPAT3) is involved in fat synthesis and is essential to forming the glycerol triphosphate. Glutathione S-transferase mu 4 (GSTM4) gene plays an important role in detoxification. Eleven known genes annotated in 23 CNVRs were unique for SH pigs. Neuroligin 4 X-linked (NLGN4X) and Neuroligin 4 Y-linked (NLGN4Y) are involved with nerve disorders and nerve signal transmission. IgLON family member 5 (IGLON5) is related to autoimmunity and neural activities. The unique characteristics of LW, MZ, and SH pigs are related to these genes with CNV polymorphisms. These findings provide important information for the identification of candidate genes in the molecular breeding of pigs.
Collapse
Affiliation(s)
- Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Bo Zhou
| |
Collapse
|
9
|
Jiang Y, Li X, Liu J, Zhang W, Zhou M, Wang J, Liu L, Su S, Zhao F, Chen H, Wang C. Genome-wide detection of genetic structure and runs of homozygosity analysis in Anhui indigenous and Western commercial pig breeds using PorcineSNP80k data. BMC Genomics 2022; 23:373. [PMID: 35581549 PMCID: PMC9115978 DOI: 10.1186/s12864-022-08583-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background Runs of homozygosity (ROH) are continuous homozygous regions typically located in the DNA sequence of diploid organisms. Identifications of ROH that lead to reduced performance can provide valuable insight into the genetic architecture of complex traits. Here, we systematically investigated the population genetic structure of five Anhui indigenous pig breeds (AHIPs), and compared them to those of five Western commercial pig breeds (WECPs). Furthermore, we examined the occurrence and distribution of ROHs in the five AHIPs and estimated the inbreeding coefficients based on the ROHs (FROH) and homozygosity (FHOM). Finally, we identified genomic regions with high frequencies of ROHs and annotated candidate genes contained therein. Results The WECPs and AHIPs were clearly differentiated into two separate clades consistent with their geographical origins, as revealed by the population structure and principal component analysis. We identified 13,530 ROHs across all individuals, of which 4,555 and 8,975 ROHs were unique to AHIPs and WECPs, respectively. Most ROHs identified in our study were short (< 10 Mb) or medium (10–20 Mb) in length. WECPs had significantly higher numbers of short ROHs, and AHIPs generally had longer ROHs. FROH values were significantly lower in AHIPs than in WECPs, indicating that breed improvement and conservation programmes were successful in AHIPs. On average, FROH and FHOM values were highly correlated (0.952–0.991) in AHIPs and WECPs. A total of 27 regions had a high frequency of ROHs and contained 17 key candidate genes associated with economically important traits in pigs. Among these, nine candidate genes (CCNT2, EGR2, MYL3, CDH13, PROX1, FLVCR1, SETD2, FGF18, and FGF20) found in WECPs were related to muscular and skeletal development, whereas eight candidate genes (CSN1S1, SULT1E1, TJP1, ZNF366, LIPC, MCEE, STAP1, and DUSP) found in AHIPs were associated with health, reproduction, and fatness traits. Conclusion Our findings provide a useful reference for the selection and assortative mating of pig breeds, laying the groundwork for future research on the population genetic structures of AHIPs, ultimately helping protect these local varieties. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08583-9.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaojin Li
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jiali Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongquan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
10
|
Zhou KZ, Wu PF, Zhang XC, Ling XZ, Zhang J, Zhang L, Li PF, Zhang T, Wei QY, Zhang GX. Comparative Analysis of miRNA Expression Profiles in Skeletal Muscle of Bian Chickens at Different Embryonic Ages. Animals (Basel) 2022; 12:1003. [PMID: 35454249 PMCID: PMC9025512 DOI: 10.3390/ani12081003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are widely involved in the growth and development of skeletal muscle through the negative regulation of target genes. In order to screen out the differentially expressed miRNAs (DEMs) associated with skeletal muscle development of Bian chickens at different embryonic ages, we used the leg muscles of fast-growing and slow-growing Bian chickens at the 14th and 20th embryonic ages (F14, F20, S14 and S20) for RNA-seq. A total of 836 known miRNAs were identified, and 121 novel miRNAs were predicted. In the F14 vs. F20 comparison group, 127 DEMs were screened, targeting a total of 2871 genes, with 61 miRNAs significantly upregulated and 66 miRNAs significantly downregulated. In the S14 vs. S20 comparison group, 131 DEMs were screened, targeting a total of 3236 genes, with 60 miRNAs significantly upregulated and 71 miRNAs significantly downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the predicted target genes were significantly enriched in 706 GO terms and 6 KEGG pathways in the F14 vs. F20 group and 677 GO terms and 5 KEGG pathways in the S14 vs. S20 group. According to the interaction network analysis, we screened five coexpressed DEMs (gga-miR-146a-3p, gga-miR-2954, gga-miR-34a-5p, gga-miR-1625-5p and gga-miR-18b-3p) with the highest connectivity degree with predicted target genes between the two comparison groups, and five hub genes (HSPA5, PKM2, Notch1, Notch2 and RBPJ) related to muscle development were obtained as well. Subsequently, we further identified nine DEMs (gga-let-7g-3p, gga-miR-490-3p, gga-miR-6660-3p, gga-miR-12223-5p, novel-miR-327, gga-miR-18a-5p, gga-miR-18b-5p, gga-miR-34a-5p and gga-miR-1677-3p) with a targeting relationship to the hub genes, suggesting that they may play important roles in the muscle development of Bian chickens. This study reveals the miRNA differences in skeletal muscle development between 14- and 20-day embryos of Bian chickens from fast- and slow-growing groups and provides a miRNA database for further studies on the molecular mechanisms of the skeletal muscle development in Bian chickens.
Collapse
Affiliation(s)
- Kai-Zhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Peng-Fei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Xin-Chao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Xuan-Ze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Li Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (L.Z.); (P.-F.L.); (Q.-Y.W.)
| | - Pei-Feng Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (L.Z.); (P.-F.L.); (Q.-Y.W.)
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Qing-Yu Wei
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (L.Z.); (P.-F.L.); (Q.-Y.W.)
| | - Gen-Xi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| |
Collapse
|
11
|
Zhang T, Chen L, Ding H, Wu P, Zhang G, Pan PZ, Xie PK, Dai G, Wang J. Construction of miRNA-mRNA network in the differentiation of chicken preadipocytes. Br Poult Sci 2021; 63:298-306. [PMID: 34738495 DOI: 10.1080/00071668.2021.2000585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. MicroRNAs (miRNAs) play key roles in regulating lipid metabolism, adipogenesis and fat deposition in chicken. To date, there are only a few miRNAs that had been confirmed to be involved in chicken adipogenesis. The detailed mechanisms by which miRNAs regulate chicken adipogenesis remain largely unknown. 2. To identify candidate miRNAs involved in chicken preadipocyte differentiation and explore potential mechanisms behind their functions, the following study analysed and identified miRNA and mRNA expression levels in undifferentiated and differentiated preadipocytes. Hub miRNA-mRNA interactions were identified, and the degree of connectivity of DE miRNAs in the network was established. 3. A total of 145 DE miRNAs and 660 DE mRNAs were identified between undifferentiated and differentiated preadipocytes. An miRNA-mRNA network was constructed, including 29 DE miRNAs and 155 DE mRNAs, forming 470 miRNA-mRNA interactions. Functional enrichment analysis showed that DE mRNAs in the network were significantly enriched in 712 biological processes and 13 KEGG pathways. Based on the connectivity degree, five DE miRNAs with higher degrees miR-195-x, gga-miR-200a-3p, gga-miR-135a-5p, novel-m0067-5p and novel-m0270-5p were identified as hub miRNAs. Fifty-eight DE mRNAs interacted with these five hub miRNAs and formed 70 miRNA-mRNA interactions. 4. This study constructed a miRNA-mRNA network associated with chicken preadipocyte differentiation and identified five hub miRNAs in the network. The findings identified the number of chicken adipogenic miRNAs and laid the foundation for elucidating the miRNA-mediated regulatory mechanism in chicken adipogenesis.
Collapse
Affiliation(s)
- Tao Zhang
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China.,Yangzhou University, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009 China
| | - Lan Chen
- Yangzhou University, College of Veterinary Medicine, Yangzhou, China
| | - Hao Ding
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China
| | - Pengfei Wu
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China
| | - Genxi Zhang
- 88 Daxue South Road, Yangzhou City, Jiangsu Province, Yangzhou, 225009 China
| | - Professor Zhiming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, 225009 China
| | - Professor Kaizhou Xie
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China
| | - Guojun Dai
- Yangzhou University, College of Animal Science and Technology, Yangzhou, 225009 China
| | - Jinyu Wang
- College of animal Science & Technology, Department of Animal Genetics, Breeding & Reproduction, Yangzhou, China
| |
Collapse
|